Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2

The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subseque...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5788
Acceso en línea:
http://hdl.handle.net/11407/5788
Palabra clave:
grinding process
photodeposition
TiO2
Crystallinity
Grinding (machining)
Light absorption
Phenols
Photocatalytic activity
Platinum
Sol-gels
Titanium dioxide
Grinding process
High photocatalytic activities
Phenol photodegradation
Photo-deposition
Simulated solar radiations
Solvothermal method
TiO2
Visible light absorption
Phosphorus compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_cfd982299c54ad08097b7de87209ef35
oai_identifier_str oai:repository.udem.edu.co:11407/5788
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
spellingShingle Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
grinding process
photodeposition
TiO2
Crystallinity
Grinding (machining)
Light absorption
Phenols
Photocatalytic activity
Platinum
Sol-gels
Titanium dioxide
Grinding process
High photocatalytic activities
Phenol photodegradation
Photo-deposition
Simulated solar radiations
Solvothermal method
TiO2
Visible light absorption
Phosphorus compounds
title_short Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_full Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_fullStr Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_full_unstemmed Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
title_sort Comparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2
dc.subject.none.fl_str_mv grinding process
photodeposition
TiO2
Crystallinity
Grinding (machining)
Light absorption
Phenols
Photocatalytic activity
Platinum
Sol-gels
Titanium dioxide
Grinding process
High photocatalytic activities
Phenol photodegradation
Photo-deposition
Simulated solar radiations
Solvothermal method
TiO2
Visible light absorption
Phosphorus compounds
topic grinding process
photodeposition
TiO2
Crystallinity
Grinding (machining)
Light absorption
Phenols
Photocatalytic activity
Platinum
Sol-gels
Titanium dioxide
Grinding process
High photocatalytic activities
Phenol photodegradation
Photo-deposition
Simulated solar radiations
Solvothermal method
TiO2
Visible light absorption
Phosphorus compounds
description The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation. © 2019 IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:01Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:01Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20531591
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5788
dc.identifier.doi.none.fl_str_mv 10.1088/2053-1591/ab4316
identifier_str_mv 20531591
10.1088/2053-1591/ab4316
url http://hdl.handle.net/11407/5788
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072724520&doi=10.1088%2f2053-1591%2fab4316&partnerID=40&md5=6f51903ecb35fef936d727157f4958db
dc.relation.citationvolume.none.fl_str_mv 6
dc.relation.citationissue.none.fl_str_mv 10
dc.relation.references.none.fl_str_mv Abdullah, H., Khan, M.D., Ong, H., Yaakab, Z., Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview (2017) Journal of CO, 22, pp. 15-32
Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Journal of Ceramic Processing Research, 15, pp. 290-293
Aysin, B., Ozturk, A., Park, J., Silver-loaded TiO2 powders prepared through mechanical ball milling (2013) Ceram. Int., 39, pp. 7119-7126
Carneiro, J.O., Azevedo, S., Fernandez, F., Freitas, E., Pereira, M., Tavares, C.J., Lanceroz-Méndez, S., Teixeira, V., Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: The influence of process parameters on the structural, optical, magnetic, and photocatalytic properties (2014) Journal of Material Science, 49, pp. 7476-7488
Chen, H.W., Ku, Y., Kuo, Y.L., Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis (2007) Water Res., 41, pp. 2069-2078
Coleman, H.M., Chiang, K., Amal, R., Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water (2005) Chem. Eng. J., 113, pp. 65-72
Cybula, A., Priebe, J., Pohl, M., Sobczak, J., Schneider, M., Zielínska-Jurek, A., Brückner, A., Zaleska, A., The effect of calcination temperature on structure and photocatalyticproperties of Au/Pd nanoparticles supported on TiO2 (2014) Applied Catalysis B: Environmental, 152-153, pp. 202-211
Dilla, M., Pougin, A., Strunk, J., Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysis in the reduction of CO2 to CH4 (2017) Journal of Energy Chemistry, 26, pp. 277-283
Dozzi, M., Saccomanni, A., Selli, E., Cr(VI) photocatalytic reduction: Effects of simultaneous organic oxidation and of gold nanoparticles photodeposition on TiO2 (2012) Journal of Hazardous Materials, 211-212, pp. 188-195
Du, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., Tachiya, M., Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size (2009) J. Phys. Chem. C, 113, pp. 6454-6462
Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333
Fang, J., Cao, S., Wang, Z., Shahjamali, M., Loo, S., Barber, J., Xue, C., Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction (2012) Int. J. Hydrogen Energy, 37, pp. 17853-17861
Fernández-Rodríguez, C., Doña-Rodríguez, J., González-Díaz, O., Seck, I., Zerbani, D., Portillo, D., And Perez-Peña. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications (2012) Journal of Applied Catalysis B: Environmental, 125, pp. 383-389
Galeano, L., Valencia, S., Restrepo, G., Marin, J.M., Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications (2019) Mater. Sci. Semicond. Process., 91, pp. 47-57
Go?abiewska, A., Lisowski, W., Jarek, M., Nowaczyk, G., Zieli?ska-Jurek, A., Zaleska, A., Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles (2014) Appl. Surf. Sci., 317, pp. 1131-1142
Gone, R., Giri, P., Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling (2016) J. Alloys Compd., 676, pp. 591-600
Grabowska, E., Marchelek, M., Klimczuk, T., Trykowski, G., Zaleska-Medynska, A., Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light (2016) J. Mol. Catal. A: Chem., 423, pp. 191-206
Gupta, B., Melvin, A., Matthews, T., Dash, S., Tyagi, A.K., TiO2 modification for photocatalytic hyderogen (H2) production. Renowable and Sustantable (2016) Energy, 58, pp. 1366-1375
Hernandez, M.J., Pulido, E., Garcia, D., Gonzalez, O., Navio, J.A., Doña, J.M., NO photooxidation with TiO2 photocatalysts modified with gold and platinum (2017) Appl. Catalysis B, 205, pp. 148-157
Hidalgo, M., Colón, G., Navío, J., Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol., A, 148, pp. 341-348
Hidalgo, M., Maicu, M., Navío, J., Colón, G., Photocatalytic properties of surface modified platinized TiO2: Effect of particle size and structural composition (2007) Catal. Today, 129, pp. 43-49
Hidalgo, M., Murcia, J., Navío, J., Colón, G., Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation (2011) Appl. Catal., A, 397, pp. 112-120
Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188
Hu, J., Wang, L., Zhang, P., Liang, C., Shao, G., Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production (2016) J. Power Sources, 328, pp. 28-36
Hufschmidt, D., Bahnemann, D., Testa, J., Emilio, C., Litter, M., Enhancement of the photocatalytic activity of various TiO2 materials by platinisation (2002) J. Photochem. Photobiol., A, 148, pp. 223-231
Ismail, A., Bahnemann, D., Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase (2012) Chem. Eng. J., 203, pp. 174-181
Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photocatalyst with its grinding in solvent (2008) Applied Catalysis B: Environment, 84, pp. 570-576
Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol., A, 189, pp. 232-238
Kernazhitsky, L., Gavrilko, T., Shymanovska, V., Naumov, V., Laser-excited excitonic luminescence of nanocrystalline TiO2 powder (2014) Ukr. J. Phys., 59, pp. 246-253
Khaki, M., Shafeeyah, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutant degradation-A review (2017) Journal of Environment Management, 198, pp. 78-94
Khan, H., Berk, D., Selenium modified oxalate chelated titania: Characterization, mechanistic and photocatalytic studies (2015) Appl. Catal., A, 505, pp. 285-301
Kitsiou, V., Zachariadis, G., Lambropolou, D., Tsiplakides, D., Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalyst (2018) Journal of Environmental Chemical Engineering, 6, pp. 2409-2416
Kozlova, E., Lyubina, T., Nasalevich, M., Vorontsov, A., Miller, A., Kaichev, V., Parmon, V., Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Applied (2011) Catalysis Communications, 12, pp. 597-601
Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720
Maicu, M., Hidalgo, M.C., Colón, G., Navío, J.A., Comparative study of the photodeposition of Pt, Au, Pd on pre-sulphate TiO2 for the photocatalytic decomposition of phenol (2011) J. Photochem. Photobiol., A, 217, pp. 275-283
Marchal, C., Piquet, A., Behr, M., Cottineau, T., Papaefthimiou, V., Keller, V., Caps, V., Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content (2017) J. Catal., 352, pp. 22-34
Melvin, A., Illath, K., Das, T., Raja, T., Bhattacharyya, S., Gopinath C. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces (2015) The Royal Society of Chemistry
Miao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114
Mills, A., ÓRourke, C., Moore, K., Powder semiconductor photocatalysis in aquous solution: An overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol., A, 310, pp. 66-105
Murcia, J., Ávila-Martinez, E., Rojas, H., Navio, J., Hidalgo, M., Study of the E. Coli elimination from urban wastewater over photocatalysis based on metallized TiO2 (2017) Appl. Catalysis B, 200, pp. 469-476
Murcia, J., Navío, J., Hidalgo, M., Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation (2012) Appl. Catalysis B, 126, pp. 76-85
Murcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Correlation study between photo-degradation and Surface adsorption properties of phenol and methyl orange on TiO2 vs platinum supported TiO2. Applied (2014) Catalysis B: Environmental, 150, 151, pp. 107-115
Murcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition (2015) Appl. Catalysis B, 179, pp. 305-312
Murcia, J., Hidalgo, M., Navio, J., Vaiano, V., Sannino, D., Ciabelli, P., Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts (2013) Catal. Today, 209, pp. 164-169
Na-Phattalung, S., Smith, M.F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S.B., Limpijumnong, S., First-principles study of native defects in anatase TiO2 (2006) Physical Rewiew B, 73, p. 125205
Okazaki, K., Morikawa, Y., Tanaka, S., Tanaka, K., Kohyama, M., Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) (2005) J. Mater. Sci., 40, pp. 3075-3080
Okuno, T., Kawamura, G., Muto, H., Matuda, A., Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light (2016) J. Solid State Chem., 235, pp. 132-138
Orlov, A., Jefferson, D., MacLeod, N., Lambert, R., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-Chlorophenol in aqueous solution (2004) Catal. Lett., 92, pp. 41-47
Palmas, S., Polcaro, A.M., Rodriguez Ruiz, J., Da Pozzo, A., Vacca, A., Mascia, M., Delogu, F., Ricci, P.C., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrogen Energy, 34, pp. 9662-9670
Parker, J.C., Siegel, R.W., Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 (1990) Appl. Phys. Lett., 57, pp. 943-945
Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catalysis B, 200, pp. 1-9
Ren, H., Koshy, P., Chen, W.F., Qi, S., Sorrell, C., Photocatalytic materials and technologies for air purification (2017) J. Hazard. Mater., 325, pp. 340-366
Saito, F., Baron, M., Dodds J.ed Waseda Y.and Muramatsu, A., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, 64, pp. 3-24. , Saito F, Baron M and Dodds J ed Y Waseda and A Muramatsu (Berlin, Heidelberg: Springer Series in Materials Science) pp 1-24 (www.springer.com/gp/book/9783540009580)
Shahini, P., Ashkarran, A., Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst (2018) Colloids and Surfaces A, 537, pp. 155-162
Shayegan, Z., Lee, C., Haghighat, F., TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review (2018) Chem. Eng. J., 334, pp. 2408-2439
Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.
Tian, B., Zhang, J., Tong, T., Chen, F., Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange (2008) Appl. Catalysis B, 79, pp. 394-401
Vaiano, V., Iervolino, G., Sannino, D., Murcia, J., Hidalgo, M.C., Ciambelli, P., Navio, J., Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts (2016) Applied Catalysis B: Environmental Catalysis B: Environmental, 188, pp. 134-146
Vaiano, V., Sacco, O., Iervolino, G., Sannino, D., Ciambelli, P., Liguori, R., Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied (2015) Catalysis B: Environmental, 176, 177, pp. 594-600
Valencia, S., Marín, J., Restrepo, G., Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment (2010) The Open Materials Science Journal, 4, pp. 9-14
Valencia, S., Marín, J., Restrepo, G., Frimmel, F.H., Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid (2013) Science of Total Environment, 442, pp. 207-214
Vittadini, A., Selloni, A., Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study (2002) The Journal of Chemistry Physics, 117, p. 353. , 361
Wang, F., Wong, R., Ho, J., Jiang, J., Amal, R., Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light Irradiation (2017) Applied Materials & Interfaces, 9, pp. 30575-30582
Wang, L., Fan, J., Cao, Z., Zheng, Y., Yao, Z., Shao, G., Hu, J., Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts (2014) Chemistry An Asian Journal, 9, pp. 1904-1912. , Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts
Wang, L., Zhang, X., Gao, H., Hu, J., Mao, J., Liang, C., 3D CuO network supported TiO2 nanosheets with applications for energy storage and water splitting (2016) Science of Advanced Materials, 8, pp. 1256-1262
Wang, L., Zhang, X., Zhang, P., Cao, Z., Hu, J., Photoelectric conversion performances of Mn doped TiO2 under > 420 nm visible light irradiation (2015) Journal of Saudi Chemical Society, 19, pp. 595-601
Wang, S., Zeng, B., Li, C., Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation (2018) Chin. J. Catal., 39, pp. 1219-1227
Wang, W., Tadé, M., Shao, Z., Nitrogen-doped simple and complex oxides for photocatalysis: A review (2018) Progressing Materials Science, 92, pp. 33-63. , 2018a
Wei, Z., Endo, M., Wang, K., Charbit, E., Markowska-Szczupak, A., Ahtani, B., Kowalska, E., Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants (2017) Chem. Eng. J., 318, pp. 121-134
Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes. Materials Letter (2017) Journal, 188, pp. 66-68
Yin, S., Zhang, Q., Saito, F., Saito T.ed Sopicka-Lizer, M., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , Yin S, Zhang Q, Saito F and Saito T ed M Sopicka-Lizer pp (www.sciencedirect.com/book/9781845695316/high-energy-ball-milling#book-description)
Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36
Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., Raman scattering study on anatase TiO2 nanocrystals (2000) J Ournal of Physics D: Applied Physics, 33 (8), pp. 912-916
Zhao, Q., Li, M., Chu, J., Jiang, T., Yin, H., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange (2009) Appl. Surf. Sci., 255, pp. 3773-3778
Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Science China Technological Sciences, 60, pp. 1447-1457
Zieli?ska-Jurek, A., Zaleska, A., Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase (2014) Catal. Today, 230, pp. 104-111
Zieli?ska-Jurek, A., Kowalska, E., Sobczak, J., Lisowski, W., Ohtani, B., Zaleska, A., Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light (2011) Appl. Catalysis B, 101, pp. 504-514
Zunic, V., Vukomanovic, M., Skapin, S., Suvorov, D., Kovac, J., Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach (2014) Ultrason. Sonochem., 21, pp. 367-375
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Institute of Physics Publishing
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv Materials Research Express
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159260870770688
spelling 20192020-04-29T14:54:01Z2020-04-29T14:54:01Z20531591http://hdl.handle.net/11407/578810.1088/2053-1591/ab4316The influence of dry-soft grinding and photodeposition of gold (Au) or platinum (Pt) in the improvement of the photoactivity of TiO2 synthesized by an integrated sol-gel and solvothermal method was studied. TiO2 was modified by a dry-soft grinding process in a planetary ball mill (TiO2(G)). Subsequently, Au or Pt particles were photodeposited in both unmodified TiO2 and TiO2(G) obtaining Au-TiO2, Pt-TiO2, Au-TiO2(G), and Pt-TiO2(G) materials. The photoactivity of the materials was evaluated in the phenol photodegradation under simulated solar radiation. Pt-TiO2 showed the greatest degree of photoactivity improvement in comparison with TiO2 and TiO2-P25. The dry-soft grinding process led to a high photocatalytic activity of TiO2(G) that was similar to Pt-TiO2 activity as consequence of a slight increase in the crystallinity in TiO2(G) due to an additional anatase formation in comparison with TiO2. However, further photocatalytic improvement in TiO2(G) were not achieved with the addition of Au or Pt. Therefore, the dry-soft grinding treatment and noble metal deposition led to similar improvements in the photocatalytic activity of TiO2 for phenol oxidation. © 2019 IOP Publishing Ltd.engInstitute of Physics PublishingIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072724520&doi=10.1088%2f2053-1591%2fab4316&partnerID=40&md5=6f51903ecb35fef936d727157f4958db610Abdullah, H., Khan, M.D., Ong, H., Yaakab, Z., Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview (2017) Journal of CO, 22, pp. 15-32Ali, M., Transformation and powder characteristics of TiO2 during high-energy milling (2014) Journal of Ceramic Processing Research, 15, pp. 290-293Aysin, B., Ozturk, A., Park, J., Silver-loaded TiO2 powders prepared through mechanical ball milling (2013) Ceram. Int., 39, pp. 7119-7126Carneiro, J.O., Azevedo, S., Fernandez, F., Freitas, E., Pereira, M., Tavares, C.J., Lanceroz-Méndez, S., Teixeira, V., Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: The influence of process parameters on the structural, optical, magnetic, and photocatalytic properties (2014) Journal of Material Science, 49, pp. 7476-7488Chen, H.W., Ku, Y., Kuo, Y.L., Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis (2007) Water Res., 41, pp. 2069-2078Coleman, H.M., Chiang, K., Amal, R., Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water (2005) Chem. Eng. J., 113, pp. 65-72Cybula, A., Priebe, J., Pohl, M., Sobczak, J., Schneider, M., Zielínska-Jurek, A., Brückner, A., Zaleska, A., The effect of calcination temperature on structure and photocatalyticproperties of Au/Pd nanoparticles supported on TiO2 (2014) Applied Catalysis B: Environmental, 152-153, pp. 202-211Dilla, M., Pougin, A., Strunk, J., Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysis in the reduction of CO2 to CH4 (2017) Journal of Energy Chemistry, 26, pp. 277-283Dozzi, M., Saccomanni, A., Selli, E., Cr(VI) photocatalytic reduction: Effects of simultaneous organic oxidation and of gold nanoparticles photodeposition on TiO2 (2012) Journal of Hazardous Materials, 211-212, pp. 188-195Du, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., Tachiya, M., Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size (2009) J. Phys. Chem. C, 113, pp. 6454-6462Estruga, M., Domingo, C., Doménech, X., Ayllón, J., Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors (2010) J. Colloid Interface Sci., 344, pp. 327-333Fang, J., Cao, S., Wang, Z., Shahjamali, M., Loo, S., Barber, J., Xue, C., Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction (2012) Int. J. Hydrogen Energy, 37, pp. 17853-17861Fernández-Rodríguez, C., Doña-Rodríguez, J., González-Díaz, O., Seck, I., Zerbani, D., Portillo, D., And Perez-Peña. Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications (2012) Journal of Applied Catalysis B: Environmental, 125, pp. 383-389Galeano, L., Valencia, S., Restrepo, G., Marin, J.M., Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications (2019) Mater. Sci. Semicond. Process., 91, pp. 47-57Go?abiewska, A., Lisowski, W., Jarek, M., Nowaczyk, G., Zieli?ska-Jurek, A., Zaleska, A., Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles (2014) Appl. Surf. Sci., 317, pp. 1131-1142Gone, R., Giri, P., Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling (2016) J. Alloys Compd., 676, pp. 591-600Grabowska, E., Marchelek, M., Klimczuk, T., Trykowski, G., Zaleska-Medynska, A., Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light (2016) J. Mol. Catal. A: Chem., 423, pp. 191-206Gupta, B., Melvin, A., Matthews, T., Dash, S., Tyagi, A.K., TiO2 modification for photocatalytic hyderogen (H2) production. Renowable and Sustantable (2016) Energy, 58, pp. 1366-1375Hernandez, M.J., Pulido, E., Garcia, D., Gonzalez, O., Navio, J.A., Doña, J.M., NO photooxidation with TiO2 photocatalysts modified with gold and platinum (2017) Appl. Catalysis B, 205, pp. 148-157Hidalgo, M., Colón, G., Navío, J., Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation (2002) J. Photochem. Photobiol., A, 148, pp. 341-348Hidalgo, M., Maicu, M., Navío, J., Colón, G., Photocatalytic properties of surface modified platinized TiO2: Effect of particle size and structural composition (2007) Catal. Today, 129, pp. 43-49Hidalgo, M., Murcia, J., Navío, J., Colón, G., Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation (2011) Appl. Catal., A, 397, pp. 112-120Hu, C., Lian, C., Zheng, S., Duo, S., Zhang, R., Hu, Q., Zhang, S., Sun, Y., Grinding combined melt-diffusion synthesis of sulfur/P25 heterostructure for enhanced photocatalytic activity under visible light (2015) J. Mol. Catal. A: Chem., 407, pp. 182-188Hu, J., Wang, L., Zhang, P., Liang, C., Shao, G., Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production (2016) J. Power Sources, 328, pp. 28-36Hufschmidt, D., Bahnemann, D., Testa, J., Emilio, C., Litter, M., Enhancement of the photocatalytic activity of various TiO2 materials by platinisation (2002) J. Photochem. Photobiol., A, 148, pp. 223-231Ismail, A., Bahnemann, D., Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase (2012) Chem. Eng. J., 203, pp. 174-181Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Novel method for preparing of high visible active N-doped TiO2 photocatalyst with its grinding in solvent (2008) Applied Catalysis B: Environment, 84, pp. 570-576Kang, I., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3 (2007) J. Photochem. Photobiol., A, 189, pp. 232-238Kernazhitsky, L., Gavrilko, T., Shymanovska, V., Naumov, V., Laser-excited excitonic luminescence of nanocrystalline TiO2 powder (2014) Ukr. J. Phys., 59, pp. 246-253Khaki, M., Shafeeyah, M., Raman, A., Daud, W., Application of doped photocatalysts for organic pollutant degradation-A review (2017) Journal of Environment Management, 198, pp. 78-94Khan, H., Berk, D., Selenium modified oxalate chelated titania: Characterization, mechanistic and photocatalytic studies (2015) Appl. Catal., A, 505, pp. 285-301Kitsiou, V., Zachariadis, G., Lambropolou, D., Tsiplakides, D., Mineralization of the antineoplastic drug carboplatin by heterogeneous photocatalysis with simultaneous synthesis of platinum-modified TiO2 catalyst (2018) Journal of Environmental Chemical Engineering, 6, pp. 2409-2416Kozlova, E., Lyubina, T., Nasalevich, M., Vorontsov, A., Miller, A., Kaichev, V., Parmon, V., Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Applied (2011) Catalysis Communications, 12, pp. 597-601Lu, Z., Jiang, X., Zhou, B., Wu, X., Lu, L., Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation (2011) Appl. Surf. Sci., 257, pp. 10715-10720Maicu, M., Hidalgo, M.C., Colón, G., Navío, J.A., Comparative study of the photodeposition of Pt, Au, Pd on pre-sulphate TiO2 for the photocatalytic decomposition of phenol (2011) J. Photochem. Photobiol., A, 217, pp. 275-283Marchal, C., Piquet, A., Behr, M., Cottineau, T., Papaefthimiou, V., Keller, V., Caps, V., Activation of solid grinding-derived Au/TiO2 photocatalysts for solar H2 production from water-methanol mixtures with low alcohol content (2017) J. Catal., 352, pp. 22-34Melvin, A., Illath, K., Das, T., Raja, T., Bhattacharyya, S., Gopinath C. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces (2015) The Royal Society of ChemistryMiao, J., Zhang, R., Zhang, L., Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2 (2018) Mater. Res. Bull., 97, pp. 109-114Mills, A., ÓRourke, C., Moore, K., Powder semiconductor photocatalysis in aquous solution: An overview of kinetics-based reaction mechanisms (2015) J. Photochem. Photobiol., A, 310, pp. 66-105Murcia, J., Ávila-Martinez, E., Rojas, H., Navio, J., Hidalgo, M., Study of the E. Coli elimination from urban wastewater over photocatalysis based on metallized TiO2 (2017) Appl. Catalysis B, 200, pp. 469-476Murcia, J., Navío, J., Hidalgo, M., Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation (2012) Appl. Catalysis B, 126, pp. 76-85Murcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Correlation study between photo-degradation and Surface adsorption properties of phenol and methyl orange on TiO2 vs platinum supported TiO2. Applied (2014) Catalysis B: Environmental, 150, 151, pp. 107-115Murcia, J., Hidalgo, M., Navio, J., Araña, J., Doña-Rodriguez, J., Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition (2015) Appl. Catalysis B, 179, pp. 305-312Murcia, J., Hidalgo, M., Navio, J., Vaiano, V., Sannino, D., Ciabelli, P., Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts (2013) Catal. Today, 209, pp. 164-169Na-Phattalung, S., Smith, M.F., Kim, K., Du, M.-H., Wei, S.-H., Zhang, S.B., Limpijumnong, S., First-principles study of native defects in anatase TiO2 (2006) Physical Rewiew B, 73, p. 125205Okazaki, K., Morikawa, Y., Tanaka, S., Tanaka, K., Kohyama, M., Effects of stoichiometry on electronic states of Au and Pt supported on TiO2(110) (2005) J. Mater. Sci., 40, pp. 3075-3080Okuno, T., Kawamura, G., Muto, H., Matuda, A., Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light (2016) J. Solid State Chem., 235, pp. 132-138Orlov, A., Jefferson, D., MacLeod, N., Lambert, R., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-Chlorophenol in aqueous solution (2004) Catal. Lett., 92, pp. 41-47Palmas, S., Polcaro, A.M., Rodriguez Ruiz, J., Da Pozzo, A., Vacca, A., Mascia, M., Delogu, F., Ricci, P.C., Effect of the mechanical activation on the photoelectrochemical properties of anatase powders (2009) Int. J. Hydrogen Energy, 34, pp. 9662-9670Parker, J.C., Siegel, R.W., Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 (1990) Appl. Phys. Lett., 57, pp. 943-945Phattalung, S., Limpijumnong, S., Yu, J., Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity (2017) Appl. Catalysis B, 200, pp. 1-9Ren, H., Koshy, P., Chen, W.F., Qi, S., Sorrell, C., Photocatalytic materials and technologies for air purification (2017) J. Hazard. Mater., 325, pp. 340-366Saito, F., Baron, M., Dodds J.ed Waseda Y.and Muramatsu, A., Morphology control in size reduction processes (2004) Morphology Control of Materials and Nanoparticles, 64, pp. 3-24. , Saito F, Baron M and Dodds J ed Y Waseda and A Muramatsu (Berlin, Heidelberg: Springer Series in Materials Science) pp 1-24 (www.springer.com/gp/book/9783540009580)Shahini, P., Ashkarran, A., Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst (2018) Colloids and Surfaces A, 537, pp. 155-162Shayegan, Z., Lee, C., Haghighat, F., TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review (2018) Chem. Eng. J., 334, pp. 2408-2439Thommes, M., Kaneko, H., Neimark, A., Olivier, J., Rodríguez-Reinoso, F., Rouquero, J., Sing, K., Physisorption of gases with special reference to the evaluation of Surface area and pore size distribution (IUPAC Technical report) (2015) Pure Appl. Chem.Tian, B., Zhang, J., Tong, T., Chen, F., Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange (2008) Appl. Catalysis B, 79, pp. 394-401Vaiano, V., Iervolino, G., Sannino, D., Murcia, J., Hidalgo, M.C., Ciambelli, P., Navio, J., Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts (2016) Applied Catalysis B: Environmental Catalysis B: Environmental, 188, pp. 134-146Vaiano, V., Sacco, O., Iervolino, G., Sannino, D., Ciambelli, P., Liguori, R., Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied (2015) Catalysis B: Environmental, 176, 177, pp. 594-600Valencia, S., Marín, J., Restrepo, G., Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment (2010) The Open Materials Science Journal, 4, pp. 9-14Valencia, S., Marín, J., Restrepo, G., Frimmel, F.H., Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid (2013) Science of Total Environment, 442, pp. 207-214Vittadini, A., Selloni, A., Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study (2002) The Journal of Chemistry Physics, 117, p. 353. , 361Wang, F., Wong, R., Ho, J., Jiang, J., Amal, R., Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light Irradiation (2017) Applied Materials & Interfaces, 9, pp. 30575-30582Wang, L., Fan, J., Cao, Z., Zheng, Y., Yao, Z., Shao, G., Hu, J., Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts (2014) Chemistry An Asian Journal, 9, pp. 1904-1912. , Fabrication of predominantly Mn4+ -doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalytsWang, L., Zhang, X., Gao, H., Hu, J., Mao, J., Liang, C., 3D CuO network supported TiO2 nanosheets with applications for energy storage and water splitting (2016) Science of Advanced Materials, 8, pp. 1256-1262Wang, L., Zhang, X., Zhang, P., Cao, Z., Hu, J., Photoelectric conversion performances of Mn doped TiO2 under > 420 nm visible light irradiation (2015) Journal of Saudi Chemical Society, 19, pp. 595-601Wang, S., Zeng, B., Li, C., Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation (2018) Chin. J. Catal., 39, pp. 1219-1227Wang, W., Tadé, M., Shao, Z., Nitrogen-doped simple and complex oxides for photocatalysis: A review (2018) Progressing Materials Science, 92, pp. 33-63. , 2018aWei, Z., Endo, M., Wang, K., Charbit, E., Markowska-Szczupak, A., Ahtani, B., Kowalska, E., Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants (2017) Chem. Eng. J., 318, pp. 121-134Xiao, J., Pan, Z., Zhang, B., Liu, G., Zhang, H., Song, X., Hu, G., Zheng, Y., The research of photocatalytic activity on Si doped TiO2 nanotubes. Materials Letter (2017) Journal, 188, pp. 66-68Yin, S., Zhang, Q., Saito, F., Saito T.ed Sopicka-Lizer, M., Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping (2010) High-Energy Ball Milling Mechanochemical Processing of Nanopowders, pp. 304-330. , Yin S, Zhang Q, Saito F and Saito T ed M Sopicka-Lizer pp (www.sciencedirect.com/book/9781845695316/high-energy-ball-milling#book-description)Zangeneh, H., Zinatizadeh, A., Habibi, M., Akia, M., Isa, M., Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review (2015) J. Ind. Eng. Chem., 25, pp. 1-36Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chen, Q., Raman scattering study on anatase TiO2 nanocrystals (2000) J Ournal of Physics D: Applied Physics, 33 (8), pp. 912-916Zhao, Q., Li, M., Chu, J., Jiang, T., Yin, H., Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange (2009) Appl. Surf. Sci., 255, pp. 3773-3778Zhihuan, Z., Jimin, F., Honghong, C., Yusuke, A., Shu, Y., Recent progress on mixed-anion type visible-light induced photocatalysts (2017) Science China Technological Sciences, 60, pp. 1447-1457Zieli?ska-Jurek, A., Zaleska, A., Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase (2014) Catal. Today, 230, pp. 104-111Zieli?ska-Jurek, A., Kowalska, E., Sobczak, J., Lisowski, W., Ohtani, B., Zaleska, A., Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light (2011) Appl. Catalysis B, 101, pp. 504-514Zunic, V., Vukomanovic, M., Skapin, S., Suvorov, D., Kovac, J., Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach (2014) Ultrason. Sonochem., 21, pp. 367-375Materials Research Expressgrinding processphotodepositionTiO2CrystallinityGrinding (machining)Light absorptionPhenolsPhotocatalytic activityPlatinumSol-gelsTitanium dioxideGrinding processHigh photocatalytic activitiesPhenol photodegradationPhoto-depositionSimulated solar radiationsSolvothermal methodTiO2Visible light absorptionPhosphorus compoundsComparison of the effects generated by the dry-soft grinding and the photodeposition of Au and Pt processes on the visible light absorption and photoactivity of TiO2Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Galeano, L., Grupo de Investigaciones y Mediciones Ambientales (GEMA), Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia; Valencia, S., Grupo de Investigación Integra, Tecnológico de Antioquia, Institución Universitaria, Calle 78B No 72A-220, Medellín, Colombia; Marín, J.M., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia; Restrepo, G., Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52-21, Medellín, Colombia; Navío, J.A., Instituto de Ciencia de Materiales de Sevilla (ICMS). Centro Mixto CSIC-Universidad de Sevilla, Américo Vespucio 49, Sevilla, 41092, Spain; Hidalgo, M.C., Instituto de Ciencia de Materiales de Sevilla (ICMS). Centro Mixto CSIC-Universidad de Sevilla, Américo Vespucio 49, Sevilla, 41092, Spainhttp://purl.org/coar/access_right/c_16ecGaleano L.Valencia S.Marín J.M.Restrepo G.Navío J.A.Hidalgo M.C.11407/5788oai:repository.udem.edu.co:11407/57882020-05-27 19:13:40.758Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co