High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion
As atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that indust...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4345
- Acceso en línea:
- http://hdl.handle.net/11407/4345
- Palabra clave:
- Aluminum
Atmospheric corrosion
Copper
Electrical contacts
Gold
Nickel
Aluminum
Atmospheric humidity
Atomic force microscopy
Copper
Corrosion
Electric contacts
Electronics industry
Gold
Nickel
Nitrogen compounds
Surface morphology
Constant temperature
Corrosion attack
Electrical contacts
Electronic device
High resolution
Industry sectors
Morphological changes
Surface morphology and roughness
Atmospheric corrosion
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_cae4d0a93c230fb70ef32f3c650dd429 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4345 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
title |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
spellingShingle |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion Aluminum Atmospheric corrosion Copper Electrical contacts Gold Nickel Aluminum Atmospheric humidity Atomic force microscopy Copper Corrosion Electric contacts Electronics industry Gold Nickel Nitrogen compounds Surface morphology Constant temperature Corrosion attack Electrical contacts Electronic device High resolution Industry sectors Morphological changes Surface morphology and roughness Atmospheric corrosion |
title_short |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
title_full |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
title_fullStr |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
title_full_unstemmed |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
title_sort |
High resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosion |
dc.contributor.affiliation.spa.fl_str_mv |
Echeverría, F., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia Botero, C.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia Correa, E., Grupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia Meza, D., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia Castaño, J.G., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia Gõmez, M.A., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Aluminum Atmospheric corrosion Copper Electrical contacts Gold Nickel Aluminum Atmospheric humidity Atomic force microscopy Copper Corrosion Electric contacts Electronics industry Gold Nickel Nitrogen compounds Surface morphology Constant temperature Corrosion attack Electrical contacts Electronic device High resolution Industry sectors Morphological changes Surface morphology and roughness Atmospheric corrosion |
topic |
Aluminum Atmospheric corrosion Copper Electrical contacts Gold Nickel Aluminum Atmospheric humidity Atomic force microscopy Copper Corrosion Electric contacts Electronics industry Gold Nickel Nitrogen compounds Surface morphology Constant temperature Corrosion attack Electrical contacts Electronic device High resolution Industry sectors Morphological changes Surface morphology and roughness Atmospheric corrosion |
description |
As atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:49Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:49Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
15304388 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4345 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TDMR.2017.2681280 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
15304388 10.1109/TDMR.2017.2681280 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4345 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025824338&doi=10.1109%2fTDMR.2017.2681280&partnerID=40&md5=a3c7e2ede0dff54eee59f3e70443f5cc |
dc.relation.ispartofes.spa.fl_str_mv |
IEEE Transactions on Device and Materials Reliability |
dc.relation.references.spa.fl_str_mv |
