Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods
Chitin is the second largest lineal biopolymer in the world. Recent advances suggest chitin can be obtained from fish scales. In this article, three different treatments were used to obtain chitin from red tilapia (Orechromis sp.) fish scales. All samples were insoluble in solvents and acid used. Th...
- Autores:
-
García Gómez, Angela Goretty
Conde Quintero, Marnie
Castro Salazar, Hans Thielin
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5531
- Acceso en línea:
- http://hdl.handle.net/11407/5531
https://doi.org/10.22395/rium.v18n34a5
- Palabra clave:
- Chitin
Biopolymer
Scales
Red tilapia
Quitina
Biopolímero
Escamas de peixe
Tilápia vermelha
Quitina
Biopolímero
Escamas
Tilapia roja
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
REPOUDEM2_c919050932bc7e340d3c870314b74557 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5531 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
dc.title.por.fl_str_mv |
Extração e caracterização de quitina de escamas de tilápia vermelha (oreochromis sp.) De Huila, Colômbia, usando métodos químicos |
dc.title.spa.fl_str_mv |
Extracción y caracterización de quitina de escamas de tilapia roja (oreochromis sp.) del Huila mediante métodos químicos |
title |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
spellingShingle |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods Chitin Biopolymer Scales Red tilapia Quitina Biopolímero Escamas de peixe Tilápia vermelha Quitina Biopolímero Escamas Tilapia roja |
title_short |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
title_full |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
title_fullStr |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
title_full_unstemmed |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
title_sort |
Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods |
dc.creator.fl_str_mv |
García Gómez, Angela Goretty Conde Quintero, Marnie Castro Salazar, Hans Thielin |
dc.contributor.author.none.fl_str_mv |
García Gómez, Angela Goretty Conde Quintero, Marnie Castro Salazar, Hans Thielin |
dc.subject.eng.fl_str_mv |
Chitin Biopolymer Scales Red tilapia |
topic |
Chitin Biopolymer Scales Red tilapia Quitina Biopolímero Escamas de peixe Tilápia vermelha Quitina Biopolímero Escamas Tilapia roja |
dc.subject.por.fl_str_mv |
Quitina Biopolímero Escamas de peixe Tilápia vermelha |
dc.subject.spa.fl_str_mv |
Quitina Biopolímero Escamas Tilapia roja |
description |
Chitin is the second largest lineal biopolymer in the world. Recent advances suggest chitin can be obtained from fish scales. In this article, three different treatments were used to obtain chitin from red tilapia (Orechromis sp.) fish scales. All samples were insoluble in solvents and acid used. They also presented different percentages of carbon (3.27-55.80 %); oxygen (22.09-42.51 %); nitrogen (11.61-11.81 %); P (1.08-22.2 %); Ca (1.26-26.11 %); Na (0.53-1.02 %); and Mg (0.26-0.91 %). The 3,340-3,380 cm-1 bands shown in infrared spectra correspond to hydroxyl group of polymeric glucosamine bases and 1,415 -1,456 cm-1 peaks correspond to characteristic N-H bond of amide functional group. Images (SE) showed different dimensions of particles (0.1 -30 μm) and mean molecular masses, Mw, for Ch1, Ch2 and Ch3 were 1064.28, 1064.56 and 823.428, respectively, with a 1.0074 polydispersity. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-07T15:34:27Z |
dc.date.available.none.fl_str_mv |
2019-11-07T15:34:27Z |
dc.date.created.none.fl_str_mv |
2019-06-28 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1692-3324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5531 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.22395/rium.v18n34a5 |
dc.identifier.eissn.none.fl_str_mv |
2248-4094 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.udem.edu.co/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
1692-3324 2248-4094 reponame:Repositorio Institucional Universidad de Medellín repourl:https://repository.udem.edu.co/ instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/5531 https://doi.org/10.22395/rium.v18n34a5 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.uri.none.fl_str_mv |
https://revistas.udem.edu.co/index.php/ingenierias/article/view/1835 |
dc.relation.citationvolume.none.fl_str_mv |
18 |
dc.relation.citationissue.none.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
71 |
dc.relation.citationendpage.none.fl_str_mv |
81 |
dc.relation.references.spa.fl_str_mv |
[1] S. Meza, “Analizan procesos productivos y prospectivas de la acuicultura en el Huila”. Panorama Acuícola, [En línea], Disponible: https://panoramaacuicola.com/2017/08/19/analizan-procesos-productivos-y-prospectivas-de-la-acuicultura-en-el-huila/, 2017 [2] M. Arenas, Y. Vega, “Estudio de factibilidad para la creación de una planta procesadora de harina de pescado en el departamento del Huila”. Tesis de especialización en negocios y finanzas internacionales. Universidad Escuela Administradora de Negocios, EAN. Neiva, Colombia, 2010. [3] H. Ehrlich, M. Krautter, T. Hanke, P. Simon, C. Knieb, S. Heinemann, H. Worch, “First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera),” Journal of Experimental Xoology(Mol. Dev. Evol.), vol. 308B, n.°4 pp. 473-83, 2007. [4] D. Sukmawati, “Antagonism mechanism of fungal contamination animal feed using phylloplane yeasts isolated from the bintaro plant (Cerbera manghas) Bekasi in Java, Indonesia,” International Journal of current Microbiology and Applied Sciences, vol. 5, n.° 2, pp. 63-74, 2016. [5] J.I. Simionato, L.D. Guerra, M.K. Bulla, F.A. García, J. Carla, “Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes,” Acta Scientiarum, vol. 36, n° 4, pp. 693-98, 2014. [6] W. Arbia, L. Arbia, L.Adour, A. Amrane, “Chitin extraction from crustacean shells using biological methods – A review,” Food Technology and Biotechnology, vol. 51, n.° 1, pp. 12-25, 2013. [7] S. Kumari, P.Rath, A.S Hari, T. Tiwari, “Extraction and characterization of chitin and chitosan from fishery waste by chemical method,” Environmental Technology & Innovation, vol. 3, pp. 77-85, 2015. [8] D. Sahoo, S. Sahoo, P. Mohanty, S. Sasmal, P.L. Nayak, “Chitosan: a new versatile bio-polymer for various applications,” Designed Monomers and Polymers, vol. 12, pp. 377-404, 2009. [9] R. Jayakumar, D. Menom, K. Manzoor, S.V. Nair, H. Tamura, “Biomedical applications of chitin and chitosan based-nanomaterials- A short review,” Carbohydrate polymers, vol. 82, n.° 2, p. 227-232, 2010. [10] H. Li. Zhang, W. Liu, “Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review,” Int. J. Mol. Sci., vol. 12, pp. 917-934, 2011. [11] W. Suginta, P. Khunkaewla, A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chemical reviews, vol. 113, n.° 4, p. 497-508, 2008. [12] M. Kasaai, “A review of several reported procedures to determinate the degree of N-acetylation for chitin and chitosan using infrared spectroscopy,” Carbohydrate Polymer, vol. 71, n.° 4, p. 497-508, 2008. [13] V.S. Yeul, S.S. Rayalu, “Unprecedent chitin and chitosan: A chemical overview,” Journal of polymers and the enviromental, vol. 21, pp. 606-614, 2013. [14] B. S. Ndazi, C. Nyahumwa, J. Tesha, “Chemical and thermal stability of rice husks against alkali treatment,” Bioresources, vol. 3, n.° 4, pp. 1267-1277, 2008. [15] J. Uzun, O. Celik, “Physicochemical and the comparison of chitin and chitin modified with maleic anhydride,” Oriental Journal of Chemistry, vol. 31, n.° 2, pp. 619-27, 2015. [16] A. T. Ramaprasad, D. Latha, V. Rao, “Synthesis and characterization of polypyrrole grafted chitin,” Journal of physics and chemistry of solids, vol. 104, pp. 169-74, 2017. [17] S. Saharaee, J. M. Milani, B. Ghanbarzadeh, H. Hamishehkar, “Effect of corn oil on physical, termal and antifungal properties of gelatin-based nano chitin,” LWT – Food Science and Technology, vol. 76, pp. 33-9, 2017 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
p. 71-81 |
dc.format.medium.spa.fl_str_mv |
Electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad de Medellín |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.source.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 71-81 |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159132022800384 |
spelling |
García Gómez, Angela GorettyConde Quintero, MarnieCastro Salazar, Hans ThielinGarcía Gómez, Angela Goretty; Universidad SurcolombianaConde Quintero, Marnie; National Learning Service SENACastro Salazar, Hans Thielin; Corporación Universitaria del Huila2019-11-07T15:34:27Z2019-11-07T15:34:27Z2019-06-281692-3324http://hdl.handle.net/11407/5531https://doi.org/10.22395/rium.v18n34a52248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínChitin is the second largest lineal biopolymer in the world. Recent advances suggest chitin can be obtained from fish scales. In this article, three different treatments were used to obtain chitin from red tilapia (Orechromis sp.) fish scales. All samples were insoluble in solvents and acid used. They also presented different percentages of carbon (3.27-55.80 %); oxygen (22.09-42.51 %); nitrogen (11.61-11.81 %); P (1.08-22.2 %); Ca (1.26-26.11 %); Na (0.53-1.02 %); and Mg (0.26-0.91 %). The 3,340-3,380 cm-1 bands shown in infrared spectra correspond to hydroxyl group of polymeric glucosamine bases and 1,415 -1,456 cm-1 peaks correspond to characteristic N-H bond of amide functional group. Images (SE) showed different dimensions of particles (0.1 -30 μm) and mean molecular masses, Mw, for Ch1, Ch2 and Ch3 were 1064.28, 1064.56 and 823.428, respectively, with a 1.0074 polydispersity.A quitina é o segundo maior biopolímero linear do mundo. Avanços recentes sugerem que a quitina pode ser obtida das escamas de peixe. Neste artigo, três tratamentos diferentes foram usados para obter quitina das escamas da tilápia vermelha (Orechromis sp.). Todas as amostras eram insolúveis nos solventes e ácidos usados. Também apresentaram diferentes porcentagens de carbono (3,27-55,80 %); oxigênio (22,09-42,51 %); nitrogênio (11,61-11,81 %); P (1,08-22,2 %); Ca (1,26-26,11 %); Na (0,53-1,02 %); e Mg (0,26-0,91 %). As bandas 3,340-3,380 cm-1 apresentadas no espectro infravermelho correspondem ao grupo hidroxila de bases poliméricas de glucosamina e os picos 1,415 -1,456 cm-1 correspondem a uniões características N-H do grupo funcional amida. Imagens (SE) apresentaram diferentes dimensões de partículas (0,1 -30 μm) e massas moleculares médias, Mw, para Ch1, Ch2 e Ch3 foram 1064.28, 1064.56 e 823.428, respectivamente, com uma polidispersão de 1.0074.La quitina es el segundo biopolímero lineal más importante en el mundo. Avances recientes sugieren que la quitina se puede obtener de las escamas de peces. Para este artículo, se utilizaron tres tratamientos diferentes para obtener quitina de las escamas de tilapia roja (Orechromis sp.). Todas las muestras fueron insolubles en los solventes y ácidos usados; también presentaron diferentes porcentajes de carbono (3,27-55,80 %), oxígeno (22,09-42,51 %), nitrógeno (11,61-11,81 %), P (1,08-22,2 %), Ca (1,26-26,11 %), Na (0,53-1,02 %) y Mg (0,26-0,91 %). Las bandas de 3.340 cm-1 presentes en el espectro de infrarrojo corresponden al grupo hidroxilo de las bases de glucosamina poliméricas y los picos 1.415-1.456 cm-1 están relacionados con la banda N-H característica del grupo funcional amida. Las imágenes (SE) muestran diferentes dimensiones de partículas (0,1-30 μm) y las masas moleculares promedio, Mw, para Ch1, Ch2 y Ch3 fueron 1.064,28; 1.064,56; y 823,428, respectivamente, con una polidispersidad de 1,0074.p. 71-81Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/183518347181[1] S. Meza, “Analizan procesos productivos y prospectivas de la acuicultura en el Huila”. Panorama Acuícola, [En línea], Disponible: https://panoramaacuicola.com/2017/08/19/analizan-procesos-productivos-y-prospectivas-de-la-acuicultura-en-el-huila/, 2017[2] M. Arenas, Y. Vega, “Estudio de factibilidad para la creación de una planta procesadora de harina de pescado en el departamento del Huila”. Tesis de especialización en negocios y finanzas internacionales. Universidad Escuela Administradora de Negocios, EAN. Neiva, Colombia, 2010.[3] H. Ehrlich, M. Krautter, T. Hanke, P. Simon, C. Knieb, S. Heinemann, H. Worch, “First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera),” Journal of Experimental Xoology(Mol. Dev. Evol.), vol. 308B, n.°4 pp. 473-83, 2007.[4] D. Sukmawati, “Antagonism mechanism of fungal contamination animal feed using phylloplane yeasts isolated from the bintaro plant (Cerbera manghas) Bekasi in Java, Indonesia,” International Journal of current Microbiology and Applied Sciences, vol. 5, n.° 2, pp. 63-74, 2016.[5] J.I. Simionato, L.D. Guerra, M.K. Bulla, F.A. García, J. Carla, “Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes,” Acta Scientiarum, vol. 36, n° 4, pp. 693-98, 2014.[6] W. Arbia, L. Arbia, L.Adour, A. Amrane, “Chitin extraction from crustacean shells using biological methods – A review,” Food Technology and Biotechnology, vol. 51, n.° 1, pp. 12-25, 2013.[7] S. Kumari, P.Rath, A.S Hari, T. Tiwari, “Extraction and characterization of chitin and chitosan from fishery waste by chemical method,” Environmental Technology & Innovation, vol. 3, pp. 77-85, 2015.[8] D. Sahoo, S. Sahoo, P. Mohanty, S. Sasmal, P.L. Nayak, “Chitosan: a new versatile bio-polymer for various applications,” Designed Monomers and Polymers, vol. 12, pp. 377-404, 2009.[9] R. Jayakumar, D. Menom, K. Manzoor, S.V. Nair, H. Tamura, “Biomedical applications of chitin and chitosan based-nanomaterials- A short review,” Carbohydrate polymers, vol. 82, n.° 2, p. 227-232, 2010.[10] H. Li. Zhang, W. Liu, “Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review,” Int. J. Mol. Sci., vol. 12, pp. 917-934, 2011.[11] W. Suginta, P. Khunkaewla, A. Schulte, “Electrochemical biosensor applications of polysaccharides chitin and chitosan,” Chemical reviews, vol. 113, n.° 4, p. 497-508, 2008.[12] M. Kasaai, “A review of several reported procedures to determinate the degree of N-acetylation for chitin and chitosan using infrared spectroscopy,” Carbohydrate Polymer, vol. 71, n.° 4, p. 497-508, 2008.[13] V.S. Yeul, S.S. Rayalu, “Unprecedent chitin and chitosan: A chemical overview,” Journal of polymers and the enviromental, vol. 21, pp. 606-614, 2013.[14] B. S. Ndazi, C. Nyahumwa, J. Tesha, “Chemical and thermal stability of rice husks against alkali treatment,” Bioresources, vol. 3, n.° 4, pp. 1267-1277, 2008.[15] J. Uzun, O. Celik, “Physicochemical and the comparison of chitin and chitin modified with maleic anhydride,” Oriental Journal of Chemistry, vol. 31, n.° 2, pp. 619-27, 2015.[16] A. T. Ramaprasad, D. Latha, V. Rao, “Synthesis and characterization of polypyrrole grafted chitin,” Journal of physics and chemistry of solids, vol. 104, pp. 169-74, 2017.[17] S. Saharaee, J. M. Milani, B. Ghanbarzadeh, H. Hamishehkar, “Effect of corn oil on physical, termal and antifungal properties of gelatin-based nano chitin,” LWT – Food Science and Technology, vol. 76, pp. 33-9, 2017Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 71-81ChitinBiopolymerScalesRed tilapiaQuitinaBiopolímeroEscamas de peixeTilápia vermelhaQuitinaBiopolímeroEscamasTilapia rojaExtraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methodsExtração e caracterização de quitina de escamas de tilápia vermelha (oreochromis sp.) De Huila, Colômbia, usando métodos químicosExtracción y caracterización de quitina de escamas de tilapia roja (oreochromis sp.) del Huila mediante métodos químicosArticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees11407/5531oai:repository.udem.edu.co:11407/55312021-05-14 14:29:51.444Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |