Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer

Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P mo...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5902
Acceso en línea:
http://hdl.handle.net/11407/5902
Palabra clave:
Biomass
Calcium phosphate
Hydroxyapatite
Phosphate recycling
Water hyacinth
Biochemistry
Calcination
Calcite
Calcium carbonate
Calcium oxide
Deionized water
Fertilizers
Hydrated lime
Hydroxyapatite
Molar ratio
Calcination temperature
P supplies
Slow release
Water Hyacinth
Calcium
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:Phosphorus (P) recovery from water hyacinth is one of the promising sources to recovery and recycle P to alleviate P supply shortage in the future. The result of calcination temperature during the thermal treatment of calcium (Ca) and P-rich water hyacinth is presented here. Results showed a Ca/P molar ratio of 5.07 in water hyacinth ashes and, that with the increase in calcination temperature, P and Ca are transformed into hydroxyapatite. The amount of hydroxyapatite increased until 34.0 %, while other Ca phases such as CaO, CaCO3, and Ca(OH)2 were obtained in 6.1 %, 3.9 %, and 18.0 %, respectively. The bioavailability test showed that the material produced at 700 °C (hydroxyapatite and other Ca-rich phases) could be used as a fertilizer, with P slow release in aqueous solutions, giving up 3.7 % and 29.3 % of P release in deionized water and formic acid, respectively. Besides, CaO and Ca(OH)2 are used for soil neutralization as their disposition can help the crops. © 2020 Elsevier Ltd.