Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures

We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5955
Acceso en línea:
http://hdl.handle.net/11407/5955
Palabra clave:
Binary alloys
Cobalt alloys
Curie temperature
Deposition
Magnetization reversal
Paramagnetism
Phase diagrams
Phase space methods
Ruthenium alloys
Temperature
Titration
Applied magnetic fields
Concentration ranges
Dynamic magnetic behavior
Dynamic phase diagram
Dynamic phase transition
Epitaxial thin films
Magneto-optical detection
Qualitative behavior
Phase transitions
anisotropy
article
concentration (parameter)
conjugate
Curie temperature
gene frequency
magnetic field
phase transition
room temperature
sputter deposition
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_cc9082f8ade238190da09d7f926c4e6d
oai_identifier_str oai:repository.udem.edu.co:11407/5955
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
title Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
spellingShingle Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
Binary alloys
Cobalt alloys
Curie temperature
Deposition
Magnetization reversal
Paramagnetism
Phase diagrams
Phase space methods
Ruthenium alloys
Temperature
Titration
Applied magnetic fields
Concentration ranges
Dynamic magnetic behavior
Dynamic phase diagram
Dynamic phase transition
Epitaxial thin films
Magneto-optical detection
Qualitative behavior
Phase transitions
anisotropy
article
concentration (parameter)
conjugate
Curie temperature
gene frequency
magnetic field
phase transition
room temperature
sputter deposition
title_short Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
title_full Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
title_fullStr Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
title_full_unstemmed Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
title_sort Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
dc.subject.keyword.eng.fl_str_mv Binary alloys
Cobalt alloys
Curie temperature
Deposition
Magnetization reversal
Paramagnetism
Phase diagrams
Phase space methods
Ruthenium alloys
Temperature
Titration
Applied magnetic fields
Concentration ranges
Dynamic magnetic behavior
Dynamic phase diagram
Dynamic phase transition
Epitaxial thin films
Magneto-optical detection
Qualitative behavior
Phase transitions
anisotropy
article
concentration (parameter)
conjugate
Curie temperature
gene frequency
magnetic field
phase transition
room temperature
sputter deposition
topic Binary alloys
Cobalt alloys
Curie temperature
Deposition
Magnetization reversal
Paramagnetism
Phase diagrams
Phase space methods
Ruthenium alloys
Temperature
Titration
Applied magnetic fields
Concentration ranges
Dynamic magnetic behavior
Dynamic phase diagram
Dynamic phase transition
Epitaxial thin films
Magneto-optical detection
Qualitative behavior
Phase transitions
anisotropy
article
concentration (parameter)
conjugate
Curie temperature
gene frequency
magnetic field
phase transition
room temperature
sputter deposition
description We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:14Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:14Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 24700045
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5955
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevE.102.022804
identifier_str_mv 24700045
10.1103/PhysRevE.102.022804
url http://hdl.handle.net/11407/5955
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091192447&doi=10.1103%2fPhysRevE.102.022804&partnerID=40&md5=5f5160d4f93162351ffc3eeeeecc3b02
dc.relation.citationvolume.none.fl_str_mv 102
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.references.none.fl_str_mv Keskin, M., Ertaş, M., Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins (2018) Physica A, 496, p. 79
Dabiri, J.O., Landmarks and frontiers in biological fluid dynamics (2019) Phys. Rev. Fluids, 4, p. 110501
Shojaei, R., Manshour, P., Montakhab, A., Phase transition in a network model of social balance with Glauber dynamics (2019) Phys. Rev. e, 100, p. 022303
Slavko, B., Glavatskiy, K., Prokopenko, M., Dynamic resettlement as a mechanism of phase transitions in urban configurations (2019) Phys. Rev. e, 99, p. 042143
Benhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R., Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene (2018) J. Magn. Magn. Mater., 460, p. 223
Jurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B.P., Roos, C.F., Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System (2017) Phys. Rev. Lett., 119, p. 080501
Riego, P., Vavassori, P., Berger, A., Towards an understanding of dynamic phase transitions (2018) Physica B, 549, p. 13
Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition (1999) Phys. Rev. e, 59, p. 2710
Yasui, T., Tutu, H., Yamamoto, M., Fujisaka, H., Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field (2002) Phys. Rev. e, 66, p. 036123
Tauscher, K., Pleimling, M., Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field (2014) Phys. Rev. e, 89, p. 022121
Chakrabarti, B.K., Acharyya, M., Dynamic transitions and hysteresis (1999) Rev. Mod. Phys., 71, p. 847
Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field (2000) Phys. Rev. e, 63, p. 016120
Jang, H., Grimson, M.J., Hysteresis and the dynamic phase transition in thin ferromagnetic films (2001) Phys. Rev. e, 63, p. 066119
Pleimling, M., Critical phenomena at perfect and non-perfect surfaces (2004) J. Phys. A: Math. Gen., 37, p. R79
Robb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A., Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model (2007) Phys. Rev. e, 76, p. 021124
Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A., Evidence for a dynamic phase transition in (Equation presented) magnetic multilayers (2008) Phys. Rev. B, 78, p. 134422
Berger, A., Idigoras, O., Vavassori, P., Transient Behavior of the Dynamically Ordered Phase in Uniaxial Cobalt Films (2013) Phys. Rev. Lett., 111, p. 190602
Riego, P., Vavassori, P., Berger, A., Metamagnetic Anomalies near Dynamic Phase Transitions (2017) Phys. Rev. Lett., 118, p. 117202
He, Y.-L., Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films (1993) Phys. Rev. Lett., 70, p. 2336
Jiang, Q., Yang, H.-N., Wang, G.-C., Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface (1995) Phys. Rev. B, 52, p. 14911
Suen, J.-S., Erskine, J.L., Magnetic Hysteresis Dynamics: Thin (Equation presented) Fe Films on Flat and Stepped W(110) (1997) Phys. Rev. Lett., 78, p. 3567
Fisher, M.E., Barber, M.N., Scaling Theory for Finite-Size Effects in the Critical Region (1972) Phys. Rev. Lett., 28, p. 1516
Wolfram, T., Dewames, R.E., Hall, W.F., Palmberg, P.W., Surface magnetization near the critical temperature and the temperature dependence of magnetic-electron scattering from NiO (1971) Surf. Sci., 28, p. 45
Stanley, H.E., (1987) Introduction to Phase Transitions and Critical Phenomena, , (Oxford University Press, New York)
Yeomans, J.M., (1992) Statistical Mechanics of Phase Transitions, , (Clarendon, Oxford)
Tomé, T., De Oliveira, M.J., Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field (1990) Phys. Rev. A, 41, p. 4251
Quintana, M., Oblak, E., Marín Ramírez, J.M., Berger, A., Experimental Exploration of the Vector Nature of the Dynamic Order Parameter near Dynamic Magnetic Phase Transitions, , (unpublished)
Suzuki, M., Kubo, R., Dynamics of the Ising model near the critical point. i (1968) J. Phys. Soc. Jpn., 24, p. 51
Stoll, E., Binder, K., Schneider, T., Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model (1973) Phys. Rev. B, 8, p. 3266
Jang, H., Grimson, M.J., Woolf, T.B., Stochastic dynamics and the dynamic phase transition in thin ferromagnetic films (2004) Phys. Rev. e, 70, p. 047101
Zimmer, M.F., Ising model in an oscillating magnetic field: Mean-field theory (1993) Phys. Rev. e, 47, p. 3950
Glauber, R.J., Time-dependent statistics of the Ising model (1963) J. Math. Phys., 4, p. 294
Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition (1998) Phys. Rev. Lett., 81, p. 834
Park, H., Pleimling, M., Surface Criticality at a Dynamic Phase Transition (2012) Phys. Rev. Lett., 109, p. 175703
Idigoras, O., Vavassori, P., Berger, A., Mean field theory of dynamic phase transitions in ferromagnets (2012) Physica B, 407, p. 1377
Buendía, G.M., Rikvold, P.A., Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics (2008) Phys. Rev. e, 78, p. 051108
Park, H., Pleimling, M., Dynamic phase transition in the three-dimensional kinetic Ising model in an oscillating field (2013) Phys. Rev. e, 87, p. 032145
Riego, P., Berger, A., Nonuniversal surface behavior of dynamic phase transitions (2015) Phys. Rev. e, 91, p. 062141
Buendía, G.M., Rikvold, P.A., Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias (2017) Phys. Rev. B, 96, p. 134306
Shi, X., Liu, P., Metamagnetic anomalies in the kinetic Ising model (2019) Physica A, 536, p. 120998
Fujisaka, H., Tutu, H., Rikvold, P.A., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (2001) Phys. Rev. e, 63, p. 036109
Acharyya, M., Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance (1999) Phys. Rev. e, 59, p. 218
Akkaya Deviren, S., Albayrak, E., Dynamic phase transitions in the kinetic Ising model on the Bethe lattice (2010) Phys. Rev. e, 82, p. 022104
Deviren, B., Kantar, E., Keskin, M., Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field (2012) J. Magn. Magn. Mater., 324, p. 2163
Aktaş, B.O., Aklncl, U.¨, Polat, H., Critical phenomena in dynamical Ising-typed thin films by effective-field theory (2014) Thin Solid Films, 562, p. 680
Yüksel, Y., Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields (2015) Phys. Rev. e, 91, p. 032149
Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Critical phenomena in Ising-type thin films by Monte Carlo study (2016) J. Magn. Magn. Mater., 403, p. 167
Brandenburg, J., Hühne, R., Schultz, L., Neu, V., Domain structure of epitaxial Co films with perpendicular anisotropy (2009) Phys. Rev. B, 79, p. 054429
Idigoras, O., Suszka, A.K., Vavassori, P., Obry, B., Hillebrands, B., Landeros, P., Berger, A., Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment (2014) J. Appl. Phys., 115, p. 083912
Shukla, V., Mukherjee, C., Chari, R., Rai, S., Bindra, K.S., Banerjee, A., Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique (2014) J. Magn. Magn. Mater., 370, p. 100
Idigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A., Collapse of hard-axis behavior in uniaxial Co films (2011) Phys. Rev. B, 84, p. 132403
Thantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography (2016) J. Magn. Magn. Mater., 407, p. 273
Kowalewski, M., Schneider, C.M., Heinrich, B., Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures (1993) Phys. Rev. B, 47, p. 8748
Idigoras, O., Palomares, U., Suszka, A.K., Fallarino, L., Berger, A., Magnetic properties of room temperature grown epitaxial (2013) Appl. Phys. Lett., 103, p. 102410. , (Equation presented) -alloy films
Suszka, A.K., Idigoras, O., Nikulina, E., Chuvilin, A., Berger, A., Crystallography-Driven Positive Exchange Bias in Co/CoO Bilayers (2012) Phys. Rev. Lett., 109, p. 177205
Crangle, J., Parsons, D., The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups (1960) Proc. R. Soc. London Ser. A, 255, p. 509
Stoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. R. Soc. London Ser. A, 240, p. 599
Kuz'Min, M.D., Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis (2005) Phys. Rev. Lett., 94, p. 107204
Eyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Girt, E., Effects of substitution on the exchange stiffness and magnetization of Co films (2014) Phys. Rev. B, 90, p. 235408
Nunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419
Eftaxias, E., Trohidou, K.N., Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology (2005) Phys. Rev. B, 71, p. 134406
Durst, K.-D., Kronmüller, H., The coercive field of sintered and melt-spun NdFeB magnets (1987) J. Magn. Magn. Mater., 68, p. 63
Oblak, E., Riego, P., Fallarino, L., Martínez-De-Guerenu, A., Arizti, F., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection (2017) J. Phys. D, 50, p. 23LT01
Oblak, E., Riego, P., Garcia-Manso, A., Martínez-De-Guerenu, A., Arizti, F., Artetxe, I., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements using an effective ellipsometric detection scheme (2020) J. Phys. D, 53, p. 205001
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv American Physical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv Physical Review E
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159153909727232
spelling 20202021-02-05T14:58:14Z2021-02-05T14:58:14Z24700045http://hdl.handle.net/11407/595510.1103/PhysRevE.102.022804We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.engAmerican Physical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091192447&doi=10.1103%2fPhysRevE.102.022804&partnerID=40&md5=5f5160d4f93162351ffc3eeeeecc3b021022Keskin, M., Ertaş, M., Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins (2018) Physica A, 496, p. 79Dabiri, J.O., Landmarks and frontiers in biological fluid dynamics (2019) Phys. Rev. Fluids, 4, p. 110501Shojaei, R., Manshour, P., Montakhab, A., Phase transition in a network model of social balance with Glauber dynamics (2019) Phys. Rev. e, 100, p. 022303Slavko, B., Glavatskiy, K., Prokopenko, M., Dynamic resettlement as a mechanism of phase transitions in urban configurations (2019) Phys. Rev. e, 99, p. 042143Benhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R., Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene (2018) J. Magn. Magn. Mater., 460, p. 223Jurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B.P., Roos, C.F., Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System (2017) Phys. Rev. Lett., 119, p. 080501Riego, P., Vavassori, P., Berger, A., Towards an understanding of dynamic phase transitions (2018) Physica B, 549, p. 13Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition (1999) Phys. Rev. e, 59, p. 2710Yasui, T., Tutu, H., Yamamoto, M., Fujisaka, H., Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field (2002) Phys. Rev. e, 66, p. 036123Tauscher, K., Pleimling, M., Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field (2014) Phys. Rev. e, 89, p. 022121Chakrabarti, B.K., Acharyya, M., Dynamic transitions and hysteresis (1999) Rev. Mod. Phys., 71, p. 847Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field (2000) Phys. Rev. e, 63, p. 016120Jang, H., Grimson, M.J., Hysteresis and the dynamic phase transition in thin ferromagnetic films (2001) Phys. Rev. e, 63, p. 066119Pleimling, M., Critical phenomena at perfect and non-perfect surfaces (2004) J. Phys. A: Math. Gen., 37, p. R79Robb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A., Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model (2007) Phys. Rev. e, 76, p. 021124Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A., Evidence for a dynamic phase transition in (Equation presented) magnetic multilayers (2008) Phys. Rev. B, 78, p. 134422Berger, A., Idigoras, O., Vavassori, P., Transient Behavior of the Dynamically Ordered Phase in Uniaxial Cobalt Films (2013) Phys. Rev. Lett., 111, p. 190602Riego, P., Vavassori, P., Berger, A., Metamagnetic Anomalies near Dynamic Phase Transitions (2017) Phys. Rev. Lett., 118, p. 117202He, Y.-L., Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films (1993) Phys. Rev. Lett., 70, p. 2336Jiang, Q., Yang, H.-N., Wang, G.-C., Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface (1995) Phys. Rev. B, 52, p. 14911Suen, J.-S., Erskine, J.L., Magnetic Hysteresis Dynamics: Thin (Equation presented) Fe Films on Flat and Stepped W(110) (1997) Phys. Rev. Lett., 78, p. 3567Fisher, M.E., Barber, M.N., Scaling Theory for Finite-Size Effects in the Critical Region (1972) Phys. Rev. Lett., 28, p. 1516Wolfram, T., Dewames, R.E., Hall, W.F., Palmberg, P.W., Surface magnetization near the critical temperature and the temperature dependence of magnetic-electron scattering from NiO (1971) Surf. Sci., 28, p. 45Stanley, H.E., (1987) Introduction to Phase Transitions and Critical Phenomena, , (Oxford University Press, New York)Yeomans, J.M., (1992) Statistical Mechanics of Phase Transitions, , (Clarendon, Oxford)Tomé, T., De Oliveira, M.J., Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field (1990) Phys. Rev. A, 41, p. 4251Quintana, M., Oblak, E., Marín Ramírez, J.M., Berger, A., Experimental Exploration of the Vector Nature of the Dynamic Order Parameter near Dynamic Magnetic Phase Transitions, , (unpublished)Suzuki, M., Kubo, R., Dynamics of the Ising model near the critical point. i (1968) J. Phys. Soc. Jpn., 24, p. 51Stoll, E., Binder, K., Schneider, T., Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model (1973) Phys. Rev. B, 8, p. 3266Jang, H., Grimson, M.J., Woolf, T.B., Stochastic dynamics and the dynamic phase transition in thin ferromagnetic films (2004) Phys. Rev. e, 70, p. 047101Zimmer, M.F., Ising model in an oscillating magnetic field: Mean-field theory (1993) Phys. Rev. e, 47, p. 3950Glauber, R.J., Time-dependent statistics of the Ising model (1963) J. Math. Phys., 4, p. 294Sides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition (1998) Phys. Rev. Lett., 81, p. 834Park, H., Pleimling, M., Surface Criticality at a Dynamic Phase Transition (2012) Phys. Rev. Lett., 109, p. 175703Idigoras, O., Vavassori, P., Berger, A., Mean field theory of dynamic phase transitions in ferromagnets (2012) Physica B, 407, p. 1377Buendía, G.M., Rikvold, P.A., Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics (2008) Phys. Rev. e, 78, p. 051108Park, H., Pleimling, M., Dynamic phase transition in the three-dimensional kinetic Ising model in an oscillating field (2013) Phys. Rev. e, 87, p. 032145Riego, P., Berger, A., Nonuniversal surface behavior of dynamic phase transitions (2015) Phys. Rev. e, 91, p. 062141Buendía, G.M., Rikvold, P.A., Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias (2017) Phys. Rev. B, 96, p. 134306Shi, X., Liu, P., Metamagnetic anomalies in the kinetic Ising model (2019) Physica A, 536, p. 120998Fujisaka, H., Tutu, H., Rikvold, P.A., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (2001) Phys. Rev. e, 63, p. 036109Acharyya, M., Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance (1999) Phys. Rev. e, 59, p. 218Akkaya Deviren, S., Albayrak, E., Dynamic phase transitions in the kinetic Ising model on the Bethe lattice (2010) Phys. Rev. e, 82, p. 022104Deviren, B., Kantar, E., Keskin, M., Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field (2012) J. Magn. Magn. Mater., 324, p. 2163Aktaş, B.O., Aklncl, U.¨, Polat, H., Critical phenomena in dynamical Ising-typed thin films by effective-field theory (2014) Thin Solid Films, 562, p. 680Yüksel, Y., Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields (2015) Phys. Rev. e, 91, p. 032149Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Critical phenomena in Ising-type thin films by Monte Carlo study (2016) J. Magn. Magn. Mater., 403, p. 167Brandenburg, J., Hühne, R., Schultz, L., Neu, V., Domain structure of epitaxial Co films with perpendicular anisotropy (2009) Phys. Rev. B, 79, p. 054429Idigoras, O., Suszka, A.K., Vavassori, P., Obry, B., Hillebrands, B., Landeros, P., Berger, A., Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment (2014) J. Appl. Phys., 115, p. 083912Shukla, V., Mukherjee, C., Chari, R., Rai, S., Bindra, K.S., Banerjee, A., Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique (2014) J. Magn. Magn. Mater., 370, p. 100Idigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A., Collapse of hard-axis behavior in uniaxial Co films (2011) Phys. Rev. B, 84, p. 132403Thantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography (2016) J. Magn. Magn. Mater., 407, p. 273Kowalewski, M., Schneider, C.M., Heinrich, B., Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures (1993) Phys. Rev. B, 47, p. 8748Idigoras, O., Palomares, U., Suszka, A.K., Fallarino, L., Berger, A., Magnetic properties of room temperature grown epitaxial (2013) Appl. Phys. Lett., 103, p. 102410. , (Equation presented) -alloy filmsSuszka, A.K., Idigoras, O., Nikulina, E., Chuvilin, A., Berger, A., Crystallography-Driven Positive Exchange Bias in Co/CoO Bilayers (2012) Phys. Rev. Lett., 109, p. 177205Crangle, J., Parsons, D., The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups (1960) Proc. R. Soc. London Ser. A, 255, p. 509Stoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. R. Soc. London Ser. A, 240, p. 599Kuz'Min, M.D., Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis (2005) Phys. Rev. Lett., 94, p. 107204Eyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Girt, E., Effects of substitution on the exchange stiffness and magnetization of Co films (2014) Phys. Rev. B, 90, p. 235408Nunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419Eftaxias, E., Trohidou, K.N., Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology (2005) Phys. Rev. B, 71, p. 134406Durst, K.-D., Kronmüller, H., The coercive field of sintered and melt-spun NdFeB magnets (1987) J. Magn. Magn. Mater., 68, p. 63Oblak, E., Riego, P., Fallarino, L., Martínez-De-Guerenu, A., Arizti, F., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection (2017) J. Phys. D, 50, p. 23LT01Oblak, E., Riego, P., Garcia-Manso, A., Martínez-De-Guerenu, A., Arizti, F., Artetxe, I., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements using an effective ellipsometric detection scheme (2020) J. Phys. D, 53, p. 205001Physical Review EExperimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperaturesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Binary alloysCobalt alloysCurie temperatureDepositionMagnetization reversalParamagnetismPhase diagramsPhase space methodsRuthenium alloysTemperatureTitrationApplied magnetic fieldsConcentration rangesDynamic magnetic behaviorDynamic phase diagramDynamic phase transitionEpitaxial thin filmsMagneto-optical detectionQualitative behaviorPhase transitionsanisotropyarticleconcentration (parameter)conjugateCurie temperaturegene frequencymagnetic fieldphase transitionroom temperaturesputter depositionMarín Ramírez, J.M., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaOblak, E., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, SpainRiego, P., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Departamento de Física de la Materia Condensada, Universidad Del País Vasco (UPV/EHU), Bilbao, 48080, SpainCampillo, G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOsorio, J., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaArnache, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, ColombiaBerger, A., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spainhttp://purl.org/coar/access_right/c_16ecMarín Ramírez J.M.Oblak E.Riego P.Campillo G.Osorio J.Arnache O.Berger A.11407/5955oai:repository.udem.edu.co:11407/59552021-02-05 09:58:14.88Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co