Zhai, E., Shi, Y., Gregory, M., The growth and capability development of electronics manufacturing service (ems) companies (2007) Int. J. Prod. Econ, 107 (1), pp. 1-19 Peitz, M., Valletti, T., Reassessing competition concerns in electronic communications markets (2015) Telecommun. Policy, 39 (10), pp. 896-912 Hienonen, R., Lahtinen, R., (2007) Corrosion and Climatic Effects in Electronics, , Helsinki Finland: VTT Isleib, C.R., Nickel alloys in today's electronics industry (1987) Proc. 20th Annu. Connectors Interconectors Technol. Symp, pp. 1-8. , Birmingham, U.K Koch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H., (2002) Corrosion Cost and Preventive Strategies in the United States, , McLean, VA, USA: Nace Int Comizzoli, R.B., Frankenthal, R.P., Milner, P.C., Sinclair, J.D., Corrosion of electronic materials and devices (1986) Science, 234 (4774), pp. 340-345. , Oct Zhang, J.-G., Wen, X.-M., The effect of dust contamination on electric contacts (1986) IEEE Trans. Compon. Packag. Manuf. Technol, 9 (1), pp. 53-58. , Mar Gil, H., Calderón, J.A., Buitrago, C.P., Echavarría, A., Echeverría, F., Indoor atmospheric corrosion of electronic materials in tropicalmountain environments (2010) Corrosion Sci, 52 (2), pp. 327-337 Veleva, L., Dzib-Pérez, L., González-Sánchez, J., Pérez, T., Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: Tin and nickel (2007) Revista de Metalurgia, 43 (2), pp. 101-110 Jouen, S., Jean, M., Hannoyer, B., Atmospheric corrosion of nickel in various outdoor environments (2004) Corrosion Sci, 46 (2), pp. 499-514 Odnevall, I., Leygraf, C., The atmospheric corrosion of nickel in a rural atmosphere (1997) J. Electrochem. Soc, 144 (10), pp. 3518-3525 Krätschmer, A., Wallinder, I.O., Leygraf, C., The evolution of outdoor copper patina (2002) Corrosion Sci, 44 (3), pp. 425-450 Aastrup, T., Wadsak, M., Schreiner, M., Leygraf, C., Experimental in situ studies of copper exposed to humidified air (2000) Corrosion Sci, 42 (6), pp. 957-967 Kleber, C., Weissenrieder, J., Schreiner, M., Leygraf, C., Comparison of the early stages of corrosion of copper and iron investigated by in situ tm-Afm (2002) Appl. Surf. Sci, 193 (1-4), pp. 245-253 González, J.A., Morcillo, M., Escudero, E., López, V., Otero, E., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part i: Visual observations and gravimetric results (2002) Surf. Coatings Technol, 153 (2-3), pp. 225-234 Acevedo-Hurtado, P.O., Characterization of atmospheric corrosion in al/ag lap joints (2008) Corrosion Sci, 50 (11), pp. 3123-3131 Weissenrieder, J., Leygraf, C., Göthelid, M., Karlsson, U.O., Photoelectron microscopy of filiform corrosion of aluminum (2003) Appl. Surf. Sci, 218 (1-4), pp. 155-162 Tao, L., Song, S., Zhang, X., Zhang, Z., Lu, F., Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys (2008) Appl. Surf. Sci, 254 (21), pp. 6870-6874 Dan, Z., Muto, I., Hara, N., Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions (2012) Corrosion Sci, 57, pp. 22-29. , Apr Sun, S., Zheng, Q., Li, D., Wen, J., Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments (2009) Corrosion Sci, 51 (4), pp. 719-727 Oesch, S., Faller, M., Environmental effects on materials: The effect of the air pollutants so2, no2, no and o3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures (1997) Corrosion Sci, 39 (9), pp. 1505-1530. , Sep Mazza, B., Pedeferri, P., Re, G., Sinigaglia, D., Behaviour of a galvanic cell simulating the atmospheric corrosion conditions of gold plated bronzes (1977) Corrosion Sci, 17 (6), pp. 535-541. , Jan Georges, C., Semmar, N., Boulmer-Leborgne, C., Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings (2006) Opt. Lasers Eng, 44 (12), pp. 1283-1296 Sun, A.C., Moffat, H.K., Enos, D.G., George, C.S., Pore corrosion model for gold-plated copper contacts (2007) IEEE Trans. Compon. Packag. Manuf. Technol, 30 (4), pp. 796-804. , Dec Antler, M., Drozdowicz, M.H., Fretting corrosion of gold-plated connector contacts (1981) Wear, 74 (1), pp. 27-50. , Dec Svedung, O., Johansson, L.-G., Vannerberg, N.-G., Corrosion of gold-coated contact materials exposed to humid atmospheres containing low concentrations of so2 and no2 (1983) IEEE Trans. Compon., Hybrids, Manuf. Technol, 6 (3), pp. 349-355. , Sep Hisakado, T., Effects of surface roughness and surface films on contact resistance (1977) Wear, 44 (2), pp. 345-359. , Sep Misra, P., Nagaraju, J., Electrical contact resistance in thin (=0.5 ?m) gold plated contacts: Effect of gold plating thickness (2010) IEEE Trans. Compon. Packag. Technol, 33 (4), pp. 830-835. , Dec Liskiewicz, T., Neville, A., Achanta, S., Impact of corrosion on fretting damage of electrical contacts (2007) Proc. Annu. Holm Conf. Elect. Contacts, pp. 257-262. , Montreal, QC, Canada Imrell, T., The importance of the thickness of silver coating in the corrosion behaviour of copper contacts (1991) Proc. 37th IEEE HOLM Conf. Elect. Contacts, pp. 237-243. , Chicago, IL, USA Wadsak, M., Schreiner, M., Aastrup, T., Leygraf, C., Combined in-situ investigations of atmospheric corrosion of copper with sfm and iras coupled with qcm (2000) Surf. Sci., Vols, 454-456 (1), pp. 246-250 Wang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z., Zhou, Z.Y., In situ stm studies of electrochemical growth of nanostructured ni films and their anomalous ir properties (2005) J. Phys. Chem. B, 109 (10), pp. 4309-4316. , Mar Cao, Z., Gu, N., Investigation on gold corrosion by in situ quartz crystal microbalance and atomic force microscopy in self-Assembled processes of alkanethiol monolayers (2005) Mater. Lett, 59 (28), pp. 3687-3693 Lee, S.M., Krim, J., Scanning tunneling microscopy characterization of the surface morphology of copper films grown on mica and quartz (2005) Thin Solid Films, 489 (1-2), pp. 325-329 Wiesinger, R., Martina, I., Kleber, C., Schreiner, M., Influence of relative humidity and ozone on atmospheric silver corrosion (2013) Corrosion Sci, 77, pp. 69-76. , Dec Kleber, C., Hilfrich, U., Schreiner, M., In situ qcm and tm-Afm investigations of the early stages of degradation of silver and copper surfaces (2007) Appl. Surf. Sci, 253 (7), pp. 3712-3721 Gong, Y.S., Lee, C., Yang, C.K., Atomic force microscopy and raman spectroscopy studies on the oxidation of cu thin films (1995) J. Appl. Phys, 77 (10), pp. 5422-5425 Watanabe, M., Higashi, Y., Ichino, T., Surface observation and depth profiling analysis studies of corrosion products on copper exposed outdoors (2003) J. Electrochem. Soc, 150 (2), pp. B37-B44 Daniels, S.L., Sprunger, P.T., Kizilkaya, O., Lytle, D.A., Garno, J.C., Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration (2013) Appl. Surf. Sci, 285, pp. 823-831. , Nov Castaño, J.G., De La Fuente, D., Morcillo, M., A laboratory study of the effect of no2 on the atmospheric corrosion of zinc (2007) Atmos. Environ, 41 (38), pp. 8681-8696 Horcas, I., Wsxm: A software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum, 78 (1). , Art. no. 13705 Leygraf, C., Atmospheric corrosion (2002) Corrosion Mechanisms in Theory and Practice, pp. 529-562. , 3rd ed. Boca Raton, FL, USA: CRC Park, J.-H., Natesan, K., Oxidation of copper and electronic transport in copper oxides (1993) Oxidation Metals, 39 (5), pp. 411-435 Feliu, S., Mariaca, L., Simancas, J., González, J.A., Morcillo, M., Effect of no2 and/or so2 atmospheric contaminants and relative humidity on copper corrosion (2003) Revista de Metalurgia, 39 (4), pp. 279-288. , Aug Odnevall, I., Leygraf, C., Atmospheric corrosion of copper in a rural atmosphere (1995) J. Electrochem. Soc, 142 (11), pp. 3682-3689 Rice, D.W., Phipps, P.B.P., Tremoureux, R., Atmospheric corrosion of nickel (1980) J. Electrochem. Soc, 127 (3), pp. 563-568 Graedel, T.E., Leygraf, C., Corrosion mechanisms for nickel exposed to the atmosphere (2000) J. Electrochem. Soc, 147 (3), pp. 1010-1014 Graedel, T.E., Corrosion mechanisms for aluminum exposed to the atmosphere (1989) J. Electrochem. Soc, 136 (4), pp. 204C-212C Castaño, J.G., Arroyave, C., Morcillo, M., Characterization of atmospheric corrosion products of zinc exposed to so2 and no2 using xps and gixd (2007) J. Mater. Sci, 42 (23), pp. 9654-9662. , Dec Gusmano, G., Montanari, R., Kaciulis, S., Montesperelli, G., Denk, R., Gold corrosion': Red stains on a gold austrian ducat (2004) Appl. Phys. A, Solids Surf, 79 (2), pp. 205-211. , Jul Mayerhofer, K.E., Piplits, K., Traum, R., Griesser, M., Hutter, H., Investigations of corrosion phenomena on gold coins with sims (2005) Appl. Surf. Sci, 252 (1), pp. 133-138 Enos, D.G., Glauner, C.S., Sorensen, N.R., Atmospheric degradation of gold and nickel-gold electroplated copper connectors (2003) Proc. 204th Meeting Electrochem. Soc Park, Y.W., Jung, J.P., Lee, H.Y., Overview of fretting corrosion in electrical connectors (2006) Int. J. Autom. Technol, 7 (1), pp. 75-82 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159270100336640 |
