Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis

Background: Canavalia ensiformis is a legume native to Central and South America that has historically been a source of protein. Its main proteins, urease, and lectin have been extensively studied and are examples of bioactive compounds. In this work, the effect of pH and light effects on the growth...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5994
Acceso en línea:
http://hdl.handle.net/11407/5994
Palabra clave:
Bioactive compounds
C. ensiformis
In vitro culture
LED blue
LED red
pH
Antioxidants
Biomass
Light emitting diodes
Metabolites
Phenols
Pigments
Plants (botany)
Polypropylenes
Proteins
Anti oxidative activity
Anti-oxidant activities
Bioactive compounds
Canavalia ensiformis
Glass containers
Led combinations
Phenolic compounds
Polypropylene boxes
Ecology
antioxidant
Canavalia ensiformis extract
carotenoid
chlorophyll a
chlorophyll b
phenol derivative
polypropylene
sodium chloride
unclassified drug
antioxidant activity
antioxidant activity capacity
Article
biomass
blue light
callus
Canavalia ensiformis
concentration (parameter)
controlled study
in vitro study
metabolite
nonhuman
pH
plant growth
plant seed
principal component analysis
red light
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c3ea508180705a969bf71626283fff11
oai_identifier_str oai:repository.udem.edu.co:11407/5994
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
title Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
spellingShingle Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
Bioactive compounds
C. ensiformis
In vitro culture
LED blue
LED red
pH
Antioxidants
Biomass
Light emitting diodes
Metabolites
Phenols
Pigments
Plants (botany)
Polypropylenes
Proteins
Anti oxidative activity
Anti-oxidant activities
Bioactive compounds
Canavalia ensiformis
Glass containers
Led combinations
Phenolic compounds
Polypropylene boxes
Ecology
antioxidant
Canavalia ensiformis extract
carotenoid
chlorophyll a
chlorophyll b
phenol derivative
polypropylene
sodium chloride
unclassified drug
antioxidant activity
antioxidant activity capacity
Article
biomass
blue light
callus
Canavalia ensiformis
concentration (parameter)
controlled study
in vitro study
metabolite
nonhuman
pH
plant growth
plant seed
principal component analysis
red light
title_short Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
title_full Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
title_fullStr Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
title_full_unstemmed Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
title_sort Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis
dc.subject.spa.fl_str_mv Bioactive compounds
C. ensiformis
In vitro culture
LED blue
LED red
pH
topic Bioactive compounds
C. ensiformis
In vitro culture
LED blue
LED red
pH
Antioxidants
Biomass
Light emitting diodes
Metabolites
Phenols
Pigments
Plants (botany)
Polypropylenes
Proteins
Anti oxidative activity
Anti-oxidant activities
Bioactive compounds
Canavalia ensiformis
Glass containers
Led combinations
Phenolic compounds
Polypropylene boxes
Ecology
antioxidant
Canavalia ensiformis extract
carotenoid
chlorophyll a
chlorophyll b
phenol derivative
polypropylene
sodium chloride
unclassified drug
antioxidant activity
antioxidant activity capacity
Article
biomass
blue light
callus
Canavalia ensiformis
concentration (parameter)
controlled study
in vitro study
metabolite
nonhuman
pH
plant growth
plant seed
principal component analysis
red light
dc.subject.keyword.eng.fl_str_mv Antioxidants
Biomass
Light emitting diodes
Metabolites
Phenols
Pigments
Plants (botany)
Polypropylenes
Proteins
Anti oxidative activity
Anti-oxidant activities
Bioactive compounds
Canavalia ensiformis
Glass containers
Led combinations
Phenolic compounds
Polypropylene boxes
Ecology
antioxidant
Canavalia ensiformis extract
carotenoid
chlorophyll a
chlorophyll b
phenol derivative
polypropylene
sodium chloride
unclassified drug
antioxidant activity
antioxidant activity capacity
Article
biomass
blue light
callus
Canavalia ensiformis
concentration (parameter)
controlled study
in vitro study
metabolite
nonhuman
pH
plant growth
plant seed
principal component analysis
red light
description Background: Canavalia ensiformis is a legume native to Central and South America that has historically been a source of protein. Its main proteins, urease, and lectin have been extensively studied and are examples of bioactive compounds. In this work, the effect of pH and light effects on the growth of C. ensiformis were analyzed. Also, the bioactive compounds such as phenols, carotenoids, chlorophyll a/b, and the growth of callus biomass of C. ensiformis from the effect of different types of light treatments (red, blue and mixture) were evaluated. Likewise, the antioxidative activity of C. ensiformis extracts were studied and related to the production of bioactive compounds. For this, a culture of calluses obtained from seeds were carried out. For the light experiments, polypropylene boxes with red, blue, combination (1/3, 3/1 and 1/1 R-B, respectively) lights and white LED were used as control. In each treatment, three glass containers with 25 ml of MS salts containing 0.25 g of fresh callus were seeded. Results: The results have shown that the pH of the culture medium notably affects the increase in callogenic biomass. It shows that the pH of 5.5 shows better results in the callogenic growth of C. ensiformis with an average increase of 1.3051 g (198.04%), regarding the initial weight. It was found that the pH 5.5 and the 1/3 R-B LED combination had higher production of bioactive compounds and better antioxidant activity. At the same time, the red-light treatment was least effective. Conclusions: It was possible to find the ideal conditions of important growth under conditions of pH and light of C. ensiformis. Likewise, it is evaluated whether the production of compounds of interest, such as phenolic compounds and carotenoids, occurs under these conditions. The highest production of calluses occurs in the 1/3 R-B LED combined light treatment, which showed a significant increase in biomass, followed by B. From this study, it could be demonstrated that C. ensiformis produces compounds such as phenols and carotenoids in vitro culture that are essential for the antioxidant activity of the plant. © 2020 The Author(s).
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:30Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:30Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14726750
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5994
dc.identifier.doi.none.fl_str_mv 10.1186/s12896-020-00642-x
identifier_str_mv 14726750
10.1186/s12896-020-00642-x
url http://hdl.handle.net/11407/5994
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090817447&doi=10.1186%2fs12896-020-00642-x&partnerID=40&md5=8cc13c509e1af876e446cd45d3534352
dc.relation.citationvolume.none.fl_str_mv 20
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Carlini, C.R., Ligabue-Braun, R., Ureases as multifunctional toxic proteins: A review (2016) Toxicon, 110, pp. 90-109. , 1:CAS:528:DC%2BC28XpvF2k 26690979
Sá, C.A., Vieira, L.R., Pereira Almeida Filho, L.C., Real-Guerra, R., Lopes, F.C., Souza, T.M., Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease (2020) Food Chem Toxicol, 136, p. 110977. , 31759068
Sridhar, K.R., Seena, S., Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia - A comparative study (2006) Food Chemistry, 99 (2), pp. 267-288. , 1:CAS:528:DC%2BD28Xktlensbo%3D
Summer, J.B., The isolation and crystallization of the enzyme urease preliminary paper (1926) J Biol Chem, 69 (2), pp. 435-441
Fujiuchi, N., Matoba, N., Matsuda, R., Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression (2016) Front Bioeng Biotechnol, 4. , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781840/, [citado 20 de abril de 2020]
Debergh, P.C., Effects of agar brand and concentration on the tissue culture medium (1983) Physiol Plant, 59 (2), pp. 270-276. , 1:CAS:528:DyaL3sXlvFWrsbg%3D
Schenk, N., Hsiao, K.-C., Bornman, C.H., Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media (1991) Plant Cell Reports, 10 (3), pp. 115-119. , 1:CAS:528:DyaK3MXmsFWms7o%3D 24221488
Tuan, P.A., Thwe, A.A., Kim, Y.B., Kim, J.K., Kim, S.-J., Lee, S., Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) (2013) J Agric Food Chem, 61 (50), pp. 12356-12361. , 1:CAS:528:DC%2BC3sXhvVCisL3P 24274859
Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens (2017) Molecules, 22 (12), p. 2111. , 6150032
Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., Chaurasia, O.P., Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew (2018) J Photochemistry Photobiology B: Biol, 183, pp. 258-265. , 1:CAS:528:DC%2BC1cXptFSls7k%3D
Świeca, M., Dziki, D., Improvement in sprouted wheat flour functionality: Effect of time, temperature and elicitation (2015) Int J Food Sci Technol, 50 (9), pp. 2135-2142
Pasqua, G., Manes, F., Monacelli, B., Natale, L., Anselmi, S., Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco (2002) Plant Sci, 162 (6), pp. 947-955. , 1:CAS:528:DC%2BD38XksVSnsLo%3D
Raven, J.A., Smith, F.A., Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation (1976) New Phytol, 76 (3), pp. 415-431. , 1:CAS:528:DyaE28XktFOjt7o%3D
Lang, B., Kaiser, W.M., Solute content and energy status of roots of barley plants cultivated at different pH on nitrate- or ammonium-nitrogen (1994) New Phytol, 128 (3), pp. 451-459
Xiang, J., Zheng, J., Zhou, Z., Suo, H., Zhao, X., Zhou, X., Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs (2019) Chemical Engineering J, 356, pp. 236-244. , 1:CAS:528:DC%2BC1cXhs12nsb7L
Zhou, N., Gao, P., Yang, Y., Zhong, Y., Xia, M., Zhang, Y., Novel orange-red emitting phosphor Sr8ZnY(PO4)7:Sm3+ with enhanced emission based on Mg2+ and Al3+ incorporation for plant growth LED lighting (2019) J Taiwan Institute Chem Engineers, 104, pp. 360-368. , 1:CAS:528:DC%2BC1MXhvFaksrbJ
Zhou, Z., Zheng, J., Shi, R., Zhang, N., Chen, J., Zhang, R., Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation (2017) ACS Appl Mater Interfaces, 9 (7), pp. 6177-6185. , 1:CAS:528:DC%2BC2sXhsVaht78%3D 28116896
Wright, M., Experts examine plant response to SSL and market potential at horticultural conference (2019) LEDs Magazine, , https://www.ledsmagazine.com/manufacturing-services-testing/standards/article/16695503/experts-examine-plant-response-to-ssl-and-market-potential-at-horticultural-conference-magazine, [citado 5 de febrero de 2020]
Carvalho, R.F., Takaki, M., Azevedo, R.A., Plant pigments: The many faces of light perception (2011) Acta Physiol Plant, 33 (2), pp. 241-248. , 1:CAS:528:DC%2BC3MXltVKmtrg%3D
Abidi, F., Girault, T., Douillet, O., Guillemain, G., Sintes, G., Laffaire, M., Blue light effects on rose photosynthesis and photomorphogenesis (2013) Plant Biol, 15 (1), pp. 67-74. , 1:CAS:528:DC%2BC3sXjt1egt70%3D 22686322
Massa, G.D., Kim, H.-H., Wheeler, R.M., Mitchell, C.A., Plant Productivity in Response to LED Lighting (2008) HortScience, 43 (7), pp. 1951-1956
Nhut, D.T., Takamura, T., Watanabe, H., Okamoto, K., Tanaka, M., Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs) (2003) Plant Cell Tissue Organ Culture, 73 (1), pp. 43-52. , 1:CAS:528:DC%2BD3sXhslOktL4%3D
Li, H., Tang, C., Xu, Z., The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro (2013) Scientia Horticulturae, 150, pp. 117-124
Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., Xue, X., Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation (2017) Scientia Horticulturae, 223, pp. 44-52. , 1:CAS:528:DC%2BC2sXos1emt7w%3D
Eskins, K., Jiang, C.Z., Shibles, R., Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- And light- harvesting-deficient soybean mutant (1991) Physiol Plant, 83 (1), pp. 47-53. , 1:CAS:528:DyaK3MXmslKjsbc%3D
Leong, T.-Y., Anderson, J.M., Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis (1984) Biochimica et Biophysica Acta (BBA) - Bioenergetics, 766 (3), pp. 533-541. , 1:CAS:528:DyaL2cXlvVyhtbk%3D
Senger, H., Bauer, B., The influence of light quality on adaptation and function of the photosynthetic apparatus (1987) Photochem Photobiol, 45 (S1), pp. 939-946. , 1:CAS:528:DyaL2sXkvFentro%3D
Wang, X.Y., Xu, X.M., Cui, J., The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light (2015) Photosynthetica, 53 (2), pp. 213-222. , 1:CAS:528:DC%2BC2cXitV2gtLvJ
Costa, B.S., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M., Wilhelm, C., Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum (2013) J Exp Bot Enero de, 64 (2), pp. 483-493
Brown, C.S., Schuerger, A.C., Sager, J.C., Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting (1995) J Am Soc Hortic Sci, 120 (5), pp. 808-813. , 1:STN:280:DC%2BD3MnlvVOjsw%3D%3D 11540133
Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S., Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting (1997) J Exp Bot, 48 (7), pp. 1407-1413. , 1:CAS:528:DyaK2sXmtVKisbs%3D 11541074
Kato, M.C., Hikosaka, K., Hirose, T., Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition (2002) Photosynthesis Res, 72 (1), p. 65. , 1:CAS:528:DC%2BD38XkvFejsbo%3D
Jirakiattikul, Y., Rithichai, P., Songsri, O., Ruangnoo, S., Itharat, A., In vitro propagation and bioactive compound accumulation in regenerated shoots of Dioscorea birmanica Prain & Burkill (2016) Acta Physiol Plant, 38 (10), p. 249
Saldarriaga, J.F., López, J., Lopera, C., Botero, L.R., Efecto del pH y el peso inicial de implante sembrado en la multiplicación callogénica de Canavalia ensiformis (2014) Avances en Ciencias e Ingeniería, 5 (2), pp. 73-83. , 1:CAS:528:DC%2BC2cXhvFeks7nE
Williams, R.R., Taji, A.M., Winney, K.A., The effect of Ptilotus plant tissue on pH of in vitro media (1990) Plant Cell Tiss Organ Cult, 22 (3), pp. 153-158
Ruenroengklin, N., Zhong, J., Duan, X., Yang, B., Li, J., Jiang, Y., Effects of Various Temperatures and pH Values on the Extraction Yield of Phenolics from Litchi Fruit Pericarp Tissue and the Antioxidant Activity of the Extracted Anthocyanins (2008) Int J Mol Sci, 9 (7), pp. 1333-1341. , 1:CAS:528:DC%2BD1cXhtFKnsrnI 19325806 2635725
Isah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N., Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield (2018) Plant Cell Tiss Organ Cult, 132 (2), pp. 239-265. , 1:CAS:528:DC%2BC2sXhsl2jtb7F
Dussert, S., Verdeil, J.-L., Rival, A., Noirot, M., Buffard-Morel, J., Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses (1995) Plant Science, 106 (2), pp. 185-193. , 1:CAS:528:DyaK2MXkvVart7s%3D
Yatazawa, M., Furuhashi, K., Shimizu, M., Growth of callus tissue from rice-root in virto (1967) Plant Cell Physiol, 8 (3), pp. 363-373. , 1:CAS:528:DyaF2sXltVOmt7o%3D
Jayaraman, S., Daud, N.H., Halis, R., Mohamed, R., Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli (2014) J Forestry Res, 25 (3), pp. 535-540. , 1:CAS:528:DC%2BC2cXhtlWmsL3I
Rastogi, R., Sawhney, V.K., The Role of Plant Growth Regulators, Sucrose and pH in the Development of Floral Buds of Tomato (Lycopersicon esculentum Mill.) Cultured in vitro (1987) J Plant Physiol, 128 (3), pp. 285-295. , 1:CAS:528:DyaL2sXkslCns7Y%3D
Nagella, P., Murthy, H.N., Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A (2010) Bioresource Technology, 101 (17), pp. 6735-6739. , 1:CAS:528:DC%2BC3cXmt1amtLo%3D 20371175
Naik, P.M., Manohar, S.H., Praveen, N., Murthy, H.N., Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots (2010) Plant Cell Tiss Organ Cult, 100 (2), pp. 235-239
Majerus, F., Pareilleux, A., Production of indole alkaloids by gel-entrapped cells of Catharanthus roseus in a continuous flow reactor (1986) Biotechnol Lett, 8 (12), pp. 863-866. , 1:CAS:528:DyaL2sXhtlKqtLg%3D
Karsai, I., Bedo, Z., Hayes, P.M., Effect of induction medium pH and maltose concentration on in vitro androgenesis of hexaploid winter triticale and wheat (1994) Plant Cell Tiss Organ Cult, 39 (1), pp. 49-53. , 1:CAS:528:DyaK2MXkt1Cju7k%3D
Smith, D.L., Krikorian, A.D., Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot (1990) Physiol Plant, 80 (3), pp. 329-336. , 1:CAS:528:DyaK3MXjvFehtg%3D%3D 11537852
Sánchez, F., Honrubia, M., Torres, P., Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests (2001) Cryptogamie Mycologie, 22 (4), pp. 243-258
Pfündel, E., Baake, E., A quantitative description of fluorescence excitation spectra in intact bean leaves greened under intermittent light (1990) Photosynth Res, 26 (1), pp. 19-28. , 24420406
Ahmed, H.A., Yu-Xin, T., Qi-Chang, Y., Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review (2020) South Afr J Botany, 130, pp. 75-89. , 1:CAS:528:DC%2BC1MXisVGgt73O
Cosgrove, D.J., Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, and GENERAL CHARACTERISTICS (1981) Plant Physiol, 67 (3), pp. 584-590. , 1:STN:280:DC%2BC3cnhtlyqsA%3D%3D 16661718 425729
Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content (2005) Plant Physiology, 137 (1), pp. 199-208. , 1:CAS:528:DC%2BD2MXhtFOlsr0%3D 15618424 548851
Li, Q., Kubota, C., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce (2009) Environ Experimental Botany, 67 (1), pp. 59-64. , 1:CAS:528:DC%2BD1MXhtV2qs7jL
Senger, H., The effect of blue light on plants and microorganisms (1982) Photochem Photobiol, 35 (6), pp. 911-920. , 1:CAS:528:DyaL38XkvVylsLk%3D
Hoffmann, A.M., Noga, G., Hunsche, M., Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves (2016) Plant Growth Regul, 79 (3), pp. 275-285. , 1:CAS:528:DC%2BC2MXhslGmsbvK
Chiappero, J., Del, R.C.L., Sosa Alderete, L.G., Palermo, T.B., Banchio, E., Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content (2019) Industrial Crops and Products, 139, p. 111553. , 1:CAS:528:DC%2BC1MXhtlyitrrK
Awika, J.M., Rooney, L.W., Wu, X., Prior, R.L., Cisneros-Zevallos, L., Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products (2003) J Agric Food Chem, 51 (23), pp. 6657-6662. , 1:CAS:528:DC%2BD3sXns1GgtLg%3D 14582956
Agati, G., Tattini, M., Multiple functional roles of flavonoids in photoprotection (2010) New Phytol, 186 (4), pp. 786-793. , 1:CAS:528:DC%2BC3cXotVWhtLc%3D
Khalil, N., Fekry, M., Bishr, M., El-Zalabani, S., Salama, O., Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L (2018) Plant Physiol Biochem, 123, pp. 65-74. , 1:CAS:528:DC%2BC2sXhvFGmtLnI 29223848
Oh, J., Jo, H., Cho, A.R., Kim, S.-J., Han, J., Antioxidant and antimicrobial activities of various leafy herbal teas (2013) Food Control, 31 (2), pp. 403-409. , 1:CAS:528:DC%2BC3sXhsVyrt7c%3D
Riachi, L.G., De Maria, C.A.B., Peppermint antioxidants revisited (2015) Food Chemistry, 176, pp. 72-81. , 1:CAS:528:DC%2BC2cXitFOntb3P 25624208
Caprioli, G., Maggi, F., Bendif, H., Miara, M.D., Cinque, B., Lizzi, A.R., Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage (2018) Food Funct, 9 (7), pp. 3665-3672. , 1:CAS:528:DC%2BC1cXhtVKrt7nK 29932202
Jabri Karoui, I., Msaada, K., Abderrabba, M., Marzouk, B., Bioactive compounds and antioxidant activities of ThymeEnriched refined corn oil (2016) J Agr Sci Tech, 18, pp. 79-91
Čanadanović-Brunet, J.M., Djilas, S.M., Ćetković, G.S., Tumbas, V.T., Mandić, A.I., Čanadanović, V.M., Antioxidant activities of different Teucrium montanum L. extracts (2006) Int J Food Sci Technol, 41 (6), pp. 667-673
Buchanan, B.B., Gruissem, W., Jones, R.L., (2002) Editores. Biochemistry & Molecular Biology of Plants. 1st Ed, p. 1408. , Wiley Hoboken
Pallardy, S.G., (2007) Physiology of Woody Plants. Edición: 3, p. 464. , Academic Press Amsterdam
Murashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol Plant, 15 (3), pp. 473-497. , 1:CAS:528:DyaF3sXksFKm
Misra, P., Toppo, D.D., Gupta, N., Chakrabarty, D., Tuli, R., Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite {Jatropha} curcas {L} (2010) Biomass Bioenergy, 34 (12), pp. 1861-1869. , 1:CAS:528:DC%2BC3cXhtl2gtbvN
Wellburn, A.R., The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution (1994) J Plant Physiol, 144 (3), pp. 307-313. , 1:CAS:528:DyaK2cXmsFShsbY%3D
Zapata, K., Cortes, F.B., Rojano, B.A., Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca) (2013) Información Tecnológica, 24 (5), pp. 103-112. , 1:CAS:528:DC%2BC2cXlsVKrtr0%3D
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv BioMed Central Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv BioMed Central Ltd
dc.source.none.fl_str_mv BMC Biotechnology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159245673758720
spelling 20202021-02-05T14:58:30Z2021-02-05T14:58:30Z14726750http://hdl.handle.net/11407/599410.1186/s12896-020-00642-xBackground: Canavalia ensiformis is a legume native to Central and South America that has historically been a source of protein. Its main proteins, urease, and lectin have been extensively studied and are examples of bioactive compounds. In this work, the effect of pH and light effects on the growth of C. ensiformis were analyzed. Also, the bioactive compounds such as phenols, carotenoids, chlorophyll a/b, and the growth of callus biomass of C. ensiformis from the effect of different types of light treatments (red, blue and mixture) were evaluated. Likewise, the antioxidative activity of C. ensiformis extracts were studied and related to the production of bioactive compounds. For this, a culture of calluses obtained from seeds were carried out. For the light experiments, polypropylene boxes with red, blue, combination (1/3, 3/1 and 1/1 R-B, respectively) lights and white LED were used as control. In each treatment, three glass containers with 25 ml of MS salts containing 0.25 g of fresh callus were seeded. Results: The results have shown that the pH of the culture medium notably affects the increase in callogenic biomass. It shows that the pH of 5.5 shows better results in the callogenic growth of C. ensiformis with an average increase of 1.3051 g (198.04%), regarding the initial weight. It was found that the pH 5.5 and the 1/3 R-B LED combination had higher production of bioactive compounds and better antioxidant activity. At the same time, the red-light treatment was least effective. Conclusions: It was possible to find the ideal conditions of important growth under conditions of pH and light of C. ensiformis. Likewise, it is evaluated whether the production of compounds of interest, such as phenolic compounds and carotenoids, occurs under these conditions. The highest production of calluses occurs in the 1/3 R-B LED combined light treatment, which showed a significant increase in biomass, followed by B. From this study, it could be demonstrated that C. ensiformis produces compounds such as phenols and carotenoids in vitro culture that are essential for the antioxidant activity of the plant. © 2020 The Author(s).engBioMed Central LtdIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090817447&doi=10.1186%2fs12896-020-00642-x&partnerID=40&md5=8cc13c509e1af876e446cd45d3534352201Carlini, C.R., Ligabue-Braun, R., Ureases as multifunctional toxic proteins: A review (2016) Toxicon, 110, pp. 90-109. , 1:CAS:528:DC%2BC28XpvF2k 26690979Sá, C.A., Vieira, L.R., Pereira Almeida Filho, L.C., Real-Guerra, R., Lopes, F.C., Souza, T.M., Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease (2020) Food Chem Toxicol, 136, p. 110977. , 31759068Sridhar, K.R., Seena, S., Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia - A comparative study (2006) Food Chemistry, 99 (2), pp. 267-288. , 1:CAS:528:DC%2BD28Xktlensbo%3DSummer, J.B., The isolation and crystallization of the enzyme urease preliminary paper (1926) J Biol Chem, 69 (2), pp. 435-441Fujiuchi, N., Matoba, N., Matsuda, R., Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression (2016) Front Bioeng Biotechnol, 4. , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781840/, [citado 20 de abril de 2020]Debergh, P.C., Effects of agar brand and concentration on the tissue culture medium (1983) Physiol Plant, 59 (2), pp. 270-276. , 1:CAS:528:DyaL3sXlvFWrsbg%3DSchenk, N., Hsiao, K.-C., Bornman, C.H., Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media (1991) Plant Cell Reports, 10 (3), pp. 115-119. , 1:CAS:528:DyaK3MXmsFWms7o%3D 24221488Tuan, P.A., Thwe, A.A., Kim, Y.B., Kim, J.K., Kim, S.-J., Lee, S., Effects of White, Blue, and Red Light-Emitting Diodes on Carotenoid Biosynthetic Gene Expression Levels and Carotenoid Accumulation in Sprouts of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) (2013) J Agric Food Chem, 61 (50), pp. 12356-12361. , 1:CAS:528:DC%2BC3sXhvVCisL3P 24274859Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens (2017) Molecules, 22 (12), p. 2111. , 6150032Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., Chaurasia, O.P., Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew (2018) J Photochemistry Photobiology B: Biol, 183, pp. 258-265. , 1:CAS:528:DC%2BC1cXptFSls7k%3DŚwieca, M., Dziki, D., Improvement in sprouted wheat flour functionality: Effect of time, temperature and elicitation (2015) Int J Food Sci Technol, 50 (9), pp. 2135-2142Pasqua, G., Manes, F., Monacelli, B., Natale, L., Anselmi, S., Effects of the culture medium pH and ion uptake in in vitro vegetative organogenesis in thin cell layers of tobacco (2002) Plant Sci, 162 (6), pp. 947-955. , 1:CAS:528:DC%2BD38XksVSnsLo%3DRaven, J.A., Smith, F.A., Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation (1976) New Phytol, 76 (3), pp. 415-431. , 1:CAS:528:DyaE28XktFOjt7o%3DLang, B., Kaiser, W.M., Solute content and energy status of roots of barley plants cultivated at different pH on nitrate- or ammonium-nitrogen (1994) New Phytol, 128 (3), pp. 451-459Xiang, J., Zheng, J., Zhou, Z., Suo, H., Zhao, X., Zhou, X., Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs (2019) Chemical Engineering J, 356, pp. 236-244. , 1:CAS:528:DC%2BC1cXhs12nsb7LZhou, N., Gao, P., Yang, Y., Zhong, Y., Xia, M., Zhang, Y., Novel orange-red emitting phosphor Sr8ZnY(PO4)7:Sm3+ with enhanced emission based on Mg2+ and Al3+ incorporation for plant growth LED lighting (2019) J Taiwan Institute Chem Engineers, 104, pp. 360-368. , 1:CAS:528:DC%2BC1MXhvFaksrbJZhou, Z., Zheng, J., Shi, R., Zhang, N., Chen, J., Zhang, R., Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation (2017) ACS Appl Mater Interfaces, 9 (7), pp. 6177-6185. , 1:CAS:528:DC%2BC2sXhsVaht78%3D 28116896Wright, M., Experts examine plant response to SSL and market potential at horticultural conference (2019) LEDs Magazine, , https://www.ledsmagazine.com/manufacturing-services-testing/standards/article/16695503/experts-examine-plant-response-to-ssl-and-market-potential-at-horticultural-conference-magazine, [citado 5 de febrero de 2020]Carvalho, R.F., Takaki, M., Azevedo, R.A., Plant pigments: The many faces of light perception (2011) Acta Physiol Plant, 33 (2), pp. 241-248. , 1:CAS:528:DC%2BC3MXltVKmtrg%3DAbidi, F., Girault, T., Douillet, O., Guillemain, G., Sintes, G., Laffaire, M., Blue light effects on rose photosynthesis and photomorphogenesis (2013) Plant Biol, 15 (1), pp. 67-74. , 1:CAS:528:DC%2BC3sXjt1egt70%3D 22686322Massa, G.D., Kim, H.-H., Wheeler, R.M., Mitchell, C.A., Plant Productivity in Response to LED Lighting (2008) HortScience, 43 (7), pp. 1951-1956Nhut, D.T., Takamura, T., Watanabe, H., Okamoto, K., Tanaka, M., Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs) (2003) Plant Cell Tissue Organ Culture, 73 (1), pp. 43-52. , 1:CAS:528:DC%2BD3sXhslOktL4%3DLi, H., Tang, C., Xu, Z., The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro (2013) Scientia Horticulturae, 150, pp. 117-124Chen, X., Yang, Q., Song, W., Wang, L., Guo, W., Xue, X., Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation (2017) Scientia Horticulturae, 223, pp. 44-52. , 1:CAS:528:DC%2BC2sXos1emt7w%3DEskins, K., Jiang, C.Z., Shibles, R., Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- And light- harvesting-deficient soybean mutant (1991) Physiol Plant, 83 (1), pp. 47-53. , 1:CAS:528:DyaK3MXmslKjsbc%3DLeong, T.-Y., Anderson, J.M., Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis (1984) Biochimica et Biophysica Acta (BBA) - Bioenergetics, 766 (3), pp. 533-541. , 1:CAS:528:DyaL2cXlvVyhtbk%3DSenger, H., Bauer, B., The influence of light quality on adaptation and function of the photosynthetic apparatus (1987) Photochem Photobiol, 45 (S1), pp. 939-946. , 1:CAS:528:DyaL2sXkvFentro%3DWang, X.Y., Xu, X.M., Cui, J., The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light (2015) Photosynthetica, 53 (2), pp. 213-222. , 1:CAS:528:DC%2BC2cXitV2gtLvJCosta, B.S., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M., Wilhelm, C., Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum (2013) J Exp Bot Enero de, 64 (2), pp. 483-493Brown, C.S., Schuerger, A.C., Sager, J.C., Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting (1995) J Am Soc Hortic Sci, 120 (5), pp. 808-813. , 1:STN:280:DC%2BD3MnlvVOjsw%3D%3D 11540133Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S., Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting (1997) J Exp Bot, 48 (7), pp. 1407-1413. , 1:CAS:528:DyaK2sXmtVKisbs%3D 11541074Kato, M.C., Hikosaka, K., Hirose, T., Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition (2002) Photosynthesis Res, 72 (1), p. 65. , 1:CAS:528:DC%2BD38XkvFejsbo%3DJirakiattikul, Y., Rithichai, P., Songsri, O., Ruangnoo, S., Itharat, A., In vitro propagation and bioactive compound accumulation in regenerated shoots of Dioscorea birmanica Prain & Burkill (2016) Acta Physiol Plant, 38 (10), p. 249Saldarriaga, J.F., López, J., Lopera, C., Botero, L.R., Efecto del pH y el peso inicial de implante sembrado en la multiplicación callogénica de Canavalia ensiformis (2014) Avances en Ciencias e Ingeniería, 5 (2), pp. 73-83. , 1:CAS:528:DC%2BC2cXhvFeks7nEWilliams, R.R., Taji, A.M., Winney, K.A., The effect of Ptilotus plant tissue on pH of in vitro media (1990) Plant Cell Tiss Organ Cult, 22 (3), pp. 153-158Ruenroengklin, N., Zhong, J., Duan, X., Yang, B., Li, J., Jiang, Y., Effects of Various Temperatures and pH Values on the Extraction Yield of Phenolics from Litchi Fruit Pericarp Tissue and the Antioxidant Activity of the Extracted Anthocyanins (2008) Int J Mol Sci, 9 (7), pp. 1333-1341. , 1:CAS:528:DC%2BD1cXhtFKnsrnI 19325806 2635725Isah, T., Umar, S., Mujib, A., Sharma, M.P., Rajasekharan, P.E., Zafar, N., Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield (2018) Plant Cell Tiss Organ Cult, 132 (2), pp. 239-265. , 1:CAS:528:DC%2BC2sXhsl2jtb7FDussert, S., Verdeil, J.-L., Rival, A., Noirot, M., Buffard-Morel, J., Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses (1995) Plant Science, 106 (2), pp. 185-193. , 1:CAS:528:DyaK2MXkvVart7s%3DYatazawa, M., Furuhashi, K., Shimizu, M., Growth of callus tissue from rice-root in virto (1967) Plant Cell Physiol, 8 (3), pp. 363-373. , 1:CAS:528:DyaF2sXltVOmt7o%3DJayaraman, S., Daud, N.H., Halis, R., Mohamed, R., Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli (2014) J Forestry Res, 25 (3), pp. 535-540. , 1:CAS:528:DC%2BC2cXhtlWmsL3IRastogi, R., Sawhney, V.K., The Role of Plant Growth Regulators, Sucrose and pH in the Development of Floral Buds of Tomato (Lycopersicon esculentum Mill.) Cultured in vitro (1987) J Plant Physiol, 128 (3), pp. 285-295. , 1:CAS:528:DyaL2sXkslCns7Y%3DNagella, P., Murthy, H.N., Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A (2010) Bioresource Technology, 101 (17), pp. 6735-6739. , 1:CAS:528:DC%2BC3cXmt1amtLo%3D 20371175Naik, P.M., Manohar, S.H., Praveen, N., Murthy, H.N., Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots (2010) Plant Cell Tiss Organ Cult, 100 (2), pp. 235-239Majerus, F., Pareilleux, A., Production of indole alkaloids by gel-entrapped cells of Catharanthus roseus in a continuous flow reactor (1986) Biotechnol Lett, 8 (12), pp. 863-866. , 1:CAS:528:DyaL2sXhtlKqtLg%3DKarsai, I., Bedo, Z., Hayes, P.M., Effect of induction medium pH and maltose concentration on in vitro androgenesis of hexaploid winter triticale and wheat (1994) Plant Cell Tiss Organ Cult, 39 (1), pp. 49-53. , 1:CAS:528:DyaK2MXkt1Cju7k%3DSmith, D.L., Krikorian, A.D., Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot (1990) Physiol Plant, 80 (3), pp. 329-336. , 1:CAS:528:DyaK3MXjvFehtg%3D%3D 11537852Sánchez, F., Honrubia, M., Torres, P., Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests (2001) Cryptogamie Mycologie, 22 (4), pp. 243-258Pfündel, E., Baake, E., A quantitative description of fluorescence excitation spectra in intact bean leaves greened under intermittent light (1990) Photosynth Res, 26 (1), pp. 19-28. , 24420406Ahmed, H.A., Yu-Xin, T., Qi-Chang, Y., Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review (2020) South Afr J Botany, 130, pp. 75-89. , 1:CAS:528:DC%2BC1MXisVGgt73OCosgrove, D.J., Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, and GENERAL CHARACTERISTICS (1981) Plant Physiol, 67 (3), pp. 584-590. , 1:STN:280:DC%2BC3cnhtlyqsA%3D%3D 16661718 425729Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content (2005) Plant Physiology, 137 (1), pp. 199-208. , 1:CAS:528:DC%2BD2MXhtFOlsr0%3D 15618424 548851Li, Q., Kubota, C., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce (2009) Environ Experimental Botany, 67 (1), pp. 59-64. , 1:CAS:528:DC%2BD1MXhtV2qs7jLSenger, H., The effect of blue light on plants and microorganisms (1982) Photochem Photobiol, 35 (6), pp. 911-920. , 1:CAS:528:DyaL38XkvVylsLk%3DHoffmann, A.M., Noga, G., Hunsche, M., Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves (2016) Plant Growth Regul, 79 (3), pp. 275-285. , 1:CAS:528:DC%2BC2MXhslGmsbvKChiappero, J., Del, R.C.L., Sosa Alderete, L.G., Palermo, T.B., Banchio, E., Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content (2019) Industrial Crops and Products, 139, p. 111553. , 1:CAS:528:DC%2BC1MXhtlyitrrKAwika, J.M., Rooney, L.W., Wu, X., Prior, R.L., Cisneros-Zevallos, L., Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products (2003) J Agric Food Chem, 51 (23), pp. 6657-6662. , 1:CAS:528:DC%2BD3sXns1GgtLg%3D 14582956Agati, G., Tattini, M., Multiple functional roles of flavonoids in photoprotection (2010) New Phytol, 186 (4), pp. 786-793. , 1:CAS:528:DC%2BC3cXotVWhtLc%3DKhalil, N., Fekry, M., Bishr, M., El-Zalabani, S., Salama, O., Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L (2018) Plant Physiol Biochem, 123, pp. 65-74. , 1:CAS:528:DC%2BC2sXhvFGmtLnI 29223848Oh, J., Jo, H., Cho, A.R., Kim, S.-J., Han, J., Antioxidant and antimicrobial activities of various leafy herbal teas (2013) Food Control, 31 (2), pp. 403-409. , 1:CAS:528:DC%2BC3sXhsVyrt7c%3DRiachi, L.G., De Maria, C.A.B., Peppermint antioxidants revisited (2015) Food Chemistry, 176, pp. 72-81. , 1:CAS:528:DC%2BC2cXitFOntb3P 25624208Caprioli, G., Maggi, F., Bendif, H., Miara, M.D., Cinque, B., Lizzi, A.R., Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage (2018) Food Funct, 9 (7), pp. 3665-3672. , 1:CAS:528:DC%2BC1cXhtVKrt7nK 29932202Jabri Karoui, I., Msaada, K., Abderrabba, M., Marzouk, B., Bioactive compounds and antioxidant activities of ThymeEnriched refined corn oil (2016) J Agr Sci Tech, 18, pp. 79-91Čanadanović-Brunet, J.M., Djilas, S.M., Ćetković, G.S., Tumbas, V.T., Mandić, A.I., Čanadanović, V.M., Antioxidant activities of different Teucrium montanum L. extracts (2006) Int J Food Sci Technol, 41 (6), pp. 667-673Buchanan, B.B., Gruissem, W., Jones, R.L., (2002) Editores. Biochemistry & Molecular Biology of Plants. 1st Ed, p. 1408. , Wiley HobokenPallardy, S.G., (2007) Physiology of Woody Plants. Edición: 3, p. 464. , Academic Press AmsterdamMurashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol Plant, 15 (3), pp. 473-497. , 1:CAS:528:DyaF3sXksFKmMisra, P., Toppo, D.D., Gupta, N., Chakrabarty, D., Tuli, R., Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite {Jatropha} curcas {L} (2010) Biomass Bioenergy, 34 (12), pp. 1861-1869. , 1:CAS:528:DC%2BC3cXhtl2gtbvNWellburn, A.R., The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution (1994) J Plant Physiol, 144 (3), pp. 307-313. , 1:CAS:528:DyaK2cXmsFShsbY%3DZapata, K., Cortes, F.B., Rojano, B.A., Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca) (2013) Información Tecnológica, 24 (5), pp. 103-112. , 1:CAS:528:DC%2BC2cXlsVKrtr0%3DBMC BiotechnologyBioactive compoundsC. ensiformisIn vitro cultureLED blueLED redpHAntioxidantsBiomassLight emitting diodesMetabolitesPhenolsPigmentsPlants (botany)PolypropylenesProteinsAnti oxidative activityAnti-oxidant activitiesBioactive compoundsCanavalia ensiformisGlass containersLed combinationsPhenolic compoundsPolypropylene boxesEcologyantioxidantCanavalia ensiformis extractcarotenoidchlorophyll achlorophyll bphenol derivativepolypropylenesodium chlorideunclassified drugantioxidant activityantioxidant activity capacityArticlebiomassblue lightcallusCanavalia ensiformisconcentration (parameter)controlled studyin vitro studymetabolitenonhumanpHplant growthplant seedprincipal component analysisred lightPreliminary study of the production of metabolites from in vitro cultures of C. ensiformisArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Saldarriaga, J.F., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, Carrera 1Este #19A-40, Bogotá, 111711, ColombiaCruz, Y., Dept. of Civil and Environmental Engineering, Universidad de Los Andes, Carrera 1Este #19A-40, Bogotá, 111711, ColombiaLópez, J.E., Dept. of Environmental Engineering, Universidad de Medellín, Carrera 87 #30-65, Medellín, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecSaldarriaga J.F.Cruz Y.López J.E.11407/5994oai:repository.udem.edu.co:11407/59942021-02-05 09:58:30.237Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co