Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study

Exposure to air pollutants agents, like sulfur dioxide (SO2), has significant effects on the cardiovascular system. Studies have shown that SO2 blocks ICaL and increases the INa, IK1 and Ito currents, which implies action potential duration (APD) decrease, favoring the initiation of atrial arrhythmi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5725
Acceso en línea:
http://hdl.handle.net/11407/5725
Palabra clave:
Cardiology
Cardiovascular system
Sodium compounds
Sulfur dioxide
Action potential durations
Action potentials
Air pollutants
Atrial arrhythmia
Atrial cells
Atrial tissues
Computational simulation
Concentration-dependent
Calcium compounds
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_cab5b0cc1da6b2f33bcdb6aa790d841d
oai_identifier_str oai:repository.udem.edu.co:11407/5725
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
title Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
spellingShingle Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
Cardiology
Cardiovascular system
Sodium compounds
Sulfur dioxide
Action potential durations
Action potentials
Air pollutants
Atrial arrhythmia
Atrial cells
Atrial tissues
Computational simulation
Concentration-dependent
Calcium compounds
title_short Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
title_full Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
title_fullStr Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
title_full_unstemmed Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
title_sort Sulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
dc.subject.none.fl_str_mv Cardiology
Cardiovascular system
Sodium compounds
Sulfur dioxide
Action potential durations
Action potentials
Air pollutants
Atrial arrhythmia
Atrial cells
Atrial tissues
Computational simulation
Concentration-dependent
Calcium compounds
topic Cardiology
Cardiovascular system
Sodium compounds
Sulfur dioxide
Action potential durations
Action potentials
Air pollutants
Atrial arrhythmia
Atrial cells
Atrial tissues
Computational simulation
Concentration-dependent
Calcium compounds
description Exposure to air pollutants agents, like sulfur dioxide (SO2), has significant effects on the cardiovascular system. Studies have shown that SO2 blocks ICaL and increases the INa, IK1 and Ito currents, which implies action potential duration (APD) decrease, favoring the initiation of atrial arrhythmias. This study aims to assess the effects of the SO2 at different concentrations on human atrial action potential, using computational simulation. For this, based on experimental data, we developed concentration-dependent equations to simulate the SO2 effects on the currents. They were incorporated in the Courtemanche model of human atrial cell and in a 2D model of atrial tissue. S1-S2 cross-field protocol was applied to initiate a rotor. SO2 concentrations from 0 to 100 ? M were implemented. Our results are in agreement with results from non-human in vitro and in vivo studies. The SO2 causes APD shortening and loss of plateau phase in a fraction that increases as the concentration increases. In the 2D model, a rotor can be generated from 50 ? M of SO2 concentration, showing a pro-arrhythmic effect. © 2018 Creative Commons Attribution.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:47Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:47Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9781728109589
dc.identifier.issn.none.fl_str_mv 23258861
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5725
dc.identifier.doi.none.fl_str_mv 10.22489/CinC.2018.058
identifier_str_mv 9781728109589
23258861
10.22489/CinC.2018.058
url http://hdl.handle.net/11407/5725
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068780911&doi=10.22489%2fCinC.2018.058&partnerID=40&md5=a24aed83d6c5adfe69a3775ed88dff4d
dc.relation.citationvolume.none.fl_str_mv 2018-September
dc.relation.references.none.fl_str_mv (2014) The Cost of Air Pollution: Health Impacts of Road Transport, , OECD Paris: OECD Publishing
Zhang, Q., Tian, J., Bai, Y., Effects of sulfur dioxide and its derivatives on the functions of rat hearts and their mechanisms (2013) Procedia Environ. Sci, 18, pp. 43-50
(2015), https://www3.epa.gov/airquality/, U.S. Environmental Protection Agency. Air quality planning & standards, [Accessed: 01-May-2017]
Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol, 44 (3), pp. 355-363
Zhang, R.Y., Du, J.B., Sun, Y., Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes (2011) Clin. Exp. Pharmacol. Physiol, 38 (7), pp. 416-422
Nie, A., Meng, Z., Study of the interaction of sulfur dioxide derivative with cardiac sodium channel (2005) Biochim. Biophys. Acta, 1718 (1-2), pp. 67-73
Nie, A., Meng, Z., Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes (2005) Arch. Biochem. Biophys, 442 (2), pp. 187-195
Nattel, S., Xiong, F., Aguilar, M., Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms (2017) Nature Reviews Cardiology, 14 (9), pp. 509-520
Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol, 275, pp. H301-H321
Ugarte, J., Tobón, C., Orozco-Duque, A., Generation of fibrillatory dynamics in cardiac tissue: Fractional diffusion as arrhythmogenic mechanism modelling tool (2017) Appl. Math. Sci, 11 (13), pp. 637-650
Bray, M.A., Lin, S.F., Aliev, R.R., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12 (6), pp. 716-722
Miller, K.A., Siscovick, D.S., Sheppard, L., Long-term exposure to air pollution and incidence (2007) N. Engl. J. Med, 356 (5), pp. 447-458
Link, M.S., Luttmann-Gibson, H., Schwartz, J., Acute exposure to air pollution triggers atrial fibrillation (2013) J. Am. Coll. Cardiol, 62 (9), pp. 816-825
Pandit, S.V., Berenfeld, O., Anumonwo, J.M.B., Ionic determinants of functional reentry in a 2-d model of human atrial cells during simulated chronic atrial fibrillation (2005) Biophys. J, 88 (6), pp. 3806-3821
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv IEEE Computer Society
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv Computing in Cardiology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159145373270016
spelling 20182020-04-29T14:53:47Z2020-04-29T14:53:47Z978172810958923258861http://hdl.handle.net/11407/572510.22489/CinC.2018.058Exposure to air pollutants agents, like sulfur dioxide (SO2), has significant effects on the cardiovascular system. Studies have shown that SO2 blocks ICaL and increases the INa, IK1 and Ito currents, which implies action potential duration (APD) decrease, favoring the initiation of atrial arrhythmias. This study aims to assess the effects of the SO2 at different concentrations on human atrial action potential, using computational simulation. For this, based on experimental data, we developed concentration-dependent equations to simulate the SO2 effects on the currents. They were incorporated in the Courtemanche model of human atrial cell and in a 2D model of atrial tissue. S1-S2 cross-field protocol was applied to initiate a rotor. SO2 concentrations from 0 to 100 ? M were implemented. Our results are in agreement with results from non-human in vitro and in vivo studies. The SO2 causes APD shortening and loss of plateau phase in a fraction that increases as the concentration increases. In the 2D model, a rotor can be generated from 50 ? M of SO2 concentration, showing a pro-arrhythmic effect. © 2018 Creative Commons Attribution.engIEEE Computer SocietyFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068780911&doi=10.22489%2fCinC.2018.058&partnerID=40&md5=a24aed83d6c5adfe69a3775ed88dff4d2018-September(2014) The Cost of Air Pollution: Health Impacts of Road Transport, , OECD Paris: OECD PublishingZhang, Q., Tian, J., Bai, Y., Effects of sulfur dioxide and its derivatives on the functions of rat hearts and their mechanisms (2013) Procedia Environ. Sci, 18, pp. 43-50(2015), https://www3.epa.gov/airquality/, U.S. Environmental Protection Agency. Air quality planning & standards, [Accessed: 01-May-2017]Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol, 44 (3), pp. 355-363Zhang, R.Y., Du, J.B., Sun, Y., Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes (2011) Clin. Exp. Pharmacol. Physiol, 38 (7), pp. 416-422Nie, A., Meng, Z., Study of the interaction of sulfur dioxide derivative with cardiac sodium channel (2005) Biochim. Biophys. Acta, 1718 (1-2), pp. 67-73Nie, A., Meng, Z., Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes (2005) Arch. Biochem. Biophys, 442 (2), pp. 187-195Nattel, S., Xiong, F., Aguilar, M., Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms (2017) Nature Reviews Cardiology, 14 (9), pp. 509-520Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol, 275, pp. H301-H321Ugarte, J., Tobón, C., Orozco-Duque, A., Generation of fibrillatory dynamics in cardiac tissue: Fractional diffusion as arrhythmogenic mechanism modelling tool (2017) Appl. Math. Sci, 11 (13), pp. 637-650Bray, M.A., Lin, S.F., Aliev, R.R., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12 (6), pp. 716-722Miller, K.A., Siscovick, D.S., Sheppard, L., Long-term exposure to air pollution and incidence (2007) N. Engl. J. Med, 356 (5), pp. 447-458Link, M.S., Luttmann-Gibson, H., Schwartz, J., Acute exposure to air pollution triggers atrial fibrillation (2013) J. Am. Coll. Cardiol, 62 (9), pp. 816-825Pandit, S.V., Berenfeld, O., Anumonwo, J.M.B., Ionic determinants of functional reentry in a 2-d model of human atrial cells during simulated chronic atrial fibrillation (2005) Biophys. J, 88 (6), pp. 3806-3821Computing in CardiologyCardiologyCardiovascular systemSodium compoundsSulfur dioxideAction potential durationsAction potentialsAir pollutantsAtrial arrhythmiaAtrial cellsAtrial tissuesComputational simulationConcentration-dependentCalcium compoundsSulfur Dioxide Effects on Human Atrial Action Potential: In Silico StudyConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Palacio, L.C., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombia; Durango, G., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombia; Ugarte, J.P., Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura, Medellín, Colombia; Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain; Tobon, C., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecPalacio L.C.Durango G.Ugarte J.P.Saiz J.Tobon C.11407/5725oai:repository.udem.edu.co:11407/57252020-05-27 16:29:57.585Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co