Integration of transparent insulation materials into solar collector devices
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4338
- Acceso en línea:
- http://hdl.handle.net/11407/4338
- Palabra clave:
- Efficiency