High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion

As atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that indust...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4345
Acceso en línea:
http://hdl.handle.net/11407/4345
Palabra clave:
Aluminum
Atmospheric corrosion
Copper
Electrical contacts
Gold
Nickel
Aluminum
Atmospheric humidity
Atomic force microscopy
Copper
Corrosion
Electric contacts
Electronics industry
Gold
Nickel
Nitrogen compounds
Surface morphology
Constant temperature
Corrosion attack
Electrical contacts
Electronic device
High resolution
Industry sectors
Morphological changes
Surface morphology and roughness
Atmospheric corrosion
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_cae4d0a93c230fb70ef32f3c650dd429
oai_identifier_str oai:repository.udem.edu.co:11407/4345
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
title High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
spellingShingle High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
Aluminum
Atmospheric corrosion
Copper
Electrical contacts
Gold
Nickel
Aluminum
Atmospheric humidity
Atomic force microscopy
Copper
Corrosion
Electric contacts
Electronics industry
Gold
Nickel
Nitrogen compounds
Surface morphology
Constant temperature
Corrosion attack
Electrical contacts
Electronic device
High resolution
Industry sectors
Morphological changes
Surface morphology and roughness
Atmospheric corrosion
title_short High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
title_full High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
title_fullStr High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
title_full_unstemmed High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
title_sort High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
dc.contributor.affiliation.spa.fl_str_mv Echeverría, F., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia
Botero, C.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia
Correa, E., Grupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia
Meza, D., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia
Castaño, J.G., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia
Gõmez, M.A., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Aluminum
Atmospheric corrosion
Copper
Electrical contacts
Gold
Nickel
Aluminum
Atmospheric humidity
Atomic force microscopy
Copper
Corrosion
Electric contacts
Electronics industry
Gold
Nickel
Nitrogen compounds
Surface morphology
Constant temperature
Corrosion attack
Electrical contacts
Electronic device
High resolution
Industry sectors
Morphological changes
Surface morphology and roughness
Atmospheric corrosion
topic Aluminum
Atmospheric corrosion
Copper
Electrical contacts
Gold
Nickel
Aluminum
Atmospheric humidity
Atomic force microscopy
Copper
Corrosion
Electric contacts
Electronics industry
Gold
Nickel
Nitrogen compounds
Surface morphology
Constant temperature
Corrosion attack
Electrical contacts
Electronic device
High resolution
Industry sectors
Morphological changes
Surface morphology and roughness
Atmospheric corrosion
description As atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:49Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:49Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 15304388
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4345
dc.identifier.doi.none.fl_str_mv 10.1109/TDMR.2017.2681280
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 15304388
10.1109/TDMR.2017.2681280
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4345
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025824338&doi=10.1109%2fTDMR.2017.2681280&partnerID=40&md5=a3c7e2ede0dff54eee59f3e70443f5cc
dc.relation.ispartofes.spa.fl_str_mv IEEE Transactions on Device and Materials Reliability
dc.relation.references.spa.fl_str_mv Zhai, E., Shi, Y., Gregory, M., The growth and capability development of electronics manufacturing service (ems) companies (2007) Int. J. Prod. Econ, 107 (1), pp. 1-19
Peitz, M., Valletti, T., Reassessing competition concerns in electronic communications markets (2015) Telecommun. Policy, 39 (10), pp. 896-912
Hienonen, R., Lahtinen, R., (2007) Corrosion and Climatic Effects in Electronics, , Helsinki Finland: VTT
Isleib, C.R., Nickel alloys in today's electronics industry (1987) Proc. 20th Annu. Connectors Interconectors Technol. Symp, pp. 1-8. , Birmingham, U.K
Koch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H., (2002) Corrosion Cost and Preventive Strategies in the United States, , McLean, VA, USA: Nace Int
Comizzoli, R.B., Frankenthal, R.P., Milner, P.C., Sinclair, J.D., Corrosion of electronic materials and devices (1986) Science, 234 (4774), pp. 340-345. , Oct
Zhang, J.-G., Wen, X.-M., The effect of dust contamination on electric contacts (1986) IEEE Trans. Compon. Packag. Manuf. Technol, 9 (1), pp. 53-58. , Mar
Gil, H., Calderón, J.A., Buitrago, C.P., Echavarría, A., Echeverría, F., Indoor atmospheric corrosion of electronic materials in tropicalmountain environments (2010) Corrosion Sci, 52 (2), pp. 327-337
Veleva, L., Dzib-Pérez, L., González-Sánchez, J., Pérez, T., Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: Tin and nickel (2007) Revista de Metalurgia, 43 (2), pp. 101-110
Jouen, S., Jean, M., Hannoyer, B., Atmospheric corrosion of nickel in various outdoor environments (2004) Corrosion Sci, 46 (2), pp. 499-514
Odnevall, I., Leygraf, C., The atmospheric corrosion of nickel in a rural atmosphere (1997) J. Electrochem. Soc, 144 (10), pp. 3518-3525
Krätschmer, A., Wallinder, I.O., Leygraf, C., The evolution of outdoor copper patina (2002) Corrosion Sci, 44 (3), pp. 425-450
Aastrup, T., Wadsak, M., Schreiner, M., Leygraf, C., Experimental in situ studies of copper exposed to humidified air (2000) Corrosion Sci, 42 (6), pp. 957-967
Kleber, C., Weissenrieder, J., Schreiner, M., Leygraf, C., Comparison of the early stages of corrosion of copper and iron investigated by in situ tm-Afm (2002) Appl. Surf. Sci, 193 (1-4), pp. 245-253
González, J.A., Morcillo, M., Escudero, E., López, V., Otero, E., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part i: Visual observations and gravimetric results (2002) Surf. Coatings Technol, 153 (2-3), pp. 225-234
Acevedo-Hurtado, P.O., Characterization of atmospheric corrosion in al/ag lap joints (2008) Corrosion Sci, 50 (11), pp. 3123-3131
Weissenrieder, J., Leygraf, C., Göthelid, M., Karlsson, U.O., Photoelectron microscopy of filiform corrosion of aluminum (2003) Appl. Surf. Sci, 218 (1-4), pp. 155-162
Tao, L., Song, S., Zhang, X., Zhang, Z., Lu, F., Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys (2008) Appl. Surf. Sci, 254 (21), pp. 6870-6874
Dan, Z., Muto, I., Hara, N., Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions (2012) Corrosion Sci, 57, pp. 22-29. , Apr
Sun, S., Zheng, Q., Li, D., Wen, J., Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments (2009) Corrosion Sci, 51 (4), pp. 719-727
Oesch, S., Faller, M., Environmental effects on materials: The effect of the air pollutants so2, no2, no and o3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures (1997) Corrosion Sci, 39 (9), pp. 1505-1530. , Sep
Mazza, B., Pedeferri, P., Re, G., Sinigaglia, D., Behaviour of a galvanic cell simulating the atmospheric corrosion conditions of gold plated bronzes (1977) Corrosion Sci, 17 (6), pp. 535-541. , Jan
Georges, C., Semmar, N., Boulmer-Leborgne, C., Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings (2006) Opt. Lasers Eng, 44 (12), pp. 1283-1296
Sun, A.C., Moffat, H.K., Enos, D.G., George, C.S., Pore corrosion model for gold-plated copper contacts (2007) IEEE Trans. Compon. Packag. Manuf. Technol, 30 (4), pp. 796-804. , Dec
Antler, M., Drozdowicz, M.H., Fretting corrosion of gold-plated connector contacts (1981) Wear, 74 (1), pp. 27-50. , Dec
Svedung, O., Johansson, L.-G., Vannerberg, N.-G., Corrosion of gold-coated contact materials exposed to humid atmospheres containing low concentrations of so2 and no2 (1983) IEEE Trans. Compon., Hybrids, Manuf. Technol, 6 (3), pp. 349-355. , Sep
Hisakado, T., Effects of surface roughness and surface films on contact resistance (1977) Wear, 44 (2), pp. 345-359. , Sep
Misra, P., Nagaraju, J., Electrical contact resistance in thin (=0.5 ?m) gold plated contacts: Effect of gold plating thickness (2010) IEEE Trans. Compon. Packag. Technol, 33 (4), pp. 830-835. , Dec
Liskiewicz, T., Neville, A., Achanta, S., Impact of corrosion on fretting damage of electrical contacts (2007) Proc. Annu. Holm Conf. Elect. Contacts, pp. 257-262. , Montreal, QC, Canada
Imrell, T., The importance of the thickness of silver coating in the corrosion behaviour of copper contacts (1991) Proc. 37th IEEE HOLM Conf. Elect. Contacts, pp. 237-243. , Chicago, IL, USA
Wadsak, M., Schreiner, M., Aastrup, T., Leygraf, C., Combined in-situ investigations of atmospheric corrosion of copper with sfm and iras coupled with qcm (2000) Surf. Sci., Vols, 454-456 (1), pp. 246-250
Wang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z., Zhou, Z.Y., In situ stm studies of electrochemical growth of nanostructured ni films and their anomalous ir properties (2005) J. Phys. Chem. B, 109 (10), pp. 4309-4316. , Mar
Cao, Z., Gu, N., Investigation on gold corrosion by in situ quartz crystal microbalance and atomic force microscopy in self-Assembled processes of alkanethiol monolayers (2005) Mater. Lett, 59 (28), pp. 3687-3693
Lee, S.M., Krim, J., Scanning tunneling microscopy characterization of the surface morphology of copper films grown on mica and quartz (2005) Thin Solid Films, 489 (1-2), pp. 325-329
Wiesinger, R., Martina, I., Kleber, C., Schreiner, M., Influence of relative humidity and ozone on atmospheric silver corrosion (2013) Corrosion Sci, 77, pp. 69-76. , Dec
Kleber, C., Hilfrich, U., Schreiner, M., In situ qcm and tm-Afm investigations of the early stages of degradation of silver and copper surfaces (2007) Appl. Surf. Sci, 253 (7), pp. 3712-3721
Gong, Y.S., Lee, C., Yang, C.K., Atomic force microscopy and raman spectroscopy studies on the oxidation of cu thin films (1995) J. Appl. Phys, 77 (10), pp. 5422-5425
Watanabe, M., Higashi, Y., Ichino, T., Surface observation and depth profiling analysis studies of corrosion products on copper exposed outdoors (2003) J. Electrochem. Soc, 150 (2), pp. B37-B44
Daniels, S.L., Sprunger, P.T., Kizilkaya, O., Lytle, D.A., Garno, J.C., Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration (2013) Appl. Surf. Sci, 285, pp. 823-831. , Nov
Castaño, J.G., De La Fuente, D., Morcillo, M., A laboratory study of the effect of no2 on the atmospheric corrosion of zinc (2007) Atmos. Environ, 41 (38), pp. 8681-8696
Horcas, I., Wsxm: A software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum, 78 (1). , Art. no. 13705
Leygraf, C., Atmospheric corrosion (2002) Corrosion Mechanisms in Theory and Practice, pp. 529-562. , 3rd ed. Boca Raton, FL, USA: CRC
Park, J.-H., Natesan, K., Oxidation of copper and electronic transport in copper oxides (1993) Oxidation Metals, 39 (5), pp. 411-435
Feliu, S., Mariaca, L., Simancas, J., González, J.A., Morcillo, M., Effect of no2 and/or so2 atmospheric contaminants and relative humidity on copper corrosion (2003) Revista de Metalurgia, 39 (4), pp. 279-288. , Aug
Odnevall, I., Leygraf, C., Atmospheric corrosion of copper in a rural atmosphere (1995) J. Electrochem. Soc, 142 (11), pp. 3682-3689
Rice, D.W., Phipps, P.B.P., Tremoureux, R., Atmospheric corrosion of nickel (1980) J. Electrochem. Soc, 127 (3), pp. 563-568
Graedel, T.E., Leygraf, C., Corrosion mechanisms for nickel exposed to the atmosphere (2000) J. Electrochem. Soc, 147 (3), pp. 1010-1014
Graedel, T.E., Corrosion mechanisms for aluminum exposed to the atmosphere (1989) J. Electrochem. Soc, 136 (4), pp. 204C-212C
Castaño, J.G., Arroyave, C., Morcillo, M., Characterization of atmospheric corrosion products of zinc exposed to so2 and no2 using xps and gixd (2007) J. Mater. Sci, 42 (23), pp. 9654-9662. , Dec
Gusmano, G., Montanari, R., Kaciulis, S., Montesperelli, G., Denk, R., Gold corrosion': Red stains on a gold austrian ducat (2004) Appl. Phys. A, Solids Surf, 79 (2), pp. 205-211. , Jul
Mayerhofer, K.E., Piplits, K., Traum, R., Griesser, M., Hutter, H., Investigations of corrosion phenomena on gold coins with sims (2005) Appl. Surf. Sci, 252 (1), pp. 133-138
Enos, D.G., Glauner, C.S., Sorensen, N.R., Atmospheric degradation of gold and nickel-gold electroplated copper connectors (2003) Proc. 204th Meeting Electrochem. Soc
Park, Y.W., Jung, J.P., Lee, H.Y., Overview of fretting corrosion in electrical connectors (2006) Int. J. Autom. Technol, 7 (1), pp. 75-82
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159270100336640
spelling 2017-12-19T19:36:49Z2017-12-19T19:36:49Z201715304388http://hdl.handle.net/11407/434510.1109/TDMR.2017.2681280reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.engInstitute of Electrical and Electronics Engineers Inc.Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85025824338&doi=10.1109%2fTDMR.2017.2681280&partnerID=40&md5=a3c7e2ede0dff54eee59f3e70443f5ccIEEE Transactions on Device and Materials ReliabilityZhai, E., Shi, Y., Gregory, M., The growth and capability development of electronics manufacturing service (ems) companies (2007) Int. J. Prod. Econ, 107 (1), pp. 1-19Peitz, M., Valletti, T., Reassessing competition concerns in electronic communications markets (2015) Telecommun. Policy, 39 (10), pp. 896-912Hienonen, R., Lahtinen, R., (2007) Corrosion and Climatic Effects in Electronics, , Helsinki Finland: VTTIsleib, C.R., Nickel alloys in today's electronics industry (1987) Proc. 20th Annu. Connectors Interconectors Technol. Symp, pp. 1-8. , Birmingham, U.KKoch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H., (2002) Corrosion Cost and Preventive Strategies in the United States, , McLean, VA, USA: Nace IntComizzoli, R.B., Frankenthal, R.P., Milner, P.C., Sinclair, J.D., Corrosion of electronic materials and devices (1986) Science, 234 (4774), pp. 340-345. , OctZhang, J.-G., Wen, X.-M., The effect of dust contamination on electric contacts (1986) IEEE Trans. Compon. Packag. Manuf. Technol, 9 (1), pp. 53-58. , MarGil, H., Calderón, J.A., Buitrago, C.P., Echavarría, A., Echeverría, F., Indoor atmospheric corrosion of electronic materials in tropicalmountain environments (2010) Corrosion Sci, 52 (2), pp. 327-337Veleva, L., Dzib-Pérez, L., González-Sánchez, J., Pérez, T., Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: Tin and nickel (2007) Revista de Metalurgia, 43 (2), pp. 101-110Jouen, S., Jean, M., Hannoyer, B., Atmospheric corrosion of nickel in various outdoor environments (2004) Corrosion Sci, 46 (2), pp. 499-514Odnevall, I., Leygraf, C., The atmospheric corrosion of nickel in a rural atmosphere (1997) J. Electrochem. Soc, 144 (10), pp. 3518-3525Krätschmer, A., Wallinder, I.O., Leygraf, C., The evolution of outdoor copper patina (2002) Corrosion Sci, 44 (3), pp. 425-450Aastrup, T., Wadsak, M., Schreiner, M., Leygraf, C., Experimental in situ studies of copper exposed to humidified air (2000) Corrosion Sci, 42 (6), pp. 957-967Kleber, C., Weissenrieder, J., Schreiner, M., Leygraf, C., Comparison of the early stages of corrosion of copper and iron investigated by in situ tm-Afm (2002) Appl. Surf. Sci, 193 (1-4), pp. 245-253González, J.A., Morcillo, M., Escudero, E., López, V., Otero, E., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part i: Visual observations and gravimetric results (2002) Surf. Coatings Technol, 153 (2-3), pp. 225-234Acevedo-Hurtado, P.O., Characterization of atmospheric corrosion in al/ag lap joints (2008) Corrosion Sci, 50 (11), pp. 3123-3131Weissenrieder, J., Leygraf, C., Göthelid, M., Karlsson, U.O., Photoelectron microscopy of filiform corrosion of aluminum (2003) Appl. Surf. Sci, 218 (1-4), pp. 155-162Tao, L., Song, S., Zhang, X., Zhang, Z., Lu, F., Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys (2008) Appl. Surf. Sci, 254 (21), pp. 6870-6874Dan, Z., Muto, I., Hara, N., Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions (2012) Corrosion Sci, 57, pp. 22-29. , AprSun, S., Zheng, Q., Li, D., Wen, J., Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments (2009) Corrosion Sci, 51 (4), pp. 719-727Oesch, S., Faller, M., Environmental effects on materials: The effect of the air pollutants so2, no2, no and o3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures (1997) Corrosion Sci, 39 (9), pp. 1505-1530. , SepMazza, B., Pedeferri, P., Re, G., Sinigaglia, D., Behaviour of a galvanic cell simulating the atmospheric corrosion conditions of gold plated bronzes (1977) Corrosion Sci, 17 (6), pp. 535-541. , JanGeorges, C., Semmar, N., Boulmer-Leborgne, C., Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings (2006) Opt. Lasers Eng, 44 (12), pp. 1283-1296Sun, A.C., Moffat, H.K., Enos, D.G., George, C.S., Pore corrosion model for gold-plated copper contacts (2007) IEEE Trans. Compon. Packag. Manuf. Technol, 30 (4), pp. 796-804. , DecAntler, M., Drozdowicz, M.H., Fretting corrosion of gold-plated connector contacts (1981) Wear, 74 (1), pp. 27-50. , DecSvedung, O., Johansson, L.-G., Vannerberg, N.-G., Corrosion of gold-coated contact materials exposed to humid atmospheres containing low concentrations of so2 and no2 (1983) IEEE Trans. Compon., Hybrids, Manuf. Technol, 6 (3), pp. 349-355. , SepHisakado, T., Effects of surface roughness and surface films on contact resistance (1977) Wear, 44 (2), pp. 345-359. , SepMisra, P., Nagaraju, J., Electrical contact resistance in thin (=0.5 ?m) gold plated contacts: Effect of gold plating thickness (2010) IEEE Trans. Compon. Packag. Technol, 33 (4), pp. 830-835. , DecLiskiewicz, T., Neville, A., Achanta, S., Impact of corrosion on fretting damage of electrical contacts (2007) Proc. Annu. Holm Conf. Elect. Contacts, pp. 257-262. , Montreal, QC, CanadaImrell, T., The importance of the thickness of silver coating in the corrosion behaviour of copper contacts (1991) Proc. 37th IEEE HOLM Conf. Elect. Contacts, pp. 237-243. , Chicago, IL, USAWadsak, M., Schreiner, M., Aastrup, T., Leygraf, C., Combined in-situ investigations of atmospheric corrosion of copper with sfm and iras coupled with qcm (2000) Surf. Sci., Vols, 454-456 (1), pp. 246-250Wang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z., Zhou, Z.Y., In situ stm studies of electrochemical growth of nanostructured ni films and their anomalous ir properties (2005) J. Phys. Chem. B, 109 (10), pp. 4309-4316. , MarCao, Z., Gu, N., Investigation on gold corrosion by in situ quartz crystal microbalance and atomic force microscopy in self-Assembled processes of alkanethiol monolayers (2005) Mater. Lett, 59 (28), pp. 3687-3693Lee, S.M., Krim, J., Scanning tunneling microscopy characterization of the surface morphology of copper films grown on mica and quartz (2005) Thin Solid Films, 489 (1-2), pp. 325-329Wiesinger, R., Martina, I., Kleber, C., Schreiner, M., Influence of relative humidity and ozone on atmospheric silver corrosion (2013) Corrosion Sci, 77, pp. 69-76. , DecKleber, C., Hilfrich, U., Schreiner, M., In situ qcm and tm-Afm investigations of the early stages of degradation of silver and copper surfaces (2007) Appl. Surf. Sci, 253 (7), pp. 3712-3721Gong, Y.S., Lee, C., Yang, C.K., Atomic force microscopy and raman spectroscopy studies on the oxidation of cu thin films (1995) J. Appl. Phys, 77 (10), pp. 5422-5425Watanabe, M., Higashi, Y., Ichino, T., Surface observation and depth profiling analysis studies of corrosion products on copper exposed outdoors (2003) J. Electrochem. Soc, 150 (2), pp. B37-B44Daniels, S.L., Sprunger, P.T., Kizilkaya, O., Lytle, D.A., Garno, J.C., Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration (2013) Appl. Surf. Sci, 285, pp. 823-831. , NovCastaño, J.G., De La Fuente, D., Morcillo, M., A laboratory study of the effect of no2 on the atmospheric corrosion of zinc (2007) Atmos. Environ, 41 (38), pp. 8681-8696Horcas, I., Wsxm: A software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum, 78 (1). , Art. no. 13705Leygraf, C., Atmospheric corrosion (2002) Corrosion Mechanisms in Theory and Practice, pp. 529-562. , 3rd ed. Boca Raton, FL, USA: CRCPark, J.-H., Natesan, K., Oxidation of copper and electronic transport in copper oxides (1993) Oxidation Metals, 39 (5), pp. 411-435Feliu, S., Mariaca, L., Simancas, J., González, J.A., Morcillo, M., Effect of no2 and/or so2 atmospheric contaminants and relative humidity on copper corrosion (2003) Revista de Metalurgia, 39 (4), pp. 279-288. , AugOdnevall, I., Leygraf, C., Atmospheric corrosion of copper in a rural atmosphere (1995) J. Electrochem. Soc, 142 (11), pp. 3682-3689Rice, D.W., Phipps, P.B.P., Tremoureux, R., Atmospheric corrosion of nickel (1980) J. Electrochem. Soc, 127 (3), pp. 563-568Graedel, T.E., Leygraf, C., Corrosion mechanisms for nickel exposed to the atmosphere (2000) J. Electrochem. Soc, 147 (3), pp. 1010-1014Graedel, T.E., Corrosion mechanisms for aluminum exposed to the atmosphere (1989) J. Electrochem. Soc, 136 (4), pp. 204C-212CCastaño, J.G., Arroyave, C., Morcillo, M., Characterization of atmospheric corrosion products of zinc exposed to so2 and no2 using xps and gixd (2007) J. Mater. Sci, 42 (23), pp. 9654-9662. , DecGusmano, G., Montanari, R., Kaciulis, S., Montesperelli, G., Denk, R., Gold corrosion': Red stains on a gold austrian ducat (2004) Appl. Phys. A, Solids Surf, 79 (2), pp. 205-211. , JulMayerhofer, K.E., Piplits, K., Traum, R., Griesser, M., Hutter, H., Investigations of corrosion phenomena on gold coins with sims (2005) Appl. Surf. Sci, 252 (1), pp. 133-138Enos, D.G., Glauner, C.S., Sorensen, N.R., Atmospheric degradation of gold and nickel-gold electroplated copper connectors (2003) Proc. 204th Meeting Electrochem. SocPark, Y.W., Jung, J.P., Lee, H.Y., Overview of fretting corrosion in electrical connectors (2006) Int. J. Autom. Technol, 7 (1), pp. 75-82ScopusHigh resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Echeverría, F., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaBotero, C.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaCorrea, E., Grupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaMeza, D., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaCastaño, J.G., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaGõmez, M.A., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaEcheverría F.Botero C.A.Correa E.Meza D.Castaño J.G.Gõmez M.A.Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaFacultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaGrupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaAluminumAtmospheric corrosionCopperElectrical contactsGoldNickelAluminumAtmospheric humidityAtomic force microscopyCopperCorrosionElectric contactsElectronics industryGoldNickelNitrogen compoundsSurface morphologyConstant temperatureCorrosion attackElectrical contactsElectronic deviceHigh resolutionIndustry sectorsMorphological changesSurface morphology and roughnessAtmospheric corrosionAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.http://purl.org/coar/access_right/c_16ec11407/4345oai:repository.udem.edu.co:11407/43452020-05-27 19:17:36.812Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co