Life cycle assessment of road construction alternative materials: A literature review
Research on Life Cycle Assessment (LCA) was initially performed to analyze specific products; however, it evolved to assess environmental impacts of more complex systems, such as roads. In this, the construction, use and maintenance stages are usually considered. The results of different studies rev...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4530
- Acceso en línea:
- http://hdl.handle.net/11407/4530
- Palabra clave:
- Alternative materials; Environmental impacts; Life cycle assessment (LCA); Recycling; Road construction; Sustainability
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_c6ee74958b5995e6e9b975da8b7b2adc |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4530 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Life cycle assessment of road construction alternative materials: A literature review |
title |
Life cycle assessment of road construction alternative materials: A literature review |
spellingShingle |
Life cycle assessment of road construction alternative materials: A literature review Alternative materials; Environmental impacts; Life cycle assessment (LCA); Recycling; Road construction; Sustainability |
title_short |
Life cycle assessment of road construction alternative materials: A literature review |
title_full |
Life cycle assessment of road construction alternative materials: A literature review |
title_fullStr |
Life cycle assessment of road construction alternative materials: A literature review |
title_full_unstemmed |
Life cycle assessment of road construction alternative materials: A literature review |
title_sort |
Life cycle assessment of road construction alternative materials: A literature review |
dc.contributor.affiliation.spa.fl_str_mv |
Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, Colombia; UNESCO Chair in Life Cycle and Climate Change (ESCI-UPF), Passeig Pujades 1, Barcelona, Spain |
dc.subject.keyword.eng.fl_str_mv |
Alternative materials; Environmental impacts; Life cycle assessment (LCA); Recycling; Road construction; Sustainability |
topic |
Alternative materials; Environmental impacts; Life cycle assessment (LCA); Recycling; Road construction; Sustainability |
description |
Research on Life Cycle Assessment (LCA) was initially performed to analyze specific products; however, it evolved to assess environmental impacts of more complex systems, such as roads. In this, the construction, use and maintenance stages are usually considered. The results of different studies revealed that all stages have relevant environmental impacts like topsoil loss, change in the use of land, modification of natural drainage and groundwater patterns, landslides, erosion, sedimentation, landscape degradation, increase in noise and dust levels, fuel and oil spills, waste generation, and air, soil and water pollution. This paper presents the results of a literature review on the application of LCA in road construction as a tool to quantify the potential impacts derived from the use of traditional and alternative materials. The research showed that the most common materials found were recycled asphalt (concrete and bitumen), fly ash, and polymer. In addition, the environmental impact categories more commonly assessed were energy consumption and global warming potential (GWP). These results claimed that the construction of roads should be directed towards the fulfilment of technical, social, economic and environmental criteria. Finally, it was found that most of the studies were performed for high traffic volume roads; therefore, for developing countries, research is needed focussed on low traffic ones. © 2018 Elsevier B.V. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:31:39Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:31:39Z |
dc.date.created.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Review |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_efa0 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/review |
dc.identifier.issn.none.fl_str_mv |
9213449 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4530 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.resconrec.2018.01.003 |
identifier_str_mv |
9213449 10.1016/j.resconrec.2018.01.003 |
url |
http://hdl.handle.net/11407/4530 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041403966&doi=10.1016%2fj.resconrec.2018.01.003&partnerID=40&md5=b8d16646da2501befb9edc8941d4b289 |
dc.relation.ispartofes.spa.fl_str_mv |
Resources, Conservation and Recycling |
dc.relation.references.spa.fl_str_mv |
Albertí, J., Balaguera, A., Brodhag, C., Fullana-i-Palmer, P., Towards life cycle sustainability assessent of cities. A review of background knowledge (2017) Sci. Total Environ., 609, pp. 1049-1063; Araújo, J.P.C., Oliveira, J.R.M., Silva, H.M.R.D., The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements (2014) Transp. Res. Part D, 32, pp. 97-110; Athena Institute, A Life Cycle Perspective on Concrete and Asphalt Roadways: Embodied Primary Energy and Global Warming Potential (2006); Aurangzeb, Q., Al-Qadi, I.L., Ozer, H., Yang, R., Hybrid life cycle assessment for asphalt mixtures with high RAP content (2014) Resour. Conserv. Recycl., 83, pp. 77-86; Baitz, M., Albrecht, S., Brauner, E., Broadbent, C., Castellan, G., Conrath, P., Tikana, L., LCA's theory and practice: like ebony and ivory living in perfect harmony? (2013) Int. J. Life Cycle Assess., 18 (1), pp. 5-13; Bala, A., Raugei, M., Benveniste, G., Gazulla, C., Fullana-i-Palmer, P., Simplified tools for global warming potential evaluation: when good enough is best (2010) Int. J. Life Cycle Assess., 15 (5), pp. 489-498; Bare, J.C., Development of impact assessment methodologies for environmental sustainability (2014) Clean Technol. Environ. Policy, 16 (4), pp. 681-690; Barris, N., Estudio del impacto ambiental asociado a una posible rehabilitación de la carretera HU-341. Escuela técnica superior de ingeniería de caminos, puertos y canales de Barcelona (2011), Universidad Politécnica de Cataluña Cataluña; Benveniste, G., Gazulla, C., Fullana, P., Celades, I., Ros, T., Zaera, V., Godes, B., Análisis de ciclo de vida y reglas de categoría de producto en la construcción. El caso de las baldosas cerámicas (2011) Informes de La Construcción, 63 (522), pp. 71-81; Birgisdóttir, H., Pihl, K.A., Bhander, G., Hauschild, M.Z., Christensen, T.H., Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration (2006) Transp. Res. Part D, 11 (5), pp. 358-368; Birgisdóttir, H., Bhander, G., Hauschild, M.Z., Christensen, T.H., Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model (2007) Waste Manage., 27 (8), pp. S75-S84; Bloom, E.F., Horstmeier, G.J., Pakes Ahlman, A., Edil, T.B., Whited, G., Assessing the life cycle benefits of recycled material in road construction (2017) GeoChicago-Conference-Paper-I-94-and-Beltline-LCA, Chicago, , http://rmrc.wisc.edu/wp-content/uploads/2017/05/GeoChicago-Conference-Paper-I-94-and-Beltline-LCA.pdf; Butt, A.A., Life Cycle Assessment of Asphalt Roads (2014), KTH Architecture and built enviroment; Carvajal, G.I., Balaguera, A., Vega, J.A., Botero, B.A., (2014) Línea base para vivienda de interés sostenible, 1. , caso ciudad de Medellín Medellín; Celauro, C., Corriere, F., Guerrieri, M., Lo Casto, B., Environmentally appraising different pavement and construction scenarios: a comparative analysis for a typical local road (2015) Transp. Res. Part D, 34, pp. 41-51; Celik, K., Meral, C., Petek Gursel, A., Mehta, P.K., Horvath, A., Monteiro, P.J.M., Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder (2015) Cem. Concr. Compos., 56, pp. 59-72; Chen, F., Zhu, H., Yu, B., Wang, H., Environmental burdens of regular and long-term pavement designs: a life cycle view (2016) Int. J. Pavement Eng., 17 (4), pp. 300-313; Chimenos, J., Segarra, M., Fernández, M., Espiell, F., Characterization of the bottom ash in municipal solid waste incinerator (1999) J. Hazard. Mater., 64 (3), pp. 211-222; Chiu, C.-T., Hsu, T.-H., Yang, W.-F., Life cycle assessment on using recycled materials for rehabilitating asphalt pavements (2008) Resour. Conserv. Recycl., 52 (3), pp. 545-556; Chowdhury, R., Apul, D., Fry, T., A life cycle based environmental impacts assessment of construction materials used in road construction (2010) Resour. Conserv. Recycl., 54 (4), pp. 250-255; Consoli, F., Allen, D., Boustead, I., Fava, J., Franklin, W., Quay, B., Vigon, B., Guidelines for Life-cycle Assessment: A Code of Practice (1993), Workshop paper, Society of Environmental Toxicology and Chemistry (SETAC); Del Ponte, K., State DOT Environmental and Economic Benefits of Recycled Material Utilization in Highway Pavements (2016), http://rmrc.wisc.edu/wp-content/uploads/2017/05/kdelponte_UW_thesis_S2016.pdf; Disfani, M.M., Arulrajah, A., Bo, M.W., Hankour, R., Recycled crushed glass in road work applications (2011) Waste Manage., 31 (11), pp. 2341-2351; EN, UNE-EN 15804 — Sostenibilidad En La Construcción — Declaraciones Ambientales De Producto — Reglas De Categoría De Productos básicas Para Productos De Construcción (2011); EPA, Sources of Greenhouse Gas Emissions (2015), www.epa.gov/nrmrl/std/%0Alca/pdfs/chapter1_frontmatter_lca101.pdf; Eloneva, S., Puheloinen, E.-M., Kanerva, J., Ekroos, A., Zevenhoven, R., Fogelholm, C.-J., Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3-legislative issues (2010) J. Clean. Prod., 18 (18), pp. 1833-1839; European Commission, International Reference Life Cycle Data System (ILCD) Handbook — General Guide for Life Cycle Assessment — Detailed GuidanceEuropean Commission Joint Research Centre Sustainability, Institute for Environment and Constraints (2010); European Commission, EU Transport in Figures (2013), Statistical pocket book 2013 Luxemburg; FHWA, No TitleUser Guidelines for Waste and By-product Materials in Pavement Construction (1997); FWA, Chapter 8 — Fly Ash in Asphalt Pavements — Fly Ash Facts for Highway Engineers — Recycling — Sustainability — Pavements — Federal Highway Administration (2016), https://www.fhwa.dot.gov/pavement/recycling/fach08.cfm, (Retrieved October 31 2016); FWA, Chapter 8 − Fly Ash in Asphalt Pavements — Fly Ash Facts for Highway Engineers — Recycling — Sustainability — Pavements — Federal Highway Administration (2016); Feraldi, R., Cashman, S., Huff, M., Raahauge, L., Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion (2013) Int. J. Life Cycle Assess., 18 (3), pp. 613-625; Ferreira, V.J., Sáez-De-Guinoa Vilaplana, A., García-Armingol, T., Aranda-Usón, A., Lausín-González, C., López-Sabirón, A.M., Ferreira, G., Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment (2016) J. Cleaner Prod., 130, pp. 175-186; Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Suh, S., Recent developments in life cycle assessment (2009) J. Environ. Manage., 91 (1), pp. 1-21; Fullana, P., Betz, M., Hischier, R., Puig, R., (2008) Life Cycle Assessment Applications: Results from COST Action 530, , AENOR AENOR Madrid (Primera); Fullana-i-Palmer, P., Puig, R., Bala, A., Baquero, G., Riba, J., Raugei, M., From life cycle assessmentto life cycle management (2011) J. Ind. Ecol., 15 (3), pp. 458-475; Horvath, A., Hendrickson, C., Comparison of environmental implications of asphalt and steel-Reinforced concrete pavements (1998) Transp. Res. Rec. J. Transp. Res. Board, 1626, pp. 105-113; Huang, Y., Bird, R.N., Heidrich, O., A review of the use of recycled solid waste materials in asphalt pavements (2007) Resour. Conserv. Recycl., 52 (1), pp. 58-73; Huang, Y., Bird, R., Heidrich, O., Development of a life cycle assessment tool for construction and maintenance of asphalt pavements (2009) J. Clean. Prod., 17 (2), pp. 283-296; INVIAS, Especificaciones generales de construcción de carreteras y normas de ensayo para materiales de carreteras (2014), http://www.invias.gov.co/index.php/documentos-tecnicos/139-documento-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-normas-de-ensayo-para-materiales-de-carreteras; IPCC, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014), http://doi.org/10.3334/CDIAC/00001_V2017, (January 1); ISO, Environmental Labels and Declarations — Type III Environmental Declarations — Principles and Procedures (2006), ISO 14025; ISO, Environmental Management — Life Cycle Assessment — Principles and Framework (2006), ISO 14040; ISO, Environmental Management — Life Cycle Assessment — Requirements and Guidelines (2006), ISO 14044 (English); ISO, International Standard. In: Environmental Management −Life Cycle Assessment −Requirements and Guidelines (2006), ISO 14044 Geneva, Switzerland; International Development Commitiee, DIFDs Role in Building Infraestructure in Development Countries (2011), International Development Commitiee London; Inyim, P., Pereyra, J., Bienvenu, M., Mostafavi, A., Environmental assessment of pavement infrastructure: a systematic review (2016) J. Environ. Manage., 176, pp. 128-138; Isacsson, U., Zeng, H., Cracking of asphalt at low temperature as related to bitumen rheology (1998) J. Mater. Sci., 33 (8), pp. 2165-2170; Kim, S., Sholar, G., Byron, T., Kim, J., Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement (2009) Transp. Res. Rec. J. Transp. Res. Board, 2126, pp. 109-114; Kucukvar, M., Tatari, O., Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements (2012) Transp. Res. Part D Transp. Environ., 17 (1), pp. 86-90; Kumar Mehta, P., Sustainable cements and concrete for the climate change era −A review (2010) Second International Conference on Sustainable Construction Materials and Technologies, , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.2738&rep=rep1&type=pdf; Kumar, P., Chandra, S., Bose, S., Strength characteristics of polymer modified mixes (2006) Int. J. Pavement Eng., 7 (1), pp. 63-71; Larrea-Gallegos, G., Vázquez-Rowe, I., Gallice, G., Life cycle assessment of the construction of an unpaved road in an undisturbed tropical rainforest area in the vicinity of Manu national park, Peru (2017) Int. J. Life Cycle Assess., 22 (7), pp. 1109-1124; Lasvaux, S., Gantner, J., Wittstock, B., Bazzana, M., Schiopu, N., Saunders, T., Chevalier, J., Achieving consistency in life cycle assessment practice within the European construction sector: the role of the EeBGuide InfoHub (2014) Int. J. Life Cycle Assess., 19 (11), pp. 1783-1793; Lehmann, A., Russi, D., Bala, A., Finkbeiner, M., Fullana-i-Palmer, P., Integration of social aspects in decision support, based on life cycle thinking (2011) Sustainability, 3 (12), pp. 562-577; Liu, R., Liu, Y., Ji, B., Wang, M., Tian, Y., Hot spot stress analysis on rib?deck welded joint in orthotropic steel decks (2014) J. Constr. Steel Res., 97, pp. 1-9; Lu, X., Isacsson, U., Modification of road bitumens with thermoplastic polymers (2000) Polym. Test., 20 (1), pp. 77-86; Mladenovič, A., Turk, J., Kovač, J., Mauko, A., Cotič, Z., Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses (2015) J. Clean. Prod., 87, pp. 683-691; Mroueh, U.-M., Eskola, P., Laine-Ylijoki, J., Life-cycle impacts of the use of industrial by-products in road and earth construction (2001) Waste Manage., 21 (3), pp. 271-277; National Renewable Energy Laboratory, U.S. Life Cycle Inventory Database (2011), National Renewable Energy Laboratory; Noshadravan, A., Wildnauer, M., Gregory, J., Kirchain, R., Comparative pavement life cycle assessment with parameter uncertainty (2013) Transp. Res. Part D Transp. Environ., 25, pp. 131-138; Olsson, S., Kärrman, E., Gustafsson, J.P., Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction (2006) Resour. Conserv. Recycl., 48 (1), pp. 26-40; Ortiz, O., Castells, F., Sonnemann, G., Sustainability in the construction industry: a review of recent developments based on LCA (2009) Constr. Build. Mater., 23 (1), pp. 28-39; Osorio, L.M., (2011) Teoría De La Decisión, , P. edición Universidad Nacional de Colombia Bogotá; Parkman, C.C., Bradbury, T., Economic, Environmental and Social Impacts of Changes in Maintenance Spend on the Scottish Trunk Road Network (2012), http://www.transport.gov.scot/sites/default/files/documents/rrd_reports/uploaded_reports/j235739/j235739.pdf; Ping, G., Xiao, Y., Challenges and recent advances in transportation engineering (2011) ICTPA 24th Annual Conference & NACGEA International Symposium on Geo-Trans, Los Angeles CA, USA, , (p. Paper No. S2-001); Portland Cement Association, Recycled Concrete (2010), http://www.cement.org/docs/default-source/th-paving-pdfs/sustainability/recycled-concrete-pca-logo.pdf?sfvrsn=2, Portland Cement Association Washington DC; Proctor, D.M., Fehling, K.A., Shay, E.C., And, J.L.W., Green, J.J., Avent, C., Zak, M.A., Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace and Electric Arc Furnace Steel Industry Slags (2000); Rađenović, A., Malina, J., Sofilić, T., Malina, J., Characterization of ladle furnace slag from carbon steel production as a potential adsorbent (2013) Adv. Mater. Sci. Eng., 2013, pp. 1-6; Rajendran, S., Gambatese, J., Solid waste generation in asphalt and reinforced concrete roadway life cycles (2007) J. Infrastruct. Syst.; Raugei, M., Isasa, M., Fullana Palmer, P., Potential Cd emissions from end-of-life CdTe PV (2012) Int. J. Life Cycle Assess., 17 (2), pp. 192-198; Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Pennington, D.W., Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications (2004) Environ. Int., 30 (5), pp. 701-720. , http://www.sciencedirect.com/science/article/pii/S0160412003002459; Reindl, J., Report by recycling manager (1998), Dave County Department of Public Works Madison, USA; Reza, B., Sadiq, R., Hewage, K., Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads (2014) Clean Technol. Environ. Policy, 16 (2), pp. 251-266; Romeo, E., Birgisson, B., Montepara, A., Tebaldi, G., The effect of polymer modification on hot mix asphalt fracture at tensile loading conditions (2010) Int. J. Pavement Eng., 11 (5), pp. 403-413; Rubber Manufactures Association, About RMA | Rubber Manufacturers Association (2017), https://rma.org/about-rma, (Retrieved March 28, 2017); Sáez-de-Guinoa Vilaplana, A., Ferreira, V.J., López-Sabirón, A.M., Aranda-Usón, A., Lausín-González, C., Berganza-Conde, C., Ferreira, G., Utilization of ladle furnace slag from a steelwork for laboratory scale production of Portland cement (2015) Constr. Build. Mater., 94, pp. 837-843; Sanger, M., Pakes Ahlman, A., Tuncer Edil, C.-P., Asce, D.M., Andrew Baker, C.-P., Environmental Benefits of Cold-in-Place Recycling. Wisconsin (2017), http://rmrc.wisc.edu/wp-content/uploads/2013/02/CIR-WisDOT-Final-7_25_17.pdf; Santero, N.J., Masanet, E., Horvath, A., Life-cycle assessment of pavements. part I: critical review (2011) Resour. Conserv. Recycl., 55 (9-10), pp. 801-809; Santos, J., Bryce, J., Flintsch, G., Ferreira, A., Diefenderfer, B., A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices (2015) Struct. Infrastruct. Eng., 11 (9), pp. 1199-1217; Santos, J., Ferreira, A., Flintsch, G., A life cycle assessment model for pavement management: road pavement construction and management in Portugal (2015) Int. J. Pavement Eng., 16 (4), pp. 315-336; Schwab, O., Bayer, P., Juraske, R., Verones, F., Hellweg, S., Beyond the material grave: life cycle impact assessment of leaching from secondary materials in road and earth constructions (2014) Waste Manage., 34 (10), pp. 1884-1896; Sengoz, B., Isikyakar, G., Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods (2008) J. Hazard. Mater., 150 (2), pp. 424-432; Shayan, A., Xu, A., Value-added utilisation of waste glass in concrete (2004) Cem. Concr. Res., 34 (1), pp. 81-89; Stripple, H., Life Cycle Assessment of Road (Swedish) (1998), Swedish Environmental Research Institute (IVL) Stockholm, Sweden; Swiss Centre for Life Cycle Inventories, EcoInvent (2011), Swiss Centre for Life Cycle Inventories Dubendorf, Switzerland; Thenoux, G., González, Á., Dowling, R., Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile (2007) Resour. Conserv. Recycl., 49 (4), pp. 325-339; Vidal, R., Moliner, E., Martínez, G., Rubio, M.C., Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement (2013) Resour. Conserv. Recycl., 74, pp. 101-114; Wang, M.Q., Huo, H., Transportation: meeting the dual challenges of achieving energy security and reducing greenhouse gas emissions (2009) Front. Energy Power Eng. China, 3 (2), pp. 212-225; Wang, T., Lee, I.-S., Kendall, A., Harvey, J., Lee, E.-B., Kim, C., Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance (2012) J. Clean. Prod., 33, pp. 86-96; Wittstock, B., Gantner, J., Saunders, K.L.T., Anderson, J., Carter, C., Gyetvai, Z., Sjostrom, T.B.-W.C., EeBGuide guidance document part B: buildings (2012) Oper. Guidance Life Cycle Assess. Stud. Energy-Effic. Build. Initiative, pp. 1-360; World Bank, Rural Transport and the Village (1992), World Bank Washington, DC; World Resources Institute, The Greenhouse Gas Protocol Geneva (2004), (Retrieved from file:///C:/Users/aula/Downloads/ghg-protocol-revised.pdf); World Road Association, The Importante of Road Maintenance (2014), http://www.erf.be/images/Importance_of_road_maintenance.pdf, World Road Association Paris (Francia); Yang, R., Kang, S., Ozer, H., Al-Qadi, I.L., Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance (2015) Resour. Conserv. Recycl., 104, pp. 141-151; Yu, B., Lu, Q., Life cycle assessment of pavement: methodology and case study (2012) Transp. Res. Part D Transp. Environ., 17 (5), pp. 380-388; Yu, B., Lu, Q., Xu, J., An improved pavement maintenance optimization methodology: integrating LCA and LCCA (2013) Transp. Res. Part A Policy Pract., 55, pp. 1-11; Zapata, P., Gambatese, J., Energy consumption of asphalt and reinforced concrete pavement materials and construction (2005) J. Infrastruct. Syst.; Zhang, H., Lepech, M.D., Keoleian, G.A., Qian, S., Li, V.C., Dynamic life-cycle modeling of pavement overlay systems: capturing the impacts of users, construction, and roadway deterioration (2010) J. Infrastruct. Syst., 16 (4), pp. 299-309; da Rocha, C.G., Passuello, A., Consoli, N.C., Quiñonez Samaniego, R.A., Kanazawa, N.M., Life cycle assessment for soil stabilization dosages: a study for the Paraguayan Chaco (2016) J. Cleaner Prod., 139, pp. 309-318 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4530/1/portada.JPG |
bitstream.checksum.fl_str_mv |
776d481af4ae273f1adbc5ebf63c7c69 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159136590397440 |
spelling |
2018-04-13T16:31:39Z2018-04-13T16:31:39Z20189213449http://hdl.handle.net/11407/453010.1016/j.resconrec.2018.01.003Research on Life Cycle Assessment (LCA) was initially performed to analyze specific products; however, it evolved to assess environmental impacts of more complex systems, such as roads. In this, the construction, use and maintenance stages are usually considered. The results of different studies revealed that all stages have relevant environmental impacts like topsoil loss, change in the use of land, modification of natural drainage and groundwater patterns, landslides, erosion, sedimentation, landscape degradation, increase in noise and dust levels, fuel and oil spills, waste generation, and air, soil and water pollution. This paper presents the results of a literature review on the application of LCA in road construction as a tool to quantify the potential impacts derived from the use of traditional and alternative materials. The research showed that the most common materials found were recycled asphalt (concrete and bitumen), fly ash, and polymer. In addition, the environmental impact categories more commonly assessed were energy consumption and global warming potential (GWP). These results claimed that the construction of roads should be directed towards the fulfilment of technical, social, economic and environmental criteria. Finally, it was found that most of the studies were performed for high traffic volume roads; therefore, for developing countries, research is needed focussed on low traffic ones. © 2018 Elsevier B.V.engElsevier B.V.Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041403966&doi=10.1016%2fj.resconrec.2018.01.003&partnerID=40&md5=b8d16646da2501befb9edc8941d4b289Resources, Conservation and RecyclingAlbertí, J., Balaguera, A., Brodhag, C., Fullana-i-Palmer, P., Towards life cycle sustainability assessent of cities. A review of background knowledge (2017) Sci. Total Environ., 609, pp. 1049-1063; Araújo, J.P.C., Oliveira, J.R.M., Silva, H.M.R.D., The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements (2014) Transp. Res. Part D, 32, pp. 97-110; Athena Institute, A Life Cycle Perspective on Concrete and Asphalt Roadways: Embodied Primary Energy and Global Warming Potential (2006); Aurangzeb, Q., Al-Qadi, I.L., Ozer, H., Yang, R., Hybrid life cycle assessment for asphalt mixtures with high RAP content (2014) Resour. Conserv. Recycl., 83, pp. 77-86; Baitz, M., Albrecht, S., Brauner, E., Broadbent, C., Castellan, G., Conrath, P., Tikana, L., LCA's theory and practice: like ebony and ivory living in perfect harmony? (2013) Int. J. Life Cycle Assess., 18 (1), pp. 5-13; Bala, A., Raugei, M., Benveniste, G., Gazulla, C., Fullana-i-Palmer, P., Simplified tools for global warming potential evaluation: when good enough is best (2010) Int. J. Life Cycle Assess., 15 (5), pp. 489-498; Bare, J.C., Development of impact assessment methodologies for environmental sustainability (2014) Clean Technol. Environ. Policy, 16 (4), pp. 681-690; Barris, N., Estudio del impacto ambiental asociado a una posible rehabilitación de la carretera HU-341. Escuela técnica superior de ingeniería de caminos, puertos y canales de Barcelona (2011), Universidad Politécnica de Cataluña Cataluña; Benveniste, G., Gazulla, C., Fullana, P., Celades, I., Ros, T., Zaera, V., Godes, B., Análisis de ciclo de vida y reglas de categoría de producto en la construcción. El caso de las baldosas cerámicas (2011) Informes de La Construcción, 63 (522), pp. 71-81; Birgisdóttir, H., Pihl, K.A., Bhander, G., Hauschild, M.Z., Christensen, T.H., Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration (2006) Transp. Res. Part D, 11 (5), pp. 358-368; Birgisdóttir, H., Bhander, G., Hauschild, M.Z., Christensen, T.H., Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model (2007) Waste Manage., 27 (8), pp. S75-S84; Bloom, E.F., Horstmeier, G.J., Pakes Ahlman, A., Edil, T.B., Whited, G., Assessing the life cycle benefits of recycled material in road construction (2017) GeoChicago-Conference-Paper-I-94-and-Beltline-LCA, Chicago, , http://rmrc.wisc.edu/wp-content/uploads/2017/05/GeoChicago-Conference-Paper-I-94-and-Beltline-LCA.pdf; Butt, A.A., Life Cycle Assessment of Asphalt Roads (2014), KTH Architecture and built enviroment; Carvajal, G.I., Balaguera, A., Vega, J.A., Botero, B.A., (2014) Línea base para vivienda de interés sostenible, 1. , caso ciudad de Medellín Medellín; Celauro, C., Corriere, F., Guerrieri, M., Lo Casto, B., Environmentally appraising different pavement and construction scenarios: a comparative analysis for a typical local road (2015) Transp. Res. Part D, 34, pp. 41-51; Celik, K., Meral, C., Petek Gursel, A., Mehta, P.K., Horvath, A., Monteiro, P.J.M., Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder (2015) Cem. Concr. Compos., 56, pp. 59-72; Chen, F., Zhu, H., Yu, B., Wang, H., Environmental burdens of regular and long-term pavement designs: a life cycle view (2016) Int. J. Pavement Eng., 17 (4), pp. 300-313; Chimenos, J., Segarra, M., Fernández, M., Espiell, F., Characterization of the bottom ash in municipal solid waste incinerator (1999) J. Hazard. Mater., 64 (3), pp. 211-222; Chiu, C.-T., Hsu, T.-H., Yang, W.-F., Life cycle assessment on using recycled materials for rehabilitating asphalt pavements (2008) Resour. Conserv. Recycl., 52 (3), pp. 545-556; Chowdhury, R., Apul, D., Fry, T., A life cycle based environmental impacts assessment of construction materials used in road construction (2010) Resour. Conserv. Recycl., 54 (4), pp. 250-255; Consoli, F., Allen, D., Boustead, I., Fava, J., Franklin, W., Quay, B., Vigon, B., Guidelines for Life-cycle Assessment: A Code of Practice (1993), Workshop paper, Society of Environmental Toxicology and Chemistry (SETAC); Del Ponte, K., State DOT Environmental and Economic Benefits of Recycled Material Utilization in Highway Pavements (2016), http://rmrc.wisc.edu/wp-content/uploads/2017/05/kdelponte_UW_thesis_S2016.pdf; Disfani, M.M., Arulrajah, A., Bo, M.W., Hankour, R., Recycled crushed glass in road work applications (2011) Waste Manage., 31 (11), pp. 2341-2351; EN, UNE-EN 15804 — Sostenibilidad En La Construcción — Declaraciones Ambientales De Producto — Reglas De Categoría De Productos básicas Para Productos De Construcción (2011); EPA, Sources of Greenhouse Gas Emissions (2015), www.epa.gov/nrmrl/std/%0Alca/pdfs/chapter1_frontmatter_lca101.pdf; Eloneva, S., Puheloinen, E.-M., Kanerva, J., Ekroos, A., Zevenhoven, R., Fogelholm, C.-J., Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3-legislative issues (2010) J. Clean. Prod., 18 (18), pp. 1833-1839; European Commission, International Reference Life Cycle Data System (ILCD) Handbook — General Guide for Life Cycle Assessment — Detailed GuidanceEuropean Commission Joint Research Centre Sustainability, Institute for Environment and Constraints (2010); European Commission, EU Transport in Figures (2013), Statistical pocket book 2013 Luxemburg; FHWA, No TitleUser Guidelines for Waste and By-product Materials in Pavement Construction (1997); FWA, Chapter 8 — Fly Ash in Asphalt Pavements — Fly Ash Facts for Highway Engineers — Recycling — Sustainability — Pavements — Federal Highway Administration (2016), https://www.fhwa.dot.gov/pavement/recycling/fach08.cfm, (Retrieved October 31 2016); FWA, Chapter 8 − Fly Ash in Asphalt Pavements — Fly Ash Facts for Highway Engineers — Recycling — Sustainability — Pavements — Federal Highway Administration (2016); Feraldi, R., Cashman, S., Huff, M., Raahauge, L., Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion (2013) Int. J. Life Cycle Assess., 18 (3), pp. 613-625; Ferreira, V.J., Sáez-De-Guinoa Vilaplana, A., García-Armingol, T., Aranda-Usón, A., Lausín-González, C., López-Sabirón, A.M., Ferreira, G., Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment (2016) J. Cleaner Prod., 130, pp. 175-186; Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Suh, S., Recent developments in life cycle assessment (2009) J. Environ. Manage., 91 (1), pp. 1-21; Fullana, P., Betz, M., Hischier, R., Puig, R., (2008) Life Cycle Assessment Applications: Results from COST Action 530, , AENOR AENOR Madrid (Primera); Fullana-i-Palmer, P., Puig, R., Bala, A., Baquero, G., Riba, J., Raugei, M., From life cycle assessmentto life cycle management (2011) J. Ind. Ecol., 15 (3), pp. 458-475; Horvath, A., Hendrickson, C., Comparison of environmental implications of asphalt and steel-Reinforced concrete pavements (1998) Transp. Res. Rec. J. Transp. Res. Board, 1626, pp. 105-113; Huang, Y., Bird, R.N., Heidrich, O., A review of the use of recycled solid waste materials in asphalt pavements (2007) Resour. Conserv. Recycl., 52 (1), pp. 58-73; Huang, Y., Bird, R., Heidrich, O., Development of a life cycle assessment tool for construction and maintenance of asphalt pavements (2009) J. Clean. Prod., 17 (2), pp. 283-296; INVIAS, Especificaciones generales de construcción de carreteras y normas de ensayo para materiales de carreteras (2014), http://www.invias.gov.co/index.php/documentos-tecnicos/139-documento-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-normas-de-ensayo-para-materiales-de-carreteras; IPCC, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014), http://doi.org/10.3334/CDIAC/00001_V2017, (January 1); ISO, Environmental Labels and Declarations — Type III Environmental Declarations — Principles and Procedures (2006), ISO 14025; ISO, Environmental Management — Life Cycle Assessment — Principles and Framework (2006), ISO 14040; ISO, Environmental Management — Life Cycle Assessment — Requirements and Guidelines (2006), ISO 14044 (English); ISO, International Standard. In: Environmental Management −Life Cycle Assessment −Requirements and Guidelines (2006), ISO 14044 Geneva, Switzerland; International Development Commitiee, DIFDs Role in Building Infraestructure in Development Countries (2011), International Development Commitiee London; Inyim, P., Pereyra, J., Bienvenu, M., Mostafavi, A., Environmental assessment of pavement infrastructure: a systematic review (2016) J. Environ. Manage., 176, pp. 128-138; Isacsson, U., Zeng, H., Cracking of asphalt at low temperature as related to bitumen rheology (1998) J. Mater. Sci., 33 (8), pp. 2165-2170; Kim, S., Sholar, G., Byron, T., Kim, J., Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement (2009) Transp. Res. Rec. J. Transp. Res. Board, 2126, pp. 109-114; Kucukvar, M., Tatari, O., Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements (2012) Transp. Res. Part D Transp. Environ., 17 (1), pp. 86-90; Kumar Mehta, P., Sustainable cements and concrete for the climate change era −A review (2010) Second International Conference on Sustainable Construction Materials and Technologies, , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.2738&rep=rep1&type=pdf; Kumar, P., Chandra, S., Bose, S., Strength characteristics of polymer modified mixes (2006) Int. J. Pavement Eng., 7 (1), pp. 63-71; Larrea-Gallegos, G., Vázquez-Rowe, I., Gallice, G., Life cycle assessment of the construction of an unpaved road in an undisturbed tropical rainforest area in the vicinity of Manu national park, Peru (2017) Int. J. Life Cycle Assess., 22 (7), pp. 1109-1124; Lasvaux, S., Gantner, J., Wittstock, B., Bazzana, M., Schiopu, N., Saunders, T., Chevalier, J., Achieving consistency in life cycle assessment practice within the European construction sector: the role of the EeBGuide InfoHub (2014) Int. J. Life Cycle Assess., 19 (11), pp. 1783-1793; Lehmann, A., Russi, D., Bala, A., Finkbeiner, M., Fullana-i-Palmer, P., Integration of social aspects in decision support, based on life cycle thinking (2011) Sustainability, 3 (12), pp. 562-577; Liu, R., Liu, Y., Ji, B., Wang, M., Tian, Y., Hot spot stress analysis on rib?deck welded joint in orthotropic steel decks (2014) J. Constr. Steel Res., 97, pp. 1-9; Lu, X., Isacsson, U., Modification of road bitumens with thermoplastic polymers (2000) Polym. Test., 20 (1), pp. 77-86; Mladenovič, A., Turk, J., Kovač, J., Mauko, A., Cotič, Z., Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses (2015) J. Clean. Prod., 87, pp. 683-691; Mroueh, U.-M., Eskola, P., Laine-Ylijoki, J., Life-cycle impacts of the use of industrial by-products in road and earth construction (2001) Waste Manage., 21 (3), pp. 271-277; National Renewable Energy Laboratory, U.S. Life Cycle Inventory Database (2011), National Renewable Energy Laboratory; Noshadravan, A., Wildnauer, M., Gregory, J., Kirchain, R., Comparative pavement life cycle assessment with parameter uncertainty (2013) Transp. Res. Part D Transp. Environ., 25, pp. 131-138; Olsson, S., Kärrman, E., Gustafsson, J.P., Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction (2006) Resour. Conserv. Recycl., 48 (1), pp. 26-40; Ortiz, O., Castells, F., Sonnemann, G., Sustainability in the construction industry: a review of recent developments based on LCA (2009) Constr. Build. Mater., 23 (1), pp. 28-39; Osorio, L.M., (2011) Teoría De La Decisión, , P. edición Universidad Nacional de Colombia Bogotá; Parkman, C.C., Bradbury, T., Economic, Environmental and Social Impacts of Changes in Maintenance Spend on the Scottish Trunk Road Network (2012), http://www.transport.gov.scot/sites/default/files/documents/rrd_reports/uploaded_reports/j235739/j235739.pdf; Ping, G., Xiao, Y., Challenges and recent advances in transportation engineering (2011) ICTPA 24th Annual Conference & NACGEA International Symposium on Geo-Trans, Los Angeles CA, USA, , (p. Paper No. S2-001); Portland Cement Association, Recycled Concrete (2010), http://www.cement.org/docs/default-source/th-paving-pdfs/sustainability/recycled-concrete-pca-logo.pdf?sfvrsn=2, Portland Cement Association Washington DC; Proctor, D.M., Fehling, K.A., Shay, E.C., And, J.L.W., Green, J.J., Avent, C., Zak, M.A., Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace and Electric Arc Furnace Steel Industry Slags (2000); Rađenović, A., Malina, J., Sofilić, T., Malina, J., Characterization of ladle furnace slag from carbon steel production as a potential adsorbent (2013) Adv. Mater. Sci. Eng., 2013, pp. 1-6; Rajendran, S., Gambatese, J., Solid waste generation in asphalt and reinforced concrete roadway life cycles (2007) J. Infrastruct. Syst.; Raugei, M., Isasa, M., Fullana Palmer, P., Potential Cd emissions from end-of-life CdTe PV (2012) Int. J. Life Cycle Assess., 17 (2), pp. 192-198; Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Pennington, D.W., Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications (2004) Environ. Int., 30 (5), pp. 701-720. , http://www.sciencedirect.com/science/article/pii/S0160412003002459; Reindl, J., Report by recycling manager (1998), Dave County Department of Public Works Madison, USA; Reza, B., Sadiq, R., Hewage, K., Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads (2014) Clean Technol. Environ. Policy, 16 (2), pp. 251-266; Romeo, E., Birgisson, B., Montepara, A., Tebaldi, G., The effect of polymer modification on hot mix asphalt fracture at tensile loading conditions (2010) Int. J. Pavement Eng., 11 (5), pp. 403-413; Rubber Manufactures Association, About RMA | Rubber Manufacturers Association (2017), https://rma.org/about-rma, (Retrieved March 28, 2017); Sáez-de-Guinoa Vilaplana, A., Ferreira, V.J., López-Sabirón, A.M., Aranda-Usón, A., Lausín-González, C., Berganza-Conde, C., Ferreira, G., Utilization of ladle furnace slag from a steelwork for laboratory scale production of Portland cement (2015) Constr. Build. Mater., 94, pp. 837-843; Sanger, M., Pakes Ahlman, A., Tuncer Edil, C.-P., Asce, D.M., Andrew Baker, C.-P., Environmental Benefits of Cold-in-Place Recycling. Wisconsin (2017), http://rmrc.wisc.edu/wp-content/uploads/2013/02/CIR-WisDOT-Final-7_25_17.pdf; Santero, N.J., Masanet, E., Horvath, A., Life-cycle assessment of pavements. part I: critical review (2011) Resour. Conserv. Recycl., 55 (9-10), pp. 801-809; Santos, J., Bryce, J., Flintsch, G., Ferreira, A., Diefenderfer, B., A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices (2015) Struct. Infrastruct. Eng., 11 (9), pp. 1199-1217; Santos, J., Ferreira, A., Flintsch, G., A life cycle assessment model for pavement management: road pavement construction and management in Portugal (2015) Int. J. Pavement Eng., 16 (4), pp. 315-336; Schwab, O., Bayer, P., Juraske, R., Verones, F., Hellweg, S., Beyond the material grave: life cycle impact assessment of leaching from secondary materials in road and earth constructions (2014) Waste Manage., 34 (10), pp. 1884-1896; Sengoz, B., Isikyakar, G., Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods (2008) J. Hazard. Mater., 150 (2), pp. 424-432; Shayan, A., Xu, A., Value-added utilisation of waste glass in concrete (2004) Cem. Concr. Res., 34 (1), pp. 81-89; Stripple, H., Life Cycle Assessment of Road (Swedish) (1998), Swedish Environmental Research Institute (IVL) Stockholm, Sweden; Swiss Centre for Life Cycle Inventories, EcoInvent (2011), Swiss Centre for Life Cycle Inventories Dubendorf, Switzerland; Thenoux, G., González, Á., Dowling, R., Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile (2007) Resour. Conserv. Recycl., 49 (4), pp. 325-339; Vidal, R., Moliner, E., Martínez, G., Rubio, M.C., Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement (2013) Resour. Conserv. Recycl., 74, pp. 101-114; Wang, M.Q., Huo, H., Transportation: meeting the dual challenges of achieving energy security and reducing greenhouse gas emissions (2009) Front. Energy Power Eng. China, 3 (2), pp. 212-225; Wang, T., Lee, I.-S., Kendall, A., Harvey, J., Lee, E.-B., Kim, C., Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance (2012) J. Clean. Prod., 33, pp. 86-96; Wittstock, B., Gantner, J., Saunders, K.L.T., Anderson, J., Carter, C., Gyetvai, Z., Sjostrom, T.B.-W.C., EeBGuide guidance document part B: buildings (2012) Oper. Guidance Life Cycle Assess. Stud. Energy-Effic. Build. Initiative, pp. 1-360; World Bank, Rural Transport and the Village (1992), World Bank Washington, DC; World Resources Institute, The Greenhouse Gas Protocol Geneva (2004), (Retrieved from file:///C:/Users/aula/Downloads/ghg-protocol-revised.pdf); World Road Association, The Importante of Road Maintenance (2014), http://www.erf.be/images/Importance_of_road_maintenance.pdf, World Road Association Paris (Francia); Yang, R., Kang, S., Ozer, H., Al-Qadi, I.L., Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance (2015) Resour. Conserv. Recycl., 104, pp. 141-151; Yu, B., Lu, Q., Life cycle assessment of pavement: methodology and case study (2012) Transp. Res. Part D Transp. Environ., 17 (5), pp. 380-388; Yu, B., Lu, Q., Xu, J., An improved pavement maintenance optimization methodology: integrating LCA and LCCA (2013) Transp. Res. Part A Policy Pract., 55, pp. 1-11; Zapata, P., Gambatese, J., Energy consumption of asphalt and reinforced concrete pavement materials and construction (2005) J. Infrastruct. Syst.; Zhang, H., Lepech, M.D., Keoleian, G.A., Qian, S., Li, V.C., Dynamic life-cycle modeling of pavement overlay systems: capturing the impacts of users, construction, and roadway deterioration (2010) J. Infrastruct. Syst., 16 (4), pp. 299-309; da Rocha, C.G., Passuello, A., Consoli, N.C., Quiñonez Samaniego, R.A., Kanazawa, N.M., Life cycle assessment for soil stabilization dosages: a study for the Paraguayan Chaco (2016) J. Cleaner Prod., 139, pp. 309-318ScopusLife cycle assessment of road construction alternative materials: A literature reviewReviewinfo:eu-repo/semantics/reviewhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, Colombia; UNESCO Chair in Life Cycle and Climate Change (ESCI-UPF), Passeig Pujades 1, Barcelona, SpainBalaguera A., Carvajal G.I., Albertí J., Fullana-i-Palmer P.Balaguera, A., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, Colombia, UNESCO Chair in Life Cycle and Climate Change (ESCI-UPF), Passeig Pujades 1, Barcelona, Spain; Carvajal, G.I., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30–65, Medellín, Colombia; Albertí, J., UNESCO Chair in Life Cycle and Climate Change (ESCI-UPF), Passeig Pujades 1, Barcelona, Spain; Fullana-i-Palmer, P., UNESCO Chair in Life Cycle and Climate Change (ESCI-UPF), Passeig Pujades 1, Barcelona, SpainAlternative materials; Environmental impacts; Life cycle assessment (LCA); Recycling; Road construction; Sustainabilityhttp://purl.org/coar/access_right/c_16ecTHUMBNAILportada.JPGportada.JPGimage/jpeg15629http://repository.udem.edu.co/bitstream/11407/4530/1/portada.JPG776d481af4ae273f1adbc5ebf63c7c69MD5111407/4530oai:repository.udem.edu.co:11407/45302020-05-27 16:23:01.24Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |