Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer

Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P mo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5902
Acceso en línea:
http://hdl.handle.net/11407/5902
Palabra clave:
Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c5b4a6b6eaa195764400d58857c17804
oai_identifier_str oai:repository.udem.edu.co:11407/5902
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
title Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
spellingShingle Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
title_short Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
title_full Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
title_fullStr Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
title_full_unstemmed Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
title_sort Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
dc.subject.spa.fl_str_mv Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
topic Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
dc.subject.keyword.eng.fl_str_mv Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
description Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:41Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:41Z
dc.date.none.fl_str_mv 2021
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22133437
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5902
dc.identifier.doi.none.fl_str_mv 10.1016/j.jece.2020.104776
identifier_str_mv 22133437
10.1016/j.jece.2020.104776
url http://hdl.handle.net/11407/5902
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce58
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Zhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583
Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219
Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71
Kumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428
Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984
Salas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass Valorization
Dotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36
Peres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659
Shi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914
Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658
Omondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1
Blessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203
Ogutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14
Acelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479
Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119
Ramirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137
Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140
Pettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244
Tao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158
Li, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123
Acelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175
Tan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232
Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73
Zhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193
Mignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10
Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892
Ottosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969
Fang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng.
Tang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177
Chen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450
Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758
Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250
Shiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200
Zheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786
Liu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77
Yesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16
Mosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363
Sudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769
Bronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235
Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927
Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92
Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256
Westholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36
Jung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372
Santos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459
White, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511
Sukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010
Berzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol.
Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821
Wilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177
Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242
Ayodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168
Weiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196
Surovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642
Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530
Tõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659
Huang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474
Türk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535
Kim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88
Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072
Dong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218
Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304
Johansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265
Moriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252
Marriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524
Ptáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79
TakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154
Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Journal of Environmental Chemical Engineering
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159113328787456
spelling 20212021-02-05T14:57:41Z2021-02-05T14:57:41Z22133437http://hdl.handle.net/11407/590210.1016/j.jece.2020.104776Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd.engElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce5891Zhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71Kumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984Salas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass ValorizationDotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36Peres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659Shi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658Omondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1Blessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203Ogutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14Acelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119Ramirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140Pettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244Tao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158Li, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123Acelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175Tan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73Zhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193Mignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892Ottosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969Fang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng.Tang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177Chen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250Shiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200Zheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786Liu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77Yesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16Mosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363Sudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769Bronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256Westholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36Jung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372Santos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459White, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511Sukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010Berzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol.Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821Wilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242Ayodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168Weiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196Surovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530Tõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659Huang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474Türk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535Kim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072Dong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304Johansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265Moriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252Marriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524Ptáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79TakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210Journal of Environmental Chemical EngineeringBiomassCalcium phosphateHydroxyapatitePhosphate recyclingWater hyacinthBiochemistryCalcinationCalciteCalcium carbonateCalcium oxideDeionized waterFertilizersHydrated limeHydroxyapatiteMolar ratioCalcination temperatureP suppliesSlow releaseWater HyacinthCalciumUtilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizerArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ramirez, A., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaPérez, S., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaFlórez, E., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaAcelas, N., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRamirez A.Pérez S.Flórez E.Acelas N.11407/5902oai:repository.udem.edu.co:11407/59022021-02-05 09:57:41.126Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co