spelling |
2017-12-19T19:36:49Z2017-12-19T19:36:49Z201715304388http://hdl.handle.net/11407/434510.1109/TDMR.2017.2681280reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.engInstitute of Electrical and Electronics Engineers Inc.Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85025824338&doi=10.1109%2fTDMR.2017.2681280&partnerID=40&md5=a3c7e2ede0dff54eee59f3e70443f5ccIEEE Transactions on Device and Materials ReliabilityZhai, E., Shi, Y., Gregory, M., The growth and capability development of electronics manufacturing service (ems) companies (2007) Int. J. Prod. Econ, 107 (1), pp. 1-19Peitz, M., Valletti, T., Reassessing competition concerns in electronic communications markets (2015) Telecommun. Policy, 39 (10), pp. 896-912Hienonen, R., Lahtinen, R., (2007) Corrosion and Climatic Effects in Electronics, , Helsinki Finland: VTTIsleib, C.R., Nickel alloys in today's electronics industry (1987) Proc. 20th Annu. Connectors Interconectors Technol. Symp, pp. 1-8. , Birmingham, U.KKoch, G.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H., (2002) Corrosion Cost and Preventive Strategies in the United States, , McLean, VA, USA: Nace IntComizzoli, R.B., Frankenthal, R.P., Milner, P.C., Sinclair, J.D., Corrosion of electronic materials and devices (1986) Science, 234 (4774), pp. 340-345. , OctZhang, J.-G., Wen, X.-M., The effect of dust contamination on electric contacts (1986) IEEE Trans. Compon. Packag. Manuf. Technol, 9 (1), pp. 53-58. , MarGil, H., Calderón, J.A., Buitrago, C.P., Echavarría, A., Echeverría, F., Indoor atmospheric corrosion of electronic materials in tropicalmountain environments (2010) Corrosion Sci, 52 (2), pp. 327-337Veleva, L., Dzib-Pérez, L., González-Sánchez, J., Pérez, T., Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: Tin and nickel (2007) Revista de Metalurgia, 43 (2), pp. 101-110Jouen, S., Jean, M., Hannoyer, B., Atmospheric corrosion of nickel in various outdoor environments (2004) Corrosion Sci, 46 (2), pp. 499-514Odnevall, I., Leygraf, C., The atmospheric corrosion of nickel in a rural atmosphere (1997) J. Electrochem. Soc, 144 (10), pp. 3518-3525Krätschmer, A., Wallinder, I.O., Leygraf, C., The evolution of outdoor copper patina (2002) Corrosion Sci, 44 (3), pp. 425-450Aastrup, T., Wadsak, M., Schreiner, M., Leygraf, C., Experimental in situ studies of copper exposed to humidified air (2000) Corrosion Sci, 42 (6), pp. 957-967Kleber, C., Weissenrieder, J., Schreiner, M., Leygraf, C., Comparison of the early stages of corrosion of copper and iron investigated by in situ tm-Afm (2002) Appl. Surf. Sci, 193 (1-4), pp. 245-253González, J.A., Morcillo, M., Escudero, E., López, V., Otero, E., Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part i: Visual observations and gravimetric results (2002) Surf. Coatings Technol, 153 (2-3), pp. 225-234Acevedo-Hurtado, P.O., Characterization of atmospheric corrosion in al/ag lap joints (2008) Corrosion Sci, 50 (11), pp. 3123-3131Weissenrieder, J., Leygraf, C., Göthelid, M., Karlsson, U.O., Photoelectron microscopy of filiform corrosion of aluminum (2003) Appl. Surf. Sci, 218 (1-4), pp. 155-162Tao, L., Song, S., Zhang, X., Zhang, Z., Lu, F., Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys (2008) Appl. Surf. Sci, 254 (21), pp. 6870-6874Dan, Z., Muto, I., Hara, N., Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions (2012) Corrosion Sci, 57, pp. 22-29. , AprSun, S., Zheng, Q., Li, D., Wen, J., Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments (2009) Corrosion Sci, 51 (4), pp. 719-727Oesch, S., Faller, M., Environmental effects on materials: The effect of the air pollutants so2, no2, no and o3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures (1997) Corrosion Sci, 39 (9), pp. 1505-1530. , SepMazza, B., Pedeferri, P., Re, G., Sinigaglia, D., Behaviour of a galvanic cell simulating the atmospheric corrosion conditions of gold plated bronzes (1977) Corrosion Sci, 17 (6), pp. 535-541. , JanGeorges, C., Semmar, N., Boulmer-Leborgne, C., Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings (2006) Opt. Lasers Eng, 44 (12), pp. 1283-1296Sun, A.C., Moffat, H.K., Enos, D.G., George, C.S., Pore corrosion model for gold-plated copper contacts (2007) IEEE Trans. Compon. Packag. Manuf. Technol, 30 (4), pp. 796-804. , DecAntler, M., Drozdowicz, M.H., Fretting corrosion of gold-plated connector contacts (1981) Wear, 74 (1), pp. 27-50. , DecSvedung, O., Johansson, L.-G., Vannerberg, N.-G., Corrosion of gold-coated contact materials exposed to humid atmospheres containing low concentrations of so2 and no2 (1983) IEEE Trans. Compon., Hybrids, Manuf. Technol, 6 (3), pp. 349-355. , SepHisakado, T., Effects of surface roughness and surface films on contact resistance (1977) Wear, 44 (2), pp. 345-359. , SepMisra, P., Nagaraju, J., Electrical contact resistance in thin (=0.5 ?m) gold plated contacts: Effect of gold plating thickness (2010) IEEE Trans. Compon. Packag. Technol, 33 (4), pp. 830-835. , DecLiskiewicz, T., Neville, A., Achanta, S., Impact of corrosion on fretting damage of electrical contacts (2007) Proc. Annu. Holm Conf. Elect. Contacts, pp. 257-262. , Montreal, QC, CanadaImrell, T., The importance of the thickness of silver coating in the corrosion behaviour of copper contacts (1991) Proc. 37th IEEE HOLM Conf. Elect. Contacts, pp. 237-243. , Chicago, IL, USAWadsak, M., Schreiner, M., Aastrup, T., Leygraf, C., Combined in-situ investigations of atmospheric corrosion of copper with sfm and iras coupled with qcm (2000) Surf. Sci., Vols, 454-456 (1), pp. 246-250Wang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z., Zhou, Z.Y., In situ stm studies of electrochemical growth of nanostructured ni films and their anomalous ir properties (2005) J. Phys. Chem. B, 109 (10), pp. 4309-4316. , MarCao, Z., Gu, N., Investigation on gold corrosion by in situ quartz crystal microbalance and atomic force microscopy in self-Assembled processes of alkanethiol monolayers (2005) Mater. Lett, 59 (28), pp. 3687-3693Lee, S.M., Krim, J., Scanning tunneling microscopy characterization of the surface morphology of copper films grown on mica and quartz (2005) Thin Solid Films, 489 (1-2), pp. 325-329Wiesinger, R., Martina, I., Kleber, C., Schreiner, M., Influence of relative humidity and ozone on atmospheric silver corrosion (2013) Corrosion Sci, 77, pp. 69-76. , DecKleber, C., Hilfrich, U., Schreiner, M., In situ qcm and tm-Afm investigations of the early stages of degradation of silver and copper surfaces (2007) Appl. Surf. Sci, 253 (7), pp. 3712-3721Gong, Y.S., Lee, C., Yang, C.K., Atomic force microscopy and raman spectroscopy studies on the oxidation of cu thin films (1995) J. Appl. Phys, 77 (10), pp. 5422-5425Watanabe, M., Higashi, Y., Ichino, T., Surface observation and depth profiling analysis studies of corrosion products on copper exposed outdoors (2003) J. Electrochem. Soc, 150 (2), pp. B37-B44Daniels, S.L., Sprunger, P.T., Kizilkaya, O., Lytle, D.A., Garno, J.C., Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration (2013) Appl. Surf. Sci, 285, pp. 823-831. , NovCastaño, J.G., De La Fuente, D., Morcillo, M., A laboratory study of the effect of no2 on the atmospheric corrosion of zinc (2007) Atmos. Environ, 41 (38), pp. 8681-8696Horcas, I., Wsxm: A software for scanning probe microscopy and a tool for nanotechnology (2007) Rev. Sci. Instrum, 78 (1). , Art. no. 13705Leygraf, C., Atmospheric corrosion (2002) Corrosion Mechanisms in Theory and Practice, pp. 529-562. , 3rd ed. Boca Raton, FL, USA: CRCPark, J.-H., Natesan, K., Oxidation of copper and electronic transport in copper oxides (1993) Oxidation Metals, 39 (5), pp. 411-435Feliu, S., Mariaca, L., Simancas, J., González, J.A., Morcillo, M., Effect of no2 and/or so2 atmospheric contaminants and relative humidity on copper corrosion (2003) Revista de Metalurgia, 39 (4), pp. 279-288. , AugOdnevall, I., Leygraf, C., Atmospheric corrosion of copper in a rural atmosphere (1995) J. Electrochem. Soc, 142 (11), pp. 3682-3689Rice, D.W., Phipps, P.B.P., Tremoureux, R., Atmospheric corrosion of nickel (1980) J. Electrochem. Soc, 127 (3), pp. 563-568Graedel, T.E., Leygraf, C., Corrosion mechanisms for nickel exposed to the atmosphere (2000) J. Electrochem. Soc, 147 (3), pp. 1010-1014Graedel, T.E., Corrosion mechanisms for aluminum exposed to the atmosphere (1989) J. Electrochem. Soc, 136 (4), pp. 204C-212CCastaño, J.G., Arroyave, C., Morcillo, M., Characterization of atmospheric corrosion products of zinc exposed to so2 and no2 using xps and gixd (2007) J. Mater. Sci, 42 (23), pp. 9654-9662. , DecGusmano, G., Montanari, R., Kaciulis, S., Montesperelli, G., Denk, R., Gold corrosion': Red stains on a gold austrian ducat (2004) Appl. Phys. A, Solids Surf, 79 (2), pp. 205-211. , JulMayerhofer, K.E., Piplits, K., Traum, R., Griesser, M., Hutter, H., Investigations of corrosion phenomena on gold coins with sims (2005) Appl. Surf. Sci, 252 (1), pp. 133-138Enos, D.G., Glauner, C.S., Sorensen, N.R., Atmospheric degradation of gold and nickel-gold electroplated copper connectors (2003) Proc. 204th Meeting Electrochem. SocPark, Y.W., Jung, J.P., Lee, H.Y., Overview of fretting corrosion in electrical connectors (2006) Int. J. Autom. Technol, 7 (1), pp. 75-82ScopusHigh resolution morphological changes of Cu, Ni, Al, and Au surfaces due to atmospheric corrosionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Echeverría, F., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaBotero, C.A., Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaCorrea, E., Grupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaMeza, D., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaCastaño, J.G., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaGõmez, M.A., Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaEcheverría F.Botero C.A.Correa E.Meza D.Castaño J.G.Gõmez M.A.Centro de Investigaciõn, Innovaciõn y Desarrollo de Materiales, Universidad de Antioquia, Medellín, ColombiaFacultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaGrupo de Investigaciõn Materiales Con Impacto MAT and MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, ColombiaAluminumAtmospheric corrosionCopperElectrical contactsGoldNickelAluminumAtmospheric humidityAtomic force microscopyCopperCorrosionElectric contactsElectronics industryGoldNickelNitrogen compoundsSurface morphologyConstant temperatureCorrosion attackElectrical contactsElectronic deviceHigh resolutionIndustry sectorsMorphological changesSurface morphology and roughnessAtmospheric corrosionAs atmospheric corrosion of electrical contacts is a common cause of failure in electronics industry and at the same time miniaturization is a requirement in any modern electronic device, it is important to study the effects of corrosion in the surface morphology of metals widely used in that industry sector, such as gold, copper, nickel, and aluminium. Here, atomic force microscopy (AFM) has been used with that purpose, analysing flat surfaces of those metals both before and after exposure by several weeks to the effects of a contaminated atmosphere containing both NO2 and SO2 at constant temperature and humidity. Results indicate all metals suffered changes both in surface morphology and roughness. AFM phase mode images also indicated the occurrence of different species on the Ni and Cu surfaces after 11 weeks of exposure. Evidence of defects due to the corrosion attack was only observed for Ni. © 2017 IEEE.http://purl.org/coar/access_right/c_16ec11407/4345oai:repository.udem.edu.co:11407/43452020-05-27 19:17:36.812Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |