Integration of transparent insulation materials into solar collector devices

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4338
Acceso en línea:
http://hdl.handle.net/11407/4338
Palabra clave:
Efficiency
Solar collector
Thermal losses
Transparent insulation material (TIM)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c30d4e970f49874e5817451c3cc3ce0e
oai_identifier_str oai:repository.udem.edu.co:11407/4338
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Integration of transparent insulation materials into solar collector devices
title Integration of transparent insulation materials into solar collector devices
spellingShingle Integration of transparent insulation materials into solar collector devices
Efficiency
Solar collector
Thermal losses
Transparent insulation material (TIM)
title_short Integration of transparent insulation materials into solar collector devices
title_full Integration of transparent insulation materials into solar collector devices
title_fullStr Integration of transparent insulation materials into solar collector devices
title_full_unstemmed Integration of transparent insulation materials into solar collector devices
title_sort Integration of transparent insulation materials into solar collector devices
dc.contributor.affiliation.spa.fl_str_mv Osorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia
Rivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, Colombia
Girurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States
Yang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States
Hovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United States
Ordonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States
dc.subject.keyword.eng.fl_str_mv Efficiency
Solar collector
Thermal losses
Transparent insulation material (TIM)
topic Efficiency
Solar collector
Thermal losses
Transparent insulation material (TIM)
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:49Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:49Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 0038092X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4338
dc.identifier.doi.none.fl_str_mv 10.1016/j.solener.2017.03.011
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 0038092X
10.1016/j.solener.2017.03.011
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4338
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378df
dc.relation.ispartofes.spa.fl_str_mv Solar Energy
dc.relation.references.spa.fl_str_mv Atkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122
Bahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368
Bejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015)
Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368
Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209
Capeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187
Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588
Chwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210
Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC Press
Falcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National Laboratories
Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285
Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721
Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169
Garbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106
Ghoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105
Girurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42
Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344
Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313
Ho, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664
Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846
Ho, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970
Kalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295
Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306
Karuppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8
Karwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546
Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223
Kumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812
Lata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002
Lim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572
Londoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86
Muñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149
Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257
Ordonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934
Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368
Ozisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACES
Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438
Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513
Rommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380
Saxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890
(2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017)
Sharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435
Soo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083
Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550
Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110
Wagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier Ltd
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4338/1/Articulo.html
bitstream.checksum.fl_str_mv 92ace6f1b10ed94ff51816d56da957f6
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159131911651328
spelling 2017-12-19T19:36:49Z2017-12-19T19:36:49Z20170038092Xhttp://hdl.handle.net/11407/433810.1016/j.solener.2017.03.011reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínengElsevier LtdFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378dfSolar EnergyAtkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122Bahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368Bejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015)Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209Capeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588Chwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC PressFalcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National LaboratoriesFarooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169Garbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106Ghoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105Girurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313Ho, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846Ho, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970Kalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306Karuppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8Karwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223Kumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812Lata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002Lim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572Londoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86Muñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257Ordonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368Ozisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACESRodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513Rommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380Saxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890(2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017)Sharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435Soo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110Wagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811ScopusIntegration of transparent insulation materials into solar collector devicesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Osorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, ColombiaRivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, ColombiaGirurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesYang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesHovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United StatesOrdonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesOsorio J.D.Rivera-Alvarez A.Girurugwiro P.Yang S.Hovsapian R.Ordonez J.C.Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesFacultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, ColombiaIngeniería Térmica Ltda, Medellín, ColombiaIdaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United StatesEfficiencySolar collectorThermal lossesTransparent insulation material (TIM)The integration of Transparent Insulation Materials (TIMs) into Flat Plate Collectors (FPCs), Parabolic Trough Collectors (PTCs), and Central Receiver (CR) collectors is studied in this paper. A general model including optical and thermal analyses is developed. The effects of TIM's properties, such as the emittance, thermal conductivity, extinction coefficient, and thickness, on the collectors’ performance, are analyzed. At low absorber temperatures, performances of traditional-type collectors are relatively high. The efficiency of these collectors reduces dramatically at high temperatures due to the increment in heat losses. The incorporation of a TIM decreases thermal losses, leading to higher collectors’ efficiencies at high absorber temperatures. The main goal of this study is to determine the critical operation temperature from which thermal losses reduction overcome the optical efficiency losses due to a TIM integration. In general, for high performance collectors, TIMs are characterized by low emittances and thermal conductivities, high transmittances, and low extinction coefficients. © 2017 Elsevier Ltdhttp://purl.org/coar/access_right/c_16ecORIGINALArticulo.htmltext/html661http://repository.udem.edu.co/bitstream/11407/4338/1/Articulo.html92ace6f1b10ed94ff51816d56da957f6MD5111407/4338oai:repository.udem.edu.co:11407/43382020-05-27 16:20:12.644Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co