A wave parameters and directional spectrum analysis for extreme winds

In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3353
Acceso en línea:
http://hdl.handle.net/11407/3353
https://doi.org/10.1016/j.oceaneng.2013.04.016
Palabra clave:
Wind speed
Directional spectrum
Gulf of Mexico
Moored buoys
Hurricane waves
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUDEM2_c42fe6cafa94ad50034322c0ec683644
oai_identifier_str oai:repository.udem.edu.co:11407/3353
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv A wave parameters and directional spectrum analysis for extreme winds
title A wave parameters and directional spectrum analysis for extreme winds
spellingShingle A wave parameters and directional spectrum analysis for extreme winds
Wind speed
Directional spectrum
Gulf of Mexico
Moored buoys
Hurricane waves
title_short A wave parameters and directional spectrum analysis for extreme winds
title_full A wave parameters and directional spectrum analysis for extreme winds
title_fullStr A wave parameters and directional spectrum analysis for extreme winds
title_full_unstemmed A wave parameters and directional spectrum analysis for extreme winds
title_sort A wave parameters and directional spectrum analysis for extreme winds
dc.subject.spa.fl_str_mv Wind speed
Directional spectrum
Gulf of Mexico
Moored buoys
Hurricane waves
topic Wind speed
Directional spectrum
Gulf of Mexico
Moored buoys
Hurricane waves
description In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III™ model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III™ model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA).
publishDate 2013
dc.date.created.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2017-06-15T21:49:41Z
dc.date.available.none.fl_str_mv 2017-06-15T21:49:41Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Montoya, R. D., Arias, A. O., Royero, J. O., & Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.
dc.identifier.issn.none.fl_str_mv 00298018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3353
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.oceaneng.2013.04.016
identifier_str_mv Montoya, R. D., Arias, A. O., Royero, J. O., & Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.
00298018
url http://hdl.handle.net/11407/3353
https://doi.org/10.1016/j.oceaneng.2013.04.016
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://www.sciencedirect.com/science/article/pii/S0029801813001637
dc.relation.ispartofes.spa.fl_str_mv Ocean Engineering Volume 67, 15 July 2013, Pages 100–118
dc.relation.references.spa.fl_str_mv Ardhuin, F., Magne, R., 2007. Current efects on scattering of surface gravity waves by bottom topography. J. Fluid Mech 576, 235–264.
Ardhuin, F., Chapron, B., Collard, F., 2008. Ocean swell evolution from distant storms. Nat. Geoscience.
Barber, N.F., Ursell, F., 1948. The generation and propagation of ocean waves and swell. Philos. Trans. Roy. Soc. London 240A, 527–560.
Bidlot, J.R., Abdalla, S., Janssen, P.A.E.M., 2005. A Revised Formulation for Ocean Wave Dissipation in CY25R1. Tech. Rep. Memorandum R60.9/JB/0516, Research Department, ECMWF, Reading, UK.
Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., 2007. Evaluation of two atmo- spheric models for wind-wave modelling in the NW Mediterranean. J. Mar. Syst. 65, 336–353.
Booij, N., Holthuijsen, L.H., Ris, R.C., 1996. The “SWAN” wave model for shallow water. Coastal Eng 1, 668–672.
Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions. Part I. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.
Booij, N., 2004. SWAN Cycle III version 40.41 user manual. Available from: 〈http://fluidmechanics.tudelft.nl/swan/index.htm〉.
Cardone, V.J., Cox, A.T., Greenwood, J.A., Thompson, E.F., 1994. Upgrade of Tropical Cyclone Surface Wind Field Model Misc. Paper CERC-94-14, US Army Corps of Engineers.
Cavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53, 613–627.
Chao, Y.Y., Tolman, H.L., 2001. Specification of hurricane wind fields for ocean wave prediction. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 671–679.
Chung-chu teng, Bouchard, R., Riley, R., Mettlach, T., Dinoso, R., Chaffin, J., 2009. NDBC's Digital Directional Wave Module. OCEANS, 2009, MTS/IEEE Biloxi- Maryne Technology for Our Future: Global and local changes.
Collins, J.J., Viehnaman. J., 1971. A Simplified Empirical Model for Hurricane Wind Fields. Paper no. otc 1346. Offshore Technology Conference.
Earle, M.D., 1996. Nondirectional and Directional Wave Data Analysis Procedures. NDBC technical Document, 96-01. National Data Buoy Center, Stennis Space Center, MS.
Earle, M.D., Steele, K.E., Wang, D.W.C., 1999. Use of Advanced Directional Wave Spectra Analysis Methods. Ocean Eng. 26, 1421–1434.
ECMWF, 2009. IFS Documentation Cy33rl, European Centre for Medium- Range Weather ForecastsECMWF,www.ecmwf.int/research/ifsdocs/CY33rl/ DYNAMICS/〉.
Guillaume, D., Xavier Bertin, X., Taborda., R., 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131.
Gunther, H., Hasselmann, S., Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim. Rechenzentrum, Techn. Report no. 4, Ham- burg, Germany.
Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mueller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind- wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A 8 (12), 95.
Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr 15, 1378–1391.
Holland, G.J., 1980. An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev 108, 1212–1218.
Holthuijsen, L.H., Booij, H.N., 2003. Phase-decoupled refraction-diffraction for spectral wave models. Coast. Eng 49, 291–305.
Isobe, M., Kondo, K., Horikawa, K., 1984. Extension of MLM for estimating directional wave spectrum. In: Proceedings of the Symposium on Description and Modeling of Directional Seas, Lyngby, Denmark, Danish Hydraulic Institute, A-6-1–A-6-15.
Janssen, P.A.E.M., 1989. Wind-induced stress and the drag of air-flow over sea waves. J. Phys. Oceanogr. 19, 745–754.
Janssen, P.A.E.M., 1991a. Quasi-linear theory of of wind wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631–1642.
Janssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow. In: International Union of Theoretical and Applied Mechanics (IUTAM), Sydney, Australia, 193–198.
Jelesnianski, C.P., 1974. Special Program to List Amplitudes of Surges from Hurricanes (SPLASH); Part II: General tracks and variant storm conditions. NOAA, Tech, Memo. NWS TDL-52, Silver Spring.
Khama, K., Hauser, D., Krogstad, H.E., Lenher, S., Monbaliu, J., Wyatt. 2003. Measuring and Analysing the Directional Wave Spectrum of Ocean Waves. COST 714 Working Group 3.
Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285.
Komen, G.J.L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.E.A.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, United Kingdom 532.
Kreisel, G., 1949. Surface waves. Quart. Journ. Appl. Math, 21–44.
Kudryavtsev, V.N., Makin, V.K, 2011. Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteorol 140-3, 383–410.
Ladd, C., Bond, N.A., 2002. Evaluation of the NCEP/NCAR reanalysis in the NE Pacific and the Bearing Sea. J. Geophys. Res. 107, C103158, http://dx.doi.org/10.1029/ 2001JCOO1157.
Lizano, O.G., 1990. Wind model adjusted to a wave generation model for forecasting hurricanes. Geophysics 33, 75–103.
Liu, H., Xie, L., Pietrafesa, L.J., Bao, S., 2007. Sensitivity of wind waves to hurricane wind characteristics. Ocean Modell. 18, 37–52.
Longuet-Higgins, M.S., Cartwright, D.E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra. Prentice-Hall, Englewood Cliffs, NJ, pp. 111–136.
Massel, S.R., 1996. Ocean surface waves: their physics and prediction. Adv. Ocean Eng. World Scientific 11, 494.
Makin, V.K., 2005. A note on the drag of the sea surface at hurricane winds. Boun. - Layer Meteorol. 115, 169–176.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.
Miles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech 3 (2), 185–204.
Moon, I.J., Ginis, I., Hara, T., Tolman, H.L., Wright, C.W., Walsh, E.J., 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Ocean 33, 1680–1760.
Mitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of windgenerated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ 16, 251264.
Mitsuyasu, H, 1969. On the growth of the spectrum of windgenerated waves, II. Rept. Res. Inst. Appl. Mech., Kyushu Unit 17, 235–243.
Moon, I.-J., Hara, T., Ginis, I., Belcher, S.E., Tolman, H., 2004a. Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 61, 2321–2333.
Moon, I.-J., Ginis, I., Hara, T., 2004b. Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci. 61, 2334–2348.
Moon, I.-J., Ginis, I., Hara, T., 2004c. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett. 31, L20302.
Montoya, R.D, Osorio, A., 2007. The wind wave models: characteristics, evolution and future aplications in Colombia. Adv. Water Resour. 15, 47–74.
Montoya, R.D., Osorio. A.F., 2009. Importance of Accurate Background Winds Combined with Hurricane Wind Models: Case Study of Hurricane Katrina. WISE meeting. Poster session. April 27 to April 30, 2009.
Ochi, M.K., 1998. Ocean Waves: The Stochastic Approach. Cambridge University Press, United Kingdom, ISBN: 0-521-56378-X 319.
Ortiz, J.C, Mercado, A., 2008. An intercomparison of SWAN and Wavewatch III models with Data from NDBC-NOAA buoys at oceanic scales. Coast. Eng. J. 50 (1), 47–73.
Perlin, N., Samelson, R.M., Chelton, D.B., 2004. Scatterometer and model wind and wind stress in the Oregon–Northern California coastal zone. Mon. Weather Rev. 132, 2110–2129.
Pickett, M.H., Tang, W., Rosenfeld, L.K., Wash, C.H., 2003. QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J. Atmos. Oceanic Technol. 20, 1869–1880.
Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech 2 (5), 417–445.
Phillips, O.M., 1958. The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech 4, 426–434.
Powell, M.D., Houston, S.H., Amat, L.R., Morisseau-LEROY, N., 1998. The HRD real time surface wind analysis system. J. Wind Eng. Ind Aerodyn. 77-78, 53–64.
Powell, M.K., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283.
Powell, M.D., Uhlhorn, W.E., Kepert, J., 2009. Estimating maximum surface winds from hurricane reconnaissance measurements. Weather Forecast. 24, 868–883.
Powell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Gamache, J., Cardone, V., Cox, A., Otero, S., Carrasco, N., Annane, B., Fleur, R.St. 2010. Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting. Ocean Eng. 37, 26–36.
Rascle, N., Ardhuin, F. A global wave parameter database for geophysical applica- tions. Part 2: Model validation with improved source term parameterization. Ocean Modell. 10.1016/j.ocemod.2012.12.001, in press. http://dx.doi.org/10. 1016/j.ocemod.2012.12.001, in press.
Reilly, W.C., Herbers, T.H.C., Seymour, R.J, Guza, T.T., 1996. A comparison of directional buoy and fixed platform measurements of pacific swell. Atmos. Oceanic Technol. 13 (1), 231–238.
Ris, R.C., Holthuijsen, L.H., Booij, N., 1994. A spectral model for waves in the near shore zone. Coast. Eng. 1, 68–78.
Ris, R.C., Holthuijsen, L.H., Booij, N., 1999. A thirdgeneration wave model for coastal regions. 2. Verification. J. Geophys. Res. 104, 7667–7681.
Resio, D., Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wavewave interactions. Part I: Methodology and basic results. J. Fluid Mech 223, 609–629.
Rogers, W.E., Hwang, P.A., Wang, D.W., 2003. Investigation of wave growth and decay in the swan model: three regional-scale applications. J. Phys. Oceanogr. 33, 366–389.
Rogers, W.E., Wang, D.W.C., 2006. Directional validation of wave predictions. J. Atmos. Oceanic Technol 24, 504–520.
Ruti, P.M., Marullo, S., D'Ortenzio, F., Treamant, M., 2008. Comparison of analyzed and measurement wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analysis, QuikSCAT and buoy data. J. Mar. Syst. 70, 33–48.
Snyder, R.L., Cox, C.S, 1966. A field study of the wind generation of ocean waves. J. Mar. Res 24, 141–178.
Steele, K.E., Wang, D.W., 2004. Question of the pitch-roll buoy response to ocean waves as a simple harmonic oscillator? Ocean Eng. 31, 2121–2138.
Steele, K.E., Wang, D.W, Earle, M.D, Michelena, E.D, Dagnall, R.J., 1999. Buoy pitch and roll computed using three angular rate sensors. Coast. Eng. 35, 123–139.
Stockdon, H.F., Sallenger Jr, A.H., Holman, R.A., Howd, P.A., 2007. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 238, 1–20.
Suzuki Isozaki, I., 1994. On the Development of A Global Ocean Wave Model JWA3G. Proc. Pacific Ocean Remote Sensing Conference in Melbourne, Australia, pp. 195–201.
Swail, V.R., Cox, A.T., 2000. On the use of NCEP/NCAR reanalysis surface marine wind fields for long term North Atlantic wave hindcast. J. Atmos. Oceanic Technol. 17, 532–545.
Tolman, H. L., 1989. The Numerical Model WAVEWATCH: A Third Generation Model for the Hindcasting of Wind Waves on Tides in Shelf Seas. Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn., ISSN 0169-6548, Report no. 89-2, 72 pp.
Tolman, H.L., 1991a. A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr 21, 782–797.
Tolman, H.L., 1992. Effects of numerics on the physics in a third-generation wind- wave model. J. Phys. Oceanogr 22, 1095–1111.
Tolman, H.L., Chalikov, D., 1996. Source terms in a third-generation wind-wave model. Journal of Physical Oceanography 26, 2497–2518.
Tolman, 1999. User Manual and System Documentation of WAVEWATCH- III Version 1.18. Technical Note 166, Ocean Modeling Branch, NCEP, National Weather Service, NOAA, US Department of Commerce, 110 pp. Available from:〈http://polar.wwb.noaa.gov/waves/wavewatch〉.
Tolman, H.L., 2002. User Manual and System Documentation of WAVEWATCH-III Version 2.22. Technical Note. Available from: 〈http://polar.ncep.noaa.gov/ waves〉.
Tolman, H.L., 2002f: Validation of WAVEWATCH III Version 1.15 for a Global Domain. Technical Note 213, NOAA/NWS/NCEP/OMB, 33 pp.
Tolman, H.L., 2009. User Manual and System Documentation of WAVEWATCH-III Version 3.14. Technical Note. Available from: 〈http://polar.ncep.noaa.gov/ waves〉.
Tolman, H. L., 2002d. Testing of WAVEWATCH III Version 2.22 in NCEP's NWW3 Ocean Wave Model Suite. Technical Note 214, NOAA/NWS/NCEP/OMB, 99 pp.
Tolman, H.L., Alves, J.H.G.M., 2005. Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell. 9, 305–323.
Tracy, B., and Resio, D.T., 1982. Theory and Calculation of the Nonlinear Energy Transfer between Sea Waves in Deep Water. WES Report 11, US Army Corps of Engineers.
Ueno, K., Ishizaka, M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou 64, 75–80.
Veerasamy, S, 2008. Comments on reexamination of tropical cyclone wind-pressure relatioship. Weather Forecast. 23, 758–761.
Walsh, E.J., Wright, C.W., Vandermark, D., Krabill, W.D., Garcia, A.W., Houston, S.H., Murillo, S.T., Powell, M.D., Black, P.G, Marks, F.D., 2001. Hurricane Directional Wave Spectrum Spatial Variation at Landfall. J. Phys. Oceanogr. 32 (6), 1667–1684.
WAMDI Group (13 authors), 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr 18, 1775–1810.
Wang, H.T., Freise, C.B, 1997. Error analysis of the directional wave spectra obtained by the NDBC 3-m pitch-roll discus buoy. IEEE J. Oceanic Eng. 22 (4), 639–648. Webb, D.J., 1978. Nonlinear transfers between sea waves. DeepSea Res 25, 279–298. Willoughby, H.E., 2004. Parametric representation of the primary vortex. Part I: observations and evaluation of the Holland (1980) Model. Monthly Weather Rev., 3033–3048.
Wingeart, K.M., Reilly, W.C.O., Herbers, T.H.C., PWittmann., A., Jenssen, R.E., Tolman, H.L., 2001. Validation of operational global wave prediction models with spectral buoy data. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 590–599.
Wright, C.W., et al., 2001. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 31, 2472–2488.
Xu, F., Perrie, W., Toulany, B., Smith, P.C, 2007. Wind – generated waves in Hurricane Juan. Ocean Modell. 16, 188–205.
Young, I.R., 2006. Directional spectra of hurricane wind waves. J. Geophys. Res. 111, C08020, http://dx.doi.org/10.1029/2006JC003540.
Zhang, S., Zhang, J., 2005. A new approach to estimate directional spreading parameters of a Cosine-2s Model. J. Atmos. Oceanic Technol. Vol 23 (2), 287–301.
Zhuo, L., Wang, A., Guo., P., 2008. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing Export. J. Hydrodyn., Ser. B 20 (6), 776–783.
Zhang, H.M., Bates, J.J., Reynolds, R.W., 2006. Assessment of composite global sampling: sea surface wind speed. Geophys. Res. Lett. 33, L17714, http://dx.doi. org/10.1029/2006GL027086.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Ocean Engineering
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3353/1/Articulo.html
bitstream.checksum.fl_str_mv 1ec5654219cb26e0f69e0ebfaef7d953
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159269086363648
spelling 2017-06-15T21:49:41Z2017-06-15T21:49:41Z2013Montoya, R. D., Arias, A. O., Royero, J. O., & Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.00298018http://hdl.handle.net/11407/3353https://doi.org/10.1016/j.oceaneng.2013.04.016In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical comparisons for the main wave parameters, such as significant wave height and peak period. The SWAN model tends to overestimate the maximum values for significant wave height for some buoys and the peak period for almost all the buoys. Both models tend to overestimate the value of peak direction, presenting an area of greater energy to the south. The WAVEWATCH III™ model performs best for buoys located in right forward quadrant, which generally has higher winds and waves. This indicates a better spatial representation of wave parameters in the higher energy areas for the WAVEWATCH III™ model. Results based on the quadrant location for most of the analyzed cases, are in agreement with the results from other sources such as the Scanning Radar Altimeter (SRA).engElsevierIngeniería CivilFacultad de Ingenieríashttp://www.sciencedirect.com/science/article/pii/S0029801813001637Ocean Engineering Volume 67, 15 July 2013, Pages 100–118Ardhuin, F., Magne, R., 2007. Current efects on scattering of surface gravity waves by bottom topography. J. Fluid Mech 576, 235–264.Ardhuin, F., Chapron, B., Collard, F., 2008. Ocean swell evolution from distant storms. Nat. Geoscience.Barber, N.F., Ursell, F., 1948. The generation and propagation of ocean waves and swell. Philos. Trans. Roy. Soc. London 240A, 527–560.Bidlot, J.R., Abdalla, S., Janssen, P.A.E.M., 2005. A Revised Formulation for Ocean Wave Dissipation in CY25R1. Tech. Rep. Memorandum R60.9/JB/0516, Research Department, ECMWF, Reading, UK.Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., 2007. Evaluation of two atmo- spheric models for wind-wave modelling in the NW Mediterranean. J. Mar. Syst. 65, 336–353.Booij, N., Holthuijsen, L.H., Ris, R.C., 1996. The “SWAN” wave model for shallow water. Coastal Eng 1, 668–672.Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions. Part I. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.Booij, N., 2004. SWAN Cycle III version 40.41 user manual. Available from: 〈http://fluidmechanics.tudelft.nl/swan/index.htm〉.Cardone, V.J., Cox, A.T., Greenwood, J.A., Thompson, E.F., 1994. Upgrade of Tropical Cyclone Surface Wind Field Model Misc. Paper CERC-94-14, US Army Corps of Engineers.Cavaleri, L., Sclavo, M., 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coast. Eng. 53, 613–627.Chao, Y.Y., Tolman, H.L., 2001. Specification of hurricane wind fields for ocean wave prediction. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 671–679.Chung-chu teng, Bouchard, R., Riley, R., Mettlach, T., Dinoso, R., Chaffin, J., 2009. NDBC's Digital Directional Wave Module. OCEANS, 2009, MTS/IEEE Biloxi- Maryne Technology for Our Future: Global and local changes.Collins, J.J., Viehnaman. J., 1971. A Simplified Empirical Model for Hurricane Wind Fields. Paper no. otc 1346. Offshore Technology Conference.Earle, M.D., 1996. Nondirectional and Directional Wave Data Analysis Procedures. NDBC technical Document, 96-01. National Data Buoy Center, Stennis Space Center, MS.Earle, M.D., Steele, K.E., Wang, D.W.C., 1999. Use of Advanced Directional Wave Spectra Analysis Methods. Ocean Eng. 26, 1421–1434.ECMWF, 2009. IFS Documentation Cy33rl, European Centre for Medium- Range Weather ForecastsECMWF,www.ecmwf.int/research/ifsdocs/CY33rl/ DYNAMICS/〉.Guillaume, D., Xavier Bertin, X., Taborda., R., 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131.Gunther, H., Hasselmann, S., Janssen, P.A.E.M., 1992. The WAM model Cycle 4 (revised version), Deutsch. Klim. Rechenzentrum, Techn. Report no. 4, Ham- burg, Germany.Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mueller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind- wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A 8 (12), 95.Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P., 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr 15, 1378–1391.Holland, G.J., 1980. An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev 108, 1212–1218.Holthuijsen, L.H., Booij, H.N., 2003. Phase-decoupled refraction-diffraction for spectral wave models. Coast. Eng 49, 291–305.Isobe, M., Kondo, K., Horikawa, K., 1984. Extension of MLM for estimating directional wave spectrum. In: Proceedings of the Symposium on Description and Modeling of Directional Seas, Lyngby, Denmark, Danish Hydraulic Institute, A-6-1–A-6-15.Janssen, P.A.E.M., 1989. Wind-induced stress and the drag of air-flow over sea waves. J. Phys. Oceanogr. 19, 745–754.Janssen, P.A.E.M., 1991a. Quasi-linear theory of of wind wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631–1642.Janssen, P.A.E.M., 1991b. Consequences of the effect of surface gravity waves on the mean air flow. In: International Union of Theoretical and Applied Mechanics (IUTAM), Sydney, Australia, 193–198.Jelesnianski, C.P., 1974. Special Program to List Amplitudes of Surges from Hurricanes (SPLASH); Part II: General tracks and variant storm conditions. NOAA, Tech, Memo. NWS TDL-52, Silver Spring.Khama, K., Hauser, D., Krogstad, H.E., Lenher, S., Monbaliu, J., Wyatt. 2003. Measuring and Analysing the Directional Wave Spectrum of Ocean Waves. COST 714 Working Group 3.Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285.Komen, G.J.L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.E.A.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, United Kingdom 532.Kreisel, G., 1949. Surface waves. Quart. Journ. Appl. Math, 21–44.Kudryavtsev, V.N., Makin, V.K, 2011. Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteorol 140-3, 383–410.Ladd, C., Bond, N.A., 2002. Evaluation of the NCEP/NCAR reanalysis in the NE Pacific and the Bearing Sea. J. Geophys. Res. 107, C103158, http://dx.doi.org/10.1029/ 2001JCOO1157.Lizano, O.G., 1990. Wind model adjusted to a wave generation model for forecasting hurricanes. Geophysics 33, 75–103.Liu, H., Xie, L., Pietrafesa, L.J., Bao, S., 2007. Sensitivity of wind waves to hurricane wind characteristics. Ocean Modell. 18, 37–52.Longuet-Higgins, M.S., Cartwright, D.E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra. Prentice-Hall, Englewood Cliffs, NJ, pp. 111–136.Massel, S.R., 1996. Ocean surface waves: their physics and prediction. Adv. Ocean Eng. World Scientific 11, 494.Makin, V.K., 2005. A note on the drag of the sea surface at hurricane winds. Boun. - Layer Meteorol. 115, 169–176.Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery E.H., Ek, M.B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., Shi, W., 2006. North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.Miles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech 3 (2), 185–204.Moon, I.J., Ginis, I., Hara, T., Tolman, H.L., Wright, C.W., Walsh, E.J., 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Ocean 33, 1680–1760.Mitsuyasu, H., 1968a. A note on the nonlinear energy transfer in the spectrum of windgenerated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ 16, 251264.Mitsuyasu, H, 1969. On the growth of the spectrum of windgenerated waves, II. Rept. Res. Inst. Appl. Mech., Kyushu Unit 17, 235–243.Moon, I.-J., Hara, T., Ginis, I., Belcher, S.E., Tolman, H., 2004a. Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 61, 2321–2333.Moon, I.-J., Ginis, I., Hara, T., 2004b. Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci. 61, 2334–2348.Moon, I.-J., Ginis, I., Hara, T., 2004c. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett. 31, L20302.Montoya, R.D, Osorio, A., 2007. The wind wave models: characteristics, evolution and future aplications in Colombia. Adv. Water Resour. 15, 47–74.Montoya, R.D., Osorio. A.F., 2009. Importance of Accurate Background Winds Combined with Hurricane Wind Models: Case Study of Hurricane Katrina. WISE meeting. Poster session. April 27 to April 30, 2009.Ochi, M.K., 1998. Ocean Waves: The Stochastic Approach. Cambridge University Press, United Kingdom, ISBN: 0-521-56378-X 319.Ortiz, J.C, Mercado, A., 2008. An intercomparison of SWAN and Wavewatch III models with Data from NDBC-NOAA buoys at oceanic scales. Coast. Eng. J. 50 (1), 47–73.Perlin, N., Samelson, R.M., Chelton, D.B., 2004. Scatterometer and model wind and wind stress in the Oregon–Northern California coastal zone. Mon. Weather Rev. 132, 2110–2129.Pickett, M.H., Tang, W., Rosenfeld, L.K., Wash, C.H., 2003. QuikSCAT satellite comparisons with nearshore buoy wind data off the US west coast. J. Atmos. Oceanic Technol. 20, 1869–1880.Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech 2 (5), 417–445.Phillips, O.M., 1958. The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech 4, 426–434.Powell, M.D., Houston, S.H., Amat, L.R., Morisseau-LEROY, N., 1998. The HRD real time surface wind analysis system. J. Wind Eng. Ind Aerodyn. 77-78, 53–64.Powell, M.K., Vickery, P.J., Reinhold, T.A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283.Powell, M.D., Uhlhorn, W.E., Kepert, J., 2009. Estimating maximum surface winds from hurricane reconnaissance measurements. Weather Forecast. 24, 868–883.Powell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Gamache, J., Cardone, V., Cox, A., Otero, S., Carrasco, N., Annane, B., Fleur, R.St. 2010. Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting. Ocean Eng. 37, 26–36.Rascle, N., Ardhuin, F. A global wave parameter database for geophysical applica- tions. Part 2: Model validation with improved source term parameterization. Ocean Modell. 10.1016/j.ocemod.2012.12.001, in press. http://dx.doi.org/10. 1016/j.ocemod.2012.12.001, in press.Reilly, W.C., Herbers, T.H.C., Seymour, R.J, Guza, T.T., 1996. A comparison of directional buoy and fixed platform measurements of pacific swell. Atmos. Oceanic Technol. 13 (1), 231–238.Ris, R.C., Holthuijsen, L.H., Booij, N., 1994. A spectral model for waves in the near shore zone. Coast. Eng. 1, 68–78.Ris, R.C., Holthuijsen, L.H., Booij, N., 1999. A thirdgeneration wave model for coastal regions. 2. Verification. J. Geophys. Res. 104, 7667–7681.Resio, D., Perrie, W., 1991. A numerical study of nonlinear energy fluxes due to wavewave interactions. Part I: Methodology and basic results. J. Fluid Mech 223, 609–629.Rogers, W.E., Hwang, P.A., Wang, D.W., 2003. Investigation of wave growth and decay in the swan model: three regional-scale applications. J. Phys. Oceanogr. 33, 366–389.Rogers, W.E., Wang, D.W.C., 2006. Directional validation of wave predictions. J. Atmos. Oceanic Technol 24, 504–520.Ruti, P.M., Marullo, S., D'Ortenzio, F., Treamant, M., 2008. Comparison of analyzed and measurement wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analysis, QuikSCAT and buoy data. J. Mar. Syst. 70, 33–48.Snyder, R.L., Cox, C.S, 1966. A field study of the wind generation of ocean waves. J. Mar. Res 24, 141–178.Steele, K.E., Wang, D.W., 2004. Question of the pitch-roll buoy response to ocean waves as a simple harmonic oscillator? Ocean Eng. 31, 2121–2138.Steele, K.E., Wang, D.W, Earle, M.D, Michelena, E.D, Dagnall, R.J., 1999. Buoy pitch and roll computed using three angular rate sensors. Coast. Eng. 35, 123–139.Stockdon, H.F., Sallenger Jr, A.H., Holman, R.A., Howd, P.A., 2007. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 238, 1–20.Suzuki Isozaki, I., 1994. On the Development of A Global Ocean Wave Model JWA3G. Proc. Pacific Ocean Remote Sensing Conference in Melbourne, Australia, pp. 195–201.Swail, V.R., Cox, A.T., 2000. On the use of NCEP/NCAR reanalysis surface marine wind fields for long term North Atlantic wave hindcast. J. Atmos. Oceanic Technol. 17, 532–545.Tolman, H. L., 1989. The Numerical Model WAVEWATCH: A Third Generation Model for the Hindcasting of Wind Waves on Tides in Shelf Seas. Communications on Hydraulic and Geotechnical Engineering, Delft Univ. of Techn., ISSN 0169-6548, Report no. 89-2, 72 pp.Tolman, H.L., 1991a. A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr 21, 782–797.Tolman, H.L., 1992. Effects of numerics on the physics in a third-generation wind- wave model. J. Phys. Oceanogr 22, 1095–1111.Tolman, H.L., Chalikov, D., 1996. Source terms in a third-generation wind-wave model. Journal of Physical Oceanography 26, 2497–2518.Tolman, 1999. User Manual and System Documentation of WAVEWATCH- III Version 1.18. Technical Note 166, Ocean Modeling Branch, NCEP, National Weather Service, NOAA, US Department of Commerce, 110 pp. Available from:〈http://polar.wwb.noaa.gov/waves/wavewatch〉.Tolman, H.L., 2002. User Manual and System Documentation of WAVEWATCH-III Version 2.22. Technical Note. Available from: 〈http://polar.ncep.noaa.gov/ waves〉.Tolman, H.L., 2002f: Validation of WAVEWATCH III Version 1.15 for a Global Domain. Technical Note 213, NOAA/NWS/NCEP/OMB, 33 pp.Tolman, H.L., 2009. User Manual and System Documentation of WAVEWATCH-III Version 3.14. Technical Note. Available from: 〈http://polar.ncep.noaa.gov/ waves〉.Tolman, H. L., 2002d. Testing of WAVEWATCH III Version 2.22 in NCEP's NWW3 Ocean Wave Model Suite. Technical Note 214, NOAA/NWS/NCEP/OMB, 99 pp.Tolman, H.L., Alves, J.H.G.M., 2005. Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell. 9, 305–323.Tracy, B., and Resio, D.T., 1982. Theory and Calculation of the Nonlinear Energy Transfer between Sea Waves in Deep Water. WES Report 11, US Army Corps of Engineers.Ueno, K., Ishizaka, M., 1997. Efficient computationalscheme of nonlinear energy transfer of wind waves. SokkoJihou 64, 75–80.Veerasamy, S, 2008. Comments on reexamination of tropical cyclone wind-pressure relatioship. Weather Forecast. 23, 758–761.Walsh, E.J., Wright, C.W., Vandermark, D., Krabill, W.D., Garcia, A.W., Houston, S.H., Murillo, S.T., Powell, M.D., Black, P.G, Marks, F.D., 2001. Hurricane Directional Wave Spectrum Spatial Variation at Landfall. J. Phys. Oceanogr. 32 (6), 1667–1684.WAMDI Group (13 authors), 1988. The WAM model. A third genereation ocean wave prediction model. J. Phys.Oceanogr 18, 1775–1810.Wang, H.T., Freise, C.B, 1997. Error analysis of the directional wave spectra obtained by the NDBC 3-m pitch-roll discus buoy. IEEE J. Oceanic Eng. 22 (4), 639–648. Webb, D.J., 1978. Nonlinear transfers between sea waves. DeepSea Res 25, 279–298. Willoughby, H.E., 2004. Parametric representation of the primary vortex. Part I: observations and evaluation of the Holland (1980) Model. Monthly Weather Rev., 3033–3048.Wingeart, K.M., Reilly, W.C.O., Herbers, T.H.C., PWittmann., A., Jenssen, R.E., Tolman, H.L., 2001. Validation of operational global wave prediction models with spectral buoy data. In: Edge, B.L., Hemsley, J.M. (Eds.), Ocean Wave Meas. Anal. ASCE, pp. 590–599.Wright, C.W., et al., 2001. Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr. 31, 2472–2488.Xu, F., Perrie, W., Toulany, B., Smith, P.C, 2007. Wind – generated waves in Hurricane Juan. Ocean Modell. 16, 188–205.Young, I.R., 2006. Directional spectra of hurricane wind waves. J. Geophys. Res. 111, C08020, http://dx.doi.org/10.1029/2006JC003540.Zhang, S., Zhang, J., 2005. A new approach to estimate directional spreading parameters of a Cosine-2s Model. J. Atmos. Oceanic Technol. Vol 23 (2), 287–301.Zhuo, L., Wang, A., Guo., P., 2008. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing Export. J. Hydrodyn., Ser. B 20 (6), 776–783.Zhang, H.M., Bates, J.J., Reynolds, R.W., 2006. Assessment of composite global sampling: sea surface wind speed. Geophys. Res. Lett. 33, L17714, http://dx.doi. org/10.1029/2006GL027086.Ocean EngineeringWind speedDirectional spectrumGulf of MexicoMoored buoysHurricane wavesA wave parameters and directional spectrum analysis for extreme windsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Ramírez, Rubén DaríoOsorio Arias, Andres FernandoOrtiz Royero, Juan CarlosOcampo-Torres, Francisco JavierMontoya Ramírez, Rubén Darío; Universidad de MedellínOsorio Arias, Andres Fernando; Universidad Nacional de Colombia Sede MedellínOrtiz Royero, Juan Carlos; Universidad del NorteOcampo-Torres, Francisco Javier; Centro de Investigación Científica y de Educación Superior de EnsenadaORIGINALArticulo.htmltext/html495http://repository.udem.edu.co/bitstream/11407/3353/1/Articulo.html1ec5654219cb26e0f69e0ebfaef7d953MD5111407/3353oai:repository.udem.edu.co:11407/33532020-05-27 19:17:24.253Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co