An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data

Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporatio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5648
Acceso en línea:
http://hdl.handle.net/11407/5648
Palabra clave:
Biological data
Clustering
Entropy
Graph
Metagenomic binning
Spike sorting
Biomedical engineering
Biophysics
Entropy
Graphic methods
Machine learning
Unsupervised learning
Biological data
Clustering
Graph
Metagenomic binning
Spike-sorting
Sorting
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c9842d8a817bac0357d0ae9e2461e35b
oai_identifier_str oai:repository.udem.edu.co:11407/5648
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
title An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
spellingShingle An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
Biological data
Clustering
Entropy
Graph
Metagenomic binning
Spike sorting
Biomedical engineering
Biophysics
Entropy
Graphic methods
Machine learning
Unsupervised learning
Biological data
Clustering
Graph
Metagenomic binning
Spike-sorting
Sorting
title_short An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
title_full An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
title_fullStr An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
title_full_unstemmed An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
title_sort An Entropy-Based Graph Construction Method for Representing and Clustering Biological Data
dc.subject.none.fl_str_mv Biological data
Clustering
Entropy
Graph
Metagenomic binning
Spike sorting
Biomedical engineering
Biophysics
Entropy
Graphic methods
Machine learning
Unsupervised learning
Biological data
Clustering
Graph
Metagenomic binning
Spike-sorting
Sorting
topic Biological data
Clustering
Entropy
Graph
Metagenomic binning
Spike sorting
Biomedical engineering
Biophysics
Entropy
Graphic methods
Machine learning
Unsupervised learning
Biological data
Clustering
Graph
Metagenomic binning
Spike-sorting
Sorting
description Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups. © 2020, Springer Nature Switzerland AG.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:34Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9783030306472
dc.identifier.issn.none.fl_str_mv 16800737
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5648
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-30648-9_41
identifier_str_mv 9783030306472
16800737
10.1007/978-3-030-30648-9_41
url http://hdl.handle.net/11407/5648
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700831&doi=10.1007%2f978-3-030-30648-9_41&partnerID=40&md5=930b9690370f241ec1412784c1f71f70
dc.relation.citationvolume.none.fl_str_mv 75
dc.relation.citationstartpage.none.fl_str_mv 315
dc.relation.citationendpage.none.fl_str_mv 321
dc.relation.references.none.fl_str_mv Vogt, J.E., Unsupervised structure detection in biomedical data (2015) IEEE/ACM Trans. Comput. Biol. Bioinforma., 12 (4), pp. 753-760. , https://doi.org/10.1109/TCBB.2015.2394408
Xu, R., Wunsch, D.C., Clustering algorithms in biomedical research: A review (2010) IEEE Rev. Biomed. Eng., 3, pp. 120-154. , https://doi.org/10.1109/RBME.2010.2083647
Fortunato, S., Hric, D., Community detection in networks: A user guide (2016) Phys. Rep., 659, pp. 1-44. , https://doi.org/10.1016/j.physrep.2016.09.002
de Arruda, G.F., Costa, L.D.F., Rodrigues, F.A., A complex networks approach for data clustering (2012) Phys. a Stat. Mech. Appl., 391 (23), pp. 6174-6183. , https://doi.org/10.1016/j.physa.2012.07.007
Zhang, H., Chen, X., Network-based clustering and embedding for high-dimensional data visualization (2013) 2013 International Conference on Computer-Aided Design and Computer Graphics, pp. 290-297. , https://doi.org/10.1109/CADGraphics.2013.45
Grünwald, P.D., (2007) The Minimum Description Length Principle, , The MIT Press, Cambridge
Yao, J., Dash, M., Tan, S.T., Liu, H., Entropy-based fuzzy clustering and fuzzy modeling (2000) Fuzzy Sets Syst, 113 (3), pp. 381-388. , https://doi.org/10.1016/S0165-0114(98)00038-4
Laskaris, N.A., Zafeiriou, S.P., Beyond FCM: Graph-theoretic post-processing algorithms for learning and representing the data structure (2008) Pattern Recognit, 41 (8), pp. 2630-2644. , https://doi.org/10.1016/j.patcog.2008.02.005
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., Fast unfolding of communities in large networks (2008) J. Stat. Mech. Theory Exp., 2008 (10). , https://doi.org/10.1088/1742-5468/2008/10/P10008
Leung, H.C., Yiu, S.M., Yang, B., Peng, Y., Wang, Y., Liu, Z., Chen, J., Chin, F.Y., A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio (2011) Bioinformatics, 27 (11), pp. 1489-1495. , https://doi.org/10.1093/bioinformatics/btr186
Ceballos, J., Ariza-Jiménez, L., Pinel, N., Standardized approaches for assessing metagenomic contig binning performance from Barnes-Hut t-Stochastic neighbor embeddings (2020) VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, pp. 761-768. , https://doi.org/10.1007/978-3-030-30648-9101, pp., Springer Nature Switzerland AG
Ariza-Jiménez, L., Quintero, O., Pinel, N., Unsupervised fuzzy binning of metagenomic sequence fragments on three-dimensional Barnes-Hut t-Stochastic neighbor embeddings (2018) 40Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1315-1318. , https://doi.org/10.1109/EMBC.2018.8512529
van der Maaten, L., Accelerating t-SNE using tree-based algorithms (2014) J. Mach. Learn. Res., 15, pp. 3221-3245. , http://jmlr.org/papers/v15/vandermaaten14a.html
Chaure, F.J., Rey, H.G., Quian Quiroga, R., A novel and fully automatic spike-sorting implementation with variable number of features (2018) J. Neurophysiol., 120 (4), pp. 1859-1871. , https://doi.org/10.1152/jn.00339.2018
Pedreira, C., Martinez, J., Ison, M.J., Quian Quiroga, R., How many neurons can we see with current spike sorting algorithms? (2012) J. Neurosci. Methods, 211 (1), pp. 58-65. , https://doi.org/10.1016/j.jneumeth.2012.07.010
Newman, M.E., Clauset, A., Structure and inference in annotated networks (2016) Nat. Commun., 7 (May), pp. 1-11. , https://doi.org/10.1038/ncomms11863
Sharon, I., Morowitz, M.J., Thomas, B.C., Costello, E.K., Relman, D.A., Banfield, J.F., Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization (2013) Genome Res, 23 (1), pp. 111-120. , https://doi.org/10.1101/gr.142315.112s
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv IFMBE Proceedings
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159100838150144
spelling 20202020-04-29T14:53:34Z2020-04-29T14:53:34Z978303030647216800737http://hdl.handle.net/11407/564810.1007/978-3-030-30648-9_41Unsupervised learning methods are commonly used to perform the non-trivial task of uncovering structure in biological data. However, conventional approaches rely on methods that make assumptions about data distribution and reduce the dimensionality of the input data. Here we propose the incorporation of entropy related measures into the process of constructing graph-based representations for biological datasets in order to uncover their inner structure. Experimental results demonstrated the potential of the proposed entropy-based graph data representation to cope with biological applications related to unsupervised learning problems, such as metagenomic binning and neuronal spike sorting, in which it is necessary to organize data into unknown and meaningful groups. © 2020, Springer Nature Switzerland AG.engSpringerIngeniería de SistemasFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700831&doi=10.1007%2f978-3-030-30648-9_41&partnerID=40&md5=930b9690370f241ec1412784c1f71f7075315321Vogt, J.E., Unsupervised structure detection in biomedical data (2015) IEEE/ACM Trans. Comput. Biol. Bioinforma., 12 (4), pp. 753-760. , https://doi.org/10.1109/TCBB.2015.2394408Xu, R., Wunsch, D.C., Clustering algorithms in biomedical research: A review (2010) IEEE Rev. Biomed. Eng., 3, pp. 120-154. , https://doi.org/10.1109/RBME.2010.2083647Fortunato, S., Hric, D., Community detection in networks: A user guide (2016) Phys. Rep., 659, pp. 1-44. , https://doi.org/10.1016/j.physrep.2016.09.002de Arruda, G.F., Costa, L.D.F., Rodrigues, F.A., A complex networks approach for data clustering (2012) Phys. a Stat. Mech. Appl., 391 (23), pp. 6174-6183. , https://doi.org/10.1016/j.physa.2012.07.007Zhang, H., Chen, X., Network-based clustering and embedding for high-dimensional data visualization (2013) 2013 International Conference on Computer-Aided Design and Computer Graphics, pp. 290-297. , https://doi.org/10.1109/CADGraphics.2013.45Grünwald, P.D., (2007) The Minimum Description Length Principle, , The MIT Press, CambridgeYao, J., Dash, M., Tan, S.T., Liu, H., Entropy-based fuzzy clustering and fuzzy modeling (2000) Fuzzy Sets Syst, 113 (3), pp. 381-388. , https://doi.org/10.1016/S0165-0114(98)00038-4Laskaris, N.A., Zafeiriou, S.P., Beyond FCM: Graph-theoretic post-processing algorithms for learning and representing the data structure (2008) Pattern Recognit, 41 (8), pp. 2630-2644. , https://doi.org/10.1016/j.patcog.2008.02.005Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., Fast unfolding of communities in large networks (2008) J. Stat. Mech. Theory Exp., 2008 (10). , https://doi.org/10.1088/1742-5468/2008/10/P10008Leung, H.C., Yiu, S.M., Yang, B., Peng, Y., Wang, Y., Liu, Z., Chen, J., Chin, F.Y., A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio (2011) Bioinformatics, 27 (11), pp. 1489-1495. , https://doi.org/10.1093/bioinformatics/btr186Ceballos, J., Ariza-Jiménez, L., Pinel, N., Standardized approaches for assessing metagenomic contig binning performance from Barnes-Hut t-Stochastic neighbor embeddings (2020) VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, pp. 761-768. , https://doi.org/10.1007/978-3-030-30648-9101, pp., Springer Nature Switzerland AGAriza-Jiménez, L., Quintero, O., Pinel, N., Unsupervised fuzzy binning of metagenomic sequence fragments on three-dimensional Barnes-Hut t-Stochastic neighbor embeddings (2018) 40Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1315-1318. , https://doi.org/10.1109/EMBC.2018.8512529van der Maaten, L., Accelerating t-SNE using tree-based algorithms (2014) J. Mach. Learn. Res., 15, pp. 3221-3245. , http://jmlr.org/papers/v15/vandermaaten14a.htmlChaure, F.J., Rey, H.G., Quian Quiroga, R., A novel and fully automatic spike-sorting implementation with variable number of features (2018) J. Neurophysiol., 120 (4), pp. 1859-1871. , https://doi.org/10.1152/jn.00339.2018Pedreira, C., Martinez, J., Ison, M.J., Quian Quiroga, R., How many neurons can we see with current spike sorting algorithms? (2012) J. Neurosci. Methods, 211 (1), pp. 58-65. , https://doi.org/10.1016/j.jneumeth.2012.07.010Newman, M.E., Clauset, A., Structure and inference in annotated networks (2016) Nat. Commun., 7 (May), pp. 1-11. , https://doi.org/10.1038/ncomms11863Sharon, I., Morowitz, M.J., Thomas, B.C., Costello, E.K., Relman, D.A., Banfield, J.F., Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization (2013) Genome Res, 23 (1), pp. 111-120. , https://doi.org/10.1101/gr.142315.112sIFMBE ProceedingsBiological dataClusteringEntropyGraphMetagenomic binningSpike sortingBiomedical engineeringBiophysicsEntropyGraphic methodsMachine learningUnsupervised learningBiological dataClusteringGraphMetagenomic binningSpike-sortingSortingAn Entropy-Based Graph Construction Method for Representing and Clustering Biological DataConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ariza-Jiménez, L., Mathematical Modeling Research Group, Universidad EAFIT, Medellí­n, Colombia; Pinel, N., Biodiversity, Evolution, and Conservation Research Group, Universidad EAFIT, Medellí­n, Colombia; Villa, L.F., System Engineering Research Group, ARKADIUS, Universidad de Medellí­n, Medellí­n, Colombia; Quintero, O.L., Mathematical Modeling Research Group, Universidad EAFIT, Medellí­n, Colombiahttp://purl.org/coar/access_right/c_16ecAriza-Jiménez L.Pinel N.Villa L.F.Quintero O.L.11407/5648oai:repository.udem.edu.co:11407/56482020-05-27 15:40:34.099Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co