Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5955
- Acceso en línea:
- http://hdl.handle.net/11407/5955
- Palabra clave:
- Binary alloys
Cobalt alloys
Curie temperature
Deposition
Magnetization reversal
Paramagnetism
Phase diagrams
Phase space methods
Ruthenium alloys
Temperature
Titration
Applied magnetic fields
Concentration ranges
Dynamic magnetic behavior
Dynamic phase diagram
Dynamic phase transition
Epitaxial thin films
Magneto-optical detection
Qualitative behavior
Phase transitions
anisotropy
article
concentration (parameter)
conjugate
Curie temperature
gene frequency
magnetic field
phase transition
room temperature
sputter deposition
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_cc9082f8ade238190da09d7f926c4e6d |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5955 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
title |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
spellingShingle |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures Binary alloys Cobalt alloys Curie temperature Deposition Magnetization reversal Paramagnetism Phase diagrams Phase space methods Ruthenium alloys Temperature Titration Applied magnetic fields Concentration ranges Dynamic magnetic behavior Dynamic phase diagram Dynamic phase transition Epitaxial thin films Magneto-optical detection Qualitative behavior Phase transitions anisotropy article concentration (parameter) conjugate Curie temperature gene frequency magnetic field phase transition room temperature sputter deposition |
title_short |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
title_full |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
title_fullStr |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
title_full_unstemmed |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
title_sort |
Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures |
dc.subject.keyword.eng.fl_str_mv |
Binary alloys Cobalt alloys Curie temperature Deposition Magnetization reversal Paramagnetism Phase diagrams Phase space methods Ruthenium alloys Temperature Titration Applied magnetic fields Concentration ranges Dynamic magnetic behavior Dynamic phase diagram Dynamic phase transition Epitaxial thin films Magneto-optical detection Qualitative behavior Phase transitions anisotropy article concentration (parameter) conjugate Curie temperature gene frequency magnetic field phase transition room temperature sputter deposition |
topic |
Binary alloys Cobalt alloys Curie temperature Deposition Magnetization reversal Paramagnetism Phase diagrams Phase space methods Ruthenium alloys Temperature Titration Applied magnetic fields Concentration ranges Dynamic magnetic behavior Dynamic phase diagram Dynamic phase transition Epitaxial thin films Magneto-optical detection Qualitative behavior Phase transitions anisotropy article concentration (parameter) conjugate Curie temperature gene frequency magnetic field phase transition room temperature sputter deposition |
description |
We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:14Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:14Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
24700045 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5955 |
dc.identifier.doi.none.fl_str_mv |
10.1103/PhysRevE.102.022804 |
identifier_str_mv |
24700045 10.1103/PhysRevE.102.022804 |
url |
http://hdl.handle.net/11407/5955 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091192447&doi=10.1103%2fPhysRevE.102.022804&partnerID=40&md5=5f5160d4f93162351ffc3eeeeecc3b02 |
dc.relation.citationvolume.none.fl_str_mv |
102 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.references.none.fl_str_mv |
Keskin, M., Ertaş, M., Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins (2018) Physica A, 496, p. 79 Dabiri, J.O., Landmarks and frontiers in biological fluid dynamics (2019) Phys. Rev. Fluids, 4, p. 110501 Shojaei, R., Manshour, P., Montakhab, A., Phase transition in a network model of social balance with Glauber dynamics (2019) Phys. Rev. e, 100, p. 022303 Slavko, B., Glavatskiy, K., Prokopenko, M., Dynamic resettlement as a mechanism of phase transitions in urban configurations (2019) Phys. Rev. e, 99, p. 042143 Benhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R., Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene (2018) J. Magn. Magn. Mater., 460, p. 223 Jurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B.P., Roos, C.F., Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System (2017) Phys. Rev. Lett., 119, p. 080501 Riego, P., Vavassori, P., Berger, A., Towards an understanding of dynamic phase transitions (2018) Physica B, 549, p. 13 Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition (1999) Phys. Rev. e, 59, p. 2710 Yasui, T., Tutu, H., Yamamoto, M., Fujisaka, H., Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field (2002) Phys. Rev. e, 66, p. 036123 Tauscher, K., Pleimling, M., Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field (2014) Phys. Rev. e, 89, p. 022121 Chakrabarti, B.K., Acharyya, M., Dynamic transitions and hysteresis (1999) Rev. Mod. Phys., 71, p. 847 Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field (2000) Phys. Rev. e, 63, p. 016120 Jang, H., Grimson, M.J., Hysteresis and the dynamic phase transition in thin ferromagnetic films (2001) Phys. Rev. e, 63, p. 066119 Pleimling, M., Critical phenomena at perfect and non-perfect surfaces (2004) J. Phys. A: Math. Gen., 37, p. R79 Robb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A., Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model (2007) Phys. Rev. e, 76, p. 021124 Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A., Evidence for a dynamic phase transition in (Equation presented) magnetic multilayers (2008) Phys. Rev. B, 78, p. 134422 Berger, A., Idigoras, O., Vavassori, P., Transient Behavior of the Dynamically Ordered Phase in Uniaxial Cobalt Films (2013) Phys. Rev. Lett., 111, p. 190602 Riego, P., Vavassori, P., Berger, A., Metamagnetic Anomalies near Dynamic Phase Transitions (2017) Phys. Rev. Lett., 118, p. 117202 He, Y.-L., Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films (1993) Phys. Rev. Lett., 70, p. 2336 Jiang, Q., Yang, H.-N., Wang, G.-C., Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface (1995) Phys. Rev. B, 52, p. 14911 Suen, J.-S., Erskine, J.L., Magnetic Hysteresis Dynamics: Thin (Equation presented) Fe Films on Flat and Stepped W(110) (1997) Phys. Rev. Lett., 78, p. 3567 Fisher, M.E., Barber, M.N., Scaling Theory for Finite-Size Effects in the Critical Region (1972) Phys. Rev. Lett., 28, p. 1516 Wolfram, T., Dewames, R.E., Hall, W.F., Palmberg, P.W., Surface magnetization near the critical temperature and the temperature dependence of magnetic-electron scattering from NiO (1971) Surf. Sci., 28, p. 45 Stanley, H.E., (1987) Introduction to Phase Transitions and Critical Phenomena, , (Oxford University Press, New York) Yeomans, J.M., (1992) Statistical Mechanics of Phase Transitions, , (Clarendon, Oxford) Tomé, T., De Oliveira, M.J., Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field (1990) Phys. Rev. A, 41, p. 4251 Quintana, M., Oblak, E., Marín Ramírez, J.M., Berger, A., Experimental Exploration of the Vector Nature of the Dynamic Order Parameter near Dynamic Magnetic Phase Transitions, , (unpublished) Suzuki, M., Kubo, R., Dynamics of the Ising model near the critical point. i (1968) J. Phys. Soc. Jpn., 24, p. 51 Stoll, E., Binder, K., Schneider, T., Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model (1973) Phys. Rev. B, 8, p. 3266 Jang, H., Grimson, M.J., Woolf, T.B., Stochastic dynamics and the dynamic phase transition in thin ferromagnetic films (2004) Phys. Rev. e, 70, p. 047101 Zimmer, M.F., Ising model in an oscillating magnetic field: Mean-field theory (1993) Phys. Rev. e, 47, p. 3950 Glauber, R.J., Time-dependent statistics of the Ising model (1963) J. Math. Phys., 4, p. 294 Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition (1998) Phys. Rev. Lett., 81, p. 834 Park, H., Pleimling, M., Surface Criticality at a Dynamic Phase Transition (2012) Phys. Rev. Lett., 109, p. 175703 Idigoras, O., Vavassori, P., Berger, A., Mean field theory of dynamic phase transitions in ferromagnets (2012) Physica B, 407, p. 1377 Buendía, G.M., Rikvold, P.A., Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics (2008) Phys. Rev. e, 78, p. 051108 Park, H., Pleimling, M., Dynamic phase transition in the three-dimensional kinetic Ising model in an oscillating field (2013) Phys. Rev. e, 87, p. 032145 Riego, P., Berger, A., Nonuniversal surface behavior of dynamic phase transitions (2015) Phys. Rev. e, 91, p. 062141 Buendía, G.M., Rikvold, P.A., Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias (2017) Phys. Rev. B, 96, p. 134306 Shi, X., Liu, P., Metamagnetic anomalies in the kinetic Ising model (2019) Physica A, 536, p. 120998 Fujisaka, H., Tutu, H., Rikvold, P.A., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (2001) Phys. Rev. e, 63, p. 036109 Acharyya, M., Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance (1999) Phys. Rev. e, 59, p. 218 Akkaya Deviren, S., Albayrak, E., Dynamic phase transitions in the kinetic Ising model on the Bethe lattice (2010) Phys. Rev. e, 82, p. 022104 Deviren, B., Kantar, E., Keskin, M., Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field (2012) J. Magn. Magn. Mater., 324, p. 2163 Aktaş, B.O., Aklncl, U.¨, Polat, H., Critical phenomena in dynamical Ising-typed thin films by effective-field theory (2014) Thin Solid Films, 562, p. 680 Yüksel, Y., Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields (2015) Phys. Rev. e, 91, p. 032149 Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Critical phenomena in Ising-type thin films by Monte Carlo study (2016) J. Magn. Magn. Mater., 403, p. 167 Brandenburg, J., Hühne, R., Schultz, L., Neu, V., Domain structure of epitaxial Co films with perpendicular anisotropy (2009) Phys. Rev. B, 79, p. 054429 Idigoras, O., Suszka, A.K., Vavassori, P., Obry, B., Hillebrands, B., Landeros, P., Berger, A., Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment (2014) J. Appl. Phys., 115, p. 083912 Shukla, V., Mukherjee, C., Chari, R., Rai, S., Bindra, K.S., Banerjee, A., Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique (2014) J. Magn. Magn. Mater., 370, p. 100 Idigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A., Collapse of hard-axis behavior in uniaxial Co films (2011) Phys. Rev. B, 84, p. 132403 Thantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography (2016) J. Magn. Magn. Mater., 407, p. 273 Kowalewski, M., Schneider, C.M., Heinrich, B., Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures (1993) Phys. Rev. B, 47, p. 8748 Idigoras, O., Palomares, U., Suszka, A.K., Fallarino, L., Berger, A., Magnetic properties of room temperature grown epitaxial (2013) Appl. Phys. Lett., 103, p. 102410. , (Equation presented) -alloy films Suszka, A.K., Idigoras, O., Nikulina, E., Chuvilin, A., Berger, A., Crystallography-Driven Positive Exchange Bias in Co/CoO Bilayers (2012) Phys. Rev. Lett., 109, p. 177205 Crangle, J., Parsons, D., The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups (1960) Proc. R. Soc. London Ser. A, 255, p. 509 Stoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. R. Soc. London Ser. A, 240, p. 599 Kuz'Min, M.D., Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis (2005) Phys. Rev. Lett., 94, p. 107204 Eyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Girt, E., Effects of substitution on the exchange stiffness and magnetization of Co films (2014) Phys. Rev. B, 90, p. 235408 Nunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419 Eftaxias, E., Trohidou, K.N., Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology (2005) Phys. Rev. B, 71, p. 134406 Durst, K.-D., Kronmüller, H., The coercive field of sintered and melt-spun NdFeB magnets (1987) J. Magn. Magn. Mater., 68, p. 63 Oblak, E., Riego, P., Fallarino, L., Martínez-De-Guerenu, A., Arizti, F., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection (2017) J. Phys. D, 50, p. 23LT01 Oblak, E., Riego, P., Garcia-Manso, A., Martínez-De-Guerenu, A., Arizti, F., Artetxe, I., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements using an effective ellipsometric detection scheme (2020) J. Phys. D, 53, p. 205001 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Physical Society |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
Physical Review E |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159153909727232 |
spelling |
20202021-02-05T14:58:14Z2021-02-05T14:58:14Z24700045http://hdl.handle.net/11407/595510.1103/PhysRevE.102.022804We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.engAmerican Physical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091192447&doi=10.1103%2fPhysRevE.102.022804&partnerID=40&md5=5f5160d4f93162351ffc3eeeeecc3b021022Keskin, M., Ertaş, M., Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins (2018) Physica A, 496, p. 79Dabiri, J.O., Landmarks and frontiers in biological fluid dynamics (2019) Phys. Rev. Fluids, 4, p. 110501Shojaei, R., Manshour, P., Montakhab, A., Phase transition in a network model of social balance with Glauber dynamics (2019) Phys. Rev. e, 100, p. 022303Slavko, B., Glavatskiy, K., Prokopenko, M., Dynamic resettlement as a mechanism of phase transitions in urban configurations (2019) Phys. Rev. e, 99, p. 042143Benhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R., Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene (2018) J. Magn. Magn. Mater., 460, p. 223Jurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B.P., Roos, C.F., Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System (2017) Phys. Rev. Lett., 119, p. 080501Riego, P., Vavassori, P., Berger, A., Towards an understanding of dynamic phase transitions (2018) Physica B, 549, p. 13Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition (1999) Phys. Rev. e, 59, p. 2710Yasui, T., Tutu, H., Yamamoto, M., Fujisaka, H., Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field (2002) Phys. Rev. e, 66, p. 036123Tauscher, K., Pleimling, M., Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field (2014) Phys. Rev. e, 89, p. 022121Chakrabarti, B.K., Acharyya, M., Dynamic transitions and hysteresis (1999) Rev. Mod. Phys., 71, p. 847Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field (2000) Phys. Rev. e, 63, p. 016120Jang, H., Grimson, M.J., Hysteresis and the dynamic phase transition in thin ferromagnetic films (2001) Phys. Rev. e, 63, p. 066119Pleimling, M., Critical phenomena at perfect and non-perfect surfaces (2004) J. Phys. A: Math. Gen., 37, p. R79Robb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A., Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model (2007) Phys. Rev. e, 76, p. 021124Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A., Evidence for a dynamic phase transition in (Equation presented) magnetic multilayers (2008) Phys. Rev. B, 78, p. 134422Berger, A., Idigoras, O., Vavassori, P., Transient Behavior of the Dynamically Ordered Phase in Uniaxial Cobalt Films (2013) Phys. Rev. Lett., 111, p. 190602Riego, P., Vavassori, P., Berger, A., Metamagnetic Anomalies near Dynamic Phase Transitions (2017) Phys. Rev. Lett., 118, p. 117202He, Y.-L., Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films (1993) Phys. Rev. Lett., 70, p. 2336Jiang, Q., Yang, H.-N., Wang, G.-C., Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface (1995) Phys. Rev. B, 52, p. 14911Suen, J.-S., Erskine, J.L., Magnetic Hysteresis Dynamics: Thin (Equation presented) Fe Films on Flat and Stepped W(110) (1997) Phys. Rev. Lett., 78, p. 3567Fisher, M.E., Barber, M.N., Scaling Theory for Finite-Size Effects in the Critical Region (1972) Phys. Rev. Lett., 28, p. 1516Wolfram, T., Dewames, R.E., Hall, W.F., Palmberg, P.W., Surface magnetization near the critical temperature and the temperature dependence of magnetic-electron scattering from NiO (1971) Surf. Sci., 28, p. 45Stanley, H.E., (1987) Introduction to Phase Transitions and Critical Phenomena, , (Oxford University Press, New York)Yeomans, J.M., (1992) Statistical Mechanics of Phase Transitions, , (Clarendon, Oxford)Tomé, T., De Oliveira, M.J., Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field (1990) Phys. Rev. A, 41, p. 4251Quintana, M., Oblak, E., Marín Ramírez, J.M., Berger, A., Experimental Exploration of the Vector Nature of the Dynamic Order Parameter near Dynamic Magnetic Phase Transitions, , (unpublished)Suzuki, M., Kubo, R., Dynamics of the Ising model near the critical point. i (1968) J. Phys. Soc. Jpn., 24, p. 51Stoll, E., Binder, K., Schneider, T., Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model (1973) Phys. Rev. B, 8, p. 3266Jang, H., Grimson, M.J., Woolf, T.B., Stochastic dynamics and the dynamic phase transition in thin ferromagnetic films (2004) Phys. Rev. e, 70, p. 047101Zimmer, M.F., Ising model in an oscillating magnetic field: Mean-field theory (1993) Phys. Rev. e, 47, p. 3950Glauber, R.J., Time-dependent statistics of the Ising model (1963) J. Math. Phys., 4, p. 294Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition (1998) Phys. Rev. Lett., 81, p. 834Park, H., Pleimling, M., Surface Criticality at a Dynamic Phase Transition (2012) Phys. Rev. Lett., 109, p. 175703Idigoras, O., Vavassori, P., Berger, A., Mean field theory of dynamic phase transitions in ferromagnets (2012) Physica B, 407, p. 1377Buendía, G.M., Rikvold, P.A., Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics (2008) Phys. Rev. e, 78, p. 051108Park, H., Pleimling, M., Dynamic phase transition in the three-dimensional kinetic Ising model in an oscillating field (2013) Phys. Rev. e, 87, p. 032145Riego, P., Berger, A., Nonuniversal surface behavior of dynamic phase transitions (2015) Phys. Rev. e, 91, p. 062141Buendía, G.M., Rikvold, P.A., Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias (2017) Phys. Rev. B, 96, p. 134306Shi, X., Liu, P., Metamagnetic anomalies in the kinetic Ising model (2019) Physica A, 536, p. 120998Fujisaka, H., Tutu, H., Rikvold, P.A., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (2001) Phys. Rev. e, 63, p. 036109Acharyya, M., Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance (1999) Phys. Rev. e, 59, p. 218Akkaya Deviren, S., Albayrak, E., Dynamic phase transitions in the kinetic Ising model on the Bethe lattice (2010) Phys. Rev. e, 82, p. 022104Deviren, B., Kantar, E., Keskin, M., Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field (2012) J. Magn. Magn. Mater., 324, p. 2163Aktaş, B.O., Aklncl, U.¨, Polat, H., Critical phenomena in dynamical Ising-typed thin films by effective-field theory (2014) Thin Solid Films, 562, p. 680Yüksel, Y., Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields (2015) Phys. Rev. e, 91, p. 032149Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Critical phenomena in Ising-type thin films by Monte Carlo study (2016) J. Magn. Magn. Mater., 403, p. 167Brandenburg, J., Hühne, R., Schultz, L., Neu, V., Domain structure of epitaxial Co films with perpendicular anisotropy (2009) Phys. Rev. B, 79, p. 054429Idigoras, O., Suszka, A.K., Vavassori, P., Obry, B., Hillebrands, B., Landeros, P., Berger, A., Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment (2014) J. Appl. Phys., 115, p. 083912Shukla, V., Mukherjee, C., Chari, R., Rai, S., Bindra, K.S., Banerjee, A., Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique (2014) J. Magn. Magn. Mater., 370, p. 100Idigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A., Collapse of hard-axis behavior in uniaxial Co films (2011) Phys. Rev. B, 84, p. 132403Thantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography (2016) J. Magn. Magn. Mater., 407, p. 273Kowalewski, M., Schneider, C.M., Heinrich, B., Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures (1993) Phys. Rev. B, 47, p. 8748Idigoras, O., Palomares, U., Suszka, A.K., Fallarino, L., Berger, A., Magnetic properties of room temperature grown epitaxial (2013) Appl. Phys. Lett., 103, p. 102410. , (Equation presented) -alloy filmsSuszka, A.K., Idigoras, O., Nikulina, E., Chuvilin, A., Berger, A., Crystallography-Driven Positive Exchange Bias in Co/CoO Bilayers (2012) Phys. Rev. Lett., 109, p. 177205Crangle, J., Parsons, D., The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups (1960) Proc. R. Soc. London Ser. A, 255, p. 509Stoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. R. Soc. London Ser. A, 240, p. 599Kuz'Min, M.D., Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis (2005) Phys. Rev. Lett., 94, p. 107204Eyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Girt, E., Effects of substitution on the exchange stiffness and magnetization of Co films (2014) Phys. Rev. B, 90, p. 235408Nunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419Eftaxias, E., Trohidou, K.N., Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology (2005) Phys. Rev. B, 71, p. 134406Durst, K.-D., Kronmüller, H., The coercive field of sintered and melt-spun NdFeB magnets (1987) J. Magn. Magn. Mater., 68, p. 63Oblak, E., Riego, P., Fallarino, L., Martínez-De-Guerenu, A., Arizti, F., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection (2017) J. Phys. D, 50, p. 23LT01Oblak, E., Riego, P., Garcia-Manso, A., Martínez-De-Guerenu, A., Arizti, F., Artetxe, I., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements using an effective ellipsometric detection scheme (2020) J. Phys. D, 53, p. 205001Physical Review EExperimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperaturesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Binary alloysCobalt alloysCurie temperatureDepositionMagnetization reversalParamagnetismPhase diagramsPhase space methodsRuthenium alloysTemperatureTitrationApplied magnetic fieldsConcentration rangesDynamic magnetic behaviorDynamic phase diagramDynamic phase transitionEpitaxial thin filmsMagneto-optical detectionQualitative behaviorPhase transitionsanisotropyarticleconcentration (parameter)conjugateCurie temperaturegene frequencymagnetic fieldphase transitionroom temperaturesputter depositionMarín Ramírez, J.M., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaOblak, E., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, SpainRiego, P., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Departamento de Física de la Materia Condensada, Universidad Del País Vasco (UPV/EHU), Bilbao, 48080, SpainCampillo, G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOsorio, J., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaArnache, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaBerger, A., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spainhttp://purl.org/coar/access_right/c_16ecMarín Ramírez J.M.Oblak E.Riego P.Campillo G.Osorio J.Arnache O.Berger A.11407/5955oai:repository.udem.edu.co:11407/59552021-02-05 09:58:14.88Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |