Statistical Theory of Shape Under Elliptical Models via Polar Decompositions

A new model of statistical shape theory under elliptical models is proposed by using the polar decomposition. This work completes the group of SVD and QR shape densities obtained from the transpose of the square root of a non singular Wishart matrix. The associated non isotropic and non central pola...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4900
Acceso en línea:
http://hdl.handle.net/11407/4900
Palabra clave:
Maximum likelihood estimators
Non-central and non-isotropic shape density
Polar decomposition.
Shape theory
Wishart type distributions
Zonal polynomials
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c3ab0bc70fd2e05724b83c6889a2d4d1
oai_identifier_str oai:repository.udem.edu.co:11407/4900
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2018-10-31T13:44:23Z2018-10-31T13:44:23Z20180976836Xhttp://hdl.handle.net/11407/490010.1007/s13171-018-0132-zA new model of statistical shape theory under elliptical models is proposed by using the polar decomposition. This work completes the group of SVD and QR shape densities obtained from the transpose of the square root of a non singular Wishart matrix. The associated non isotropic and non central polar shape distributions are set in the context of consistent computable series of zonal polynomials. Then the inference procedures with elliptical assumptions can be performed at the same computational cost of the published routines based on Gaussian models. As an example of the technique, a classical application in Biology is studied under three models, the usual Gaussian and two Kotz type models; then the best model is selected by a modified BIC; criterion, and a test for equality in polar shapes is performed. The published results for this landmark data under isotropic Gaussian models and procrustes theory are also discussed. © 2018 Indian Statistical InstituteengSpringer IndiaCiencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85047834801&doi=10.1007%2fs13171-018-0132-z&partnerID=40&md5=760e06e85d9e9f72cd8aa1353e73fd11121Sankhya AScopusMaximum likelihood estimatorsNon-central and non-isotropic shape densityPolar decomposition.Shape theoryWishart type distributionsZonal polynomialsStatistical Theory of Shape Under Elliptical Models via Polar DecompositionsArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1daíz-García, J.A., Universidad Autónoma de Chihuahua;Caro-Lopera, F.J., Universidad de Medellíndaíz-García J.A.Caro-Lopera F.J.http://purl.org/coar/access_right/c_16ec11407/4900oai:repository.udem.edu.co:11407/49002020-05-27 17:37:22.451Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
title Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
spellingShingle Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
Maximum likelihood estimators
Non-central and non-isotropic shape density
Polar decomposition.
Shape theory
Wishart type distributions
Zonal polynomials
title_short Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
title_full Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
title_fullStr Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
title_full_unstemmed Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
title_sort Statistical Theory of Shape Under Elliptical Models via Polar Decompositions
dc.contributor.affiliation.spa.fl_str_mv daíz-García, J.A., Universidad Autónoma de Chihuahua;Caro-Lopera, F.J., Universidad de Medellín
dc.subject.spa.fl_str_mv Maximum likelihood estimators
Non-central and non-isotropic shape density
Polar decomposition.
Shape theory
Wishart type distributions
Zonal polynomials
topic Maximum likelihood estimators
Non-central and non-isotropic shape density
Polar decomposition.
Shape theory
Wishart type distributions
Zonal polynomials
description A new model of statistical shape theory under elliptical models is proposed by using the polar decomposition. This work completes the group of SVD and QR shape densities obtained from the transpose of the square root of a non singular Wishart matrix. The associated non isotropic and non central polar shape distributions are set in the context of consistent computable series of zonal polynomials. Then the inference procedures with elliptical assumptions can be performed at the same computational cost of the published routines based on Gaussian models. As an example of the technique, a classical application in Biology is studied under three models, the usual Gaussian and two Kotz type models; then the best model is selected by a modified BIC; criterion, and a test for equality in polar shapes is performed. The published results for this landmark data under isotropic Gaussian models and procrustes theory are also discussed. © 2018 Indian Statistical Institute
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:23Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:23Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article in Press
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 0976836X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4900
dc.identifier.doi.none.fl_str_mv 10.1007/s13171-018-0132-z
identifier_str_mv 0976836X
10.1007/s13171-018-0132-z
url http://hdl.handle.net/11407/4900
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047834801&doi=10.1007%2fs13171-018-0132-z&partnerID=40&md5=760e06e85d9e9f72cd8aa1353e73fd11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.ispartofes.spa.fl_str_mv Sankhya A
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Springer India
dc.publisher.program.spa.fl_str_mv Ciencias Básicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159174849789952