Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer
Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P mo...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5902
- Acceso en línea:
- http://hdl.handle.net/11407/5902
- Palabra clave:
- Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_c5b4a6b6eaa195764400d58857c17804 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5902 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
title |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
spellingShingle |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer Biomass Calcium phosphate Hydroxyapatite Phosphate recycling Water hyacinth Biochemistry Calcination Calcite Calcium carbonate Calcium oxide Deionized water Fertilizers Hydrated lime Hydroxyapatite Molar ratio Calcination temperature P supplies Slow release Water Hyacinth Calcium |
title_short |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
title_full |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
title_fullStr |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
title_full_unstemmed |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
title_sort |
Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer |
dc.subject.spa.fl_str_mv |
Biomass Calcium phosphate Hydroxyapatite Phosphate recycling Water hyacinth |
topic |
Biomass Calcium phosphate Hydroxyapatite Phosphate recycling Water hyacinth Biochemistry Calcination Calcite Calcium carbonate Calcium oxide Deionized water Fertilizers Hydrated lime Hydroxyapatite Molar ratio Calcination temperature P supplies Slow release Water Hyacinth Calcium |
dc.subject.keyword.eng.fl_str_mv |
Biochemistry Calcination Calcite Calcium carbonate Calcium oxide Deionized water Fertilizers Hydrated lime Hydroxyapatite Molar ratio Calcination temperature P supplies Slow release Water Hyacinth Calcium |
description |
Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:41Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:41Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
22133437 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5902 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jece.2020.104776 |
identifier_str_mv |
22133437 10.1016/j.jece.2020.104776 |
url |
http://hdl.handle.net/11407/5902 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce58 |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Zhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583 Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219 Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71 Kumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428 Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984 Salas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass Valorization Dotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36 Peres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659 Shi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914 Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658 Omondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1 Blessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203 Ogutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14 Acelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479 Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119 Ramirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137 Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140 Pettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244 Tao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158 Li, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123 Acelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175 Tan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602 Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232 Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73 Zhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193 Mignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10 Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892 Ottosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969 Fang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng. Tang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177 Chen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450 Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758 Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250 Shiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200 Zheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786 Liu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77 Yesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16 Mosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363 Sudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769 Bronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235 Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927 Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92 Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256 Westholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36 Jung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372 Santos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459 White, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511 Sukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010 Berzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol. Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821 Wilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177 Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242 Ayodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168 Weiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196 Surovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642 Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530 Tõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659 Huang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474 Türk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535 Kim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88 Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072 Dong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218 Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304 Johansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265 Moriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252 Marriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524 Ptáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79 TakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154 Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159113328787456 |
spelling |
20212021-02-05T14:57:41Z2021-02-05T14:57:41Z22133437http://hdl.handle.net/11407/590210.1016/j.jece.2020.104776Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd.engElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097931197&doi=10.1016%2fj.jece.2020.104776&partnerID=40&md5=d353bec9ea73be98fd4d46b2754dce5891Zhang, F., Wang, X., Xionghui, J., Efficient arsenate removal by magnetite-modified water hyacinth biochar (2016) Environ. Pollut., 216, pp. 575-583Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X., Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth (2017) J. Environ. Manage., 187, pp. 212-219Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J., Ram, L.C., Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity (2013) Catena, 111, pp. 64-71Kumar, S., Deswal, S., Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches (2020) Pollution, 6, pp. 417-428Zhang, Y., Liu, H., Yan, S., Wen, X., Qin, H., Wang, Z., Zhang, Z., Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation (2019) Environ. Sci. Pollut. Res., 26, pp. 12975-12984Salas-Ruiz, A., Barbero-Barrera, M.M., Sánchez-Rojas, M.I., Asensio, E., Water hyacinth-cement composites as pollutant element fixers (2019) Waste Biomass ValorizationDotto, G.L., Cunha, J.M., Calgaro, C.O., Tanabe, E.H., Bertuol, D.A., Surface modification of chitin using ultrasound-Assisted and supercritical CO2 technologies for cobalt adsorption (2015) J. Hazard. Mater., 295, pp. 29-36Peres, E.C., Slaviero, J.C., Cunha, A.M., Hosseini-Bandegharaei, A., Dotto, G.L., Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption (2018) J. Environ. Chem. Eng., 6, pp. 649-659Shi, L., Wang, L., Zhang, T., Li, J., Huang, X., Cai, J., Lü, J., Wang, Y., Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-Assisted pyrolysis (2017) Bioresour. Technol., 241, pp. 908-914Román, S., Ledesma, B., Álvarez, A., Coronella, C., Qaramaleki, S.V., Suitability of hydrothermal carbonization to convert water hyacinth to added-value products (2020) Renew. Energy, 146, pp. 1649-1658Omondi, E.A., Ndiba, P.K., Njuru, P.G., Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production (2019) Sn Appl. Sci., 1Blessy, K., Prabha, M.L., Application of water hyacinth vermicompost on the growth of Capsicum annum (2014) Int. J. Pharma Sci. Res., 5, pp. 198-203Ogutu, P.A., Vermicomposting water hyacinth: Turning fisherman's nightmare into farmer's fortune (2019) Int. J. Res. Innov. Appl. Sci., 4, pp. 11-14Acelas, N., Flórez, E., López, D., Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions (2015) Desalin. Water Treat., 54, pp. 2468-2479Acelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119Ramirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., Pastor, L., Implementation of a global P-recovery system in urban wastewater treatment plants (2019) J. Clean. Prod., 227, pp. 130-140Pettersson, A., Åmand, L.E., Steenari, B.M., Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction (2008) Biomass Bioenergy, 32, pp. 236-244Tao, H.X.X.U.E., Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge (2007) J. Environ. Sci., 19, pp. 1153-1158Li, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms (2020) Sci. Total Environ., 709, p. 136123Acelas, N.Y., López, D.P., Wim Brilman, D.W.F., Kersten, S.R.A., Kootstra, A.M.J., Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery (2014) Bioresour. Technol., 174, pp. 167-175Tan, Z., Lagerkvist, A., Phosphorus recovery from the biomass ash: A review (2011) Renew. Sustain. Energy Rev., 15, pp. 3588-3602Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Cai, X., Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism (2016) Rsc Adv., 6, pp. 5223-5232Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X., Wu, S., Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) (2015) J. Environ. Manage., 153, pp. 68-73Zhang, C., Chen, X., Tian, Y., Zhou, Y., Lu, X., Conversion of water hyacinth to value-Added fuel via hydrothermal carbonization (2020) Energy, 197, p. 117193Mignardi, S., Archilletti, L., Medeghini, L., De Vito, C., Valorization of eggshell biowaste for sustainable environmental remediation (2020) Sci. Rep., 10, pp. 1-10Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., Phosphorus recovery from sewage sludge ash through an electrodialytic process (2014) Waste Manag., 34, pp. 886-892Ottosen, L.M., Kirkelund, G.M., Jensen, P.E., Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum (2013) Chemosphere, 91, pp. 963-969Fang, L., Yan, F., Chen, J., Shen, X., Zhang, Z., Novel recovered compound phosphate fertilizer produced from sewage sludge and its incinerated ash (2020) Acs Sustain. Chem. Eng.Tang, S., Yan, F., Zheng, C., Zhang, Z., Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis (2018) Acs Sustain. Chem. Eng., 6, pp. 9167-9177Chen, J., Tang, S., Yan, F., Zhang, Z., Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives (2020) Water Res., 171, p. 115450Oliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., Historic building materials from Alhambra: Nanoparticles and global climate change effects (2019) J. Clean. Prod., 232, pp. 751-758Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica (2020) J. Clean. Prod., 248, p. 119250Shiba, N.C., Ntuli, F., Extraction and precipitation of phosphorus from sewage sludge (2017) Waste Manag., 60, pp. 191-200Zheng, X., Ye, Y., Jiang, Z., Ying, Z., Ji, S., Chen, W., Wang, B., Dou, B., Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive (2020) Sci. Total Environ., 738, p. 139786Liu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77Yesmeen, R., Zakir, H.M., Alam, M.S., Mallick, S., Heavy metal and major ionic contamination level in effluents, surface and groundwater of an urban industrialised city: A case study of Rangpur City, Bangladesh (2018) Asian J. Chem. Sci., 5, pp. 1-16Mosa, A., El-Ghamry, A., Tolba, M., Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment (2018) Chemosphere, 198, pp. 351-363Sudiarto, S.I.A., Renggaman, A., Choi, H.L., Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics (2019) J. Environ. Manage., 231, pp. 763-769Bronzato, G.R.F., Ziegler, S.M., Silva, R.C., Cesarino, I., Leão, A.L., Characterization of the pre-Treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production (2017) Mol. Cryst. Liq. Cryst., 655, pp. 224-235Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E., Sabry, S.A., Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell (2020) Int. J. Hydrogen Energy, 45, pp. 5911-5927Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaOâSiO2âP2O5 glasses in a simulated body fluid (1992) J. Non. Cryst. Solids., 143, pp. 84-92Jiang, T.Y., Jiang, J., Xu, R.K., Li, Z., Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar (2012) Chemosphere, 89, pp. 249-256Westholm, L.J., Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? (2006) Water Res., 40, pp. 23-36Jung, K.W., Hwang, M.J., Ahn, K.H., Ok, Y.S., Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media (2015) Int. J. Environ. Sci. Technol., 12, pp. 3363-3372Santos, A.F., Arim, A.L., Lopes, D.V., Gando-Ferreira, L.M., Quina, M.J., Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent (2019) J. Environ. Manage., 238, pp. 451-459White, P.J., Broadley, M.R., Calcium in plants (2003) Ann. Bot., 92, pp. 487-511Sukarni, S., Widiono, A.E., Sumarli, S., Wulandari, R., Nauri, I.M., Permanasari, A.A., Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere (2018) Matec Web Conf., 204, p. 00010Berzina-Cimdina, L., Borodajenko, N., Research of calcium phosphates using fourier transform infrared spectroscopy (2012) Infrared Spectrosc.-Mater. Sci. Eng. Technol.Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M., FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples (2002) Talanta, 58, pp. 811-821Wilson, F., Tremain, P., Moghtaderi, B., Characterization of biochars derived from pyrolysis of biomass and calcium oxide mixtures (2018) Energy Fuels, 32, pp. 4167-4177Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M.A., Gómez, R.T., Cervantes, F.J., Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry (2020) J. Clean. Prod., 242Ayodele, O.B., Uemura, Y., Gholami, Z., Mohd, W., Wan, A., Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters (2016) J. Energy Chem., 25, pp. 158-168Weiner, S., Bar-Yosef, O., States of preservation of bones from prehistoric sites in the near East: A survey (1990) J. Archaeol. Sci., 17, pp. 187-196Surovell, T.A., Stiner, M.C., Standardizing infra-red measures of bone mineral crystallinity: An experimental approach (2001) J. Archaeol. Sci., 28, pp. 633-642Ramesh, S., Loo, Z.Z., Tan, C.Y., Chew, W.J.K., Ching, Y.C., Tarlochan, F., Chandran, H., Sarhan, A.A.D., Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications (2018) Ceram. Int., 44, pp. 10525-10530Tõnsuaadu, K., Gross, K.A., Pluduma, L., Veiderma, M., A review on the thermal stability of calcium apatites (2012) J. Therm. Anal. Calorim., 110, pp. 647-659Huang, R., Tang, Y., Speciation dynamics of phosphorus during (Hydro)Thermal treatments of sewage sludge (2015) Environ. Sci. Technol., 49, pp. 14466-14474Türk, S., AltInsoy, ÇelebiEfe, G., Ipek, M., Özacar, M., Bindal, C., Microwave-Assisted biomimetic synthesis of hydroxyapatite using different sources of calcium (2017) Mater. Sci. Eng. C, 76, pp. 528-535Kim, W., Saito, F., Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2 (2001) Ultrason. Sonochem., 8, pp. 85-88Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P., Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders (2002) Biomaterials, 23, pp. 1065-1072Dong, F., Kirk, D.W., Tran, H., Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas (2014) Fuel, 136, pp. 208-218Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X., Environmental remediation and application of nanoscale zero-valent Iron and its composites for the removal of heavy metal ions: A review (2016) Environ. Sci. Technol., 50, pp. 7290-7304Johansson, L., Gustafsson, J.P., Phosphate removal using blast furnace slags and opoka-mechanisms (2000) Water Res., 34, pp. 259-265Moriyama, K., Kojima, T., Minawa, Y., Matsumoto, S., Nakamachi, K., Development of artificial seed crystal for crystallization of calcium phosphate (2001) Environ. Technol. (United Kingdom), 22, pp. 1245-1252Marriott, A.S., Hunt, A.J., Bergstro, E., Clark, J.H., Brydson, R., Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy (2014) Carbon, 67, pp. 514-524Ptáek, P., Šoukal, F., Opravil, T., Kinetics and mechanism of thermal decomposition of calcite and aragonite (2017) J. Miner. Met. Mater. Eng., pp. 71-79TakIn, M.B., Ahin, Ö., Taskin, H., Atakol, O., Inal, A., Gunes, A., Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant (2018) J. Plant Nutr., 41, pp. 1148-1154Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D., Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC) (2017) Waste Manag., 60, pp. 201-210Journal of Environmental Chemical EngineeringBiomassCalcium phosphateHydroxyapatitePhosphate recyclingWater hyacinthBiochemistryCalcinationCalciteCalcium carbonateCalcium oxideDeionized waterFertilizersHydrated limeHydroxyapatiteMolar ratioCalcination temperatureP suppliesSlow releaseWater HyacinthCalciumUtilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizerArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ramirez, A., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaPérez, S., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaFlórez, E., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, ColombiaAcelas, N., Group of Materials with Impact (Matandmpac), Faculty of Basic Sciences, University of Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecRamirez A.Pérez S.Flórez E.Acelas N.11407/5902oai:repository.udem.edu.co:11407/59022021-02-05 09:57:41.126Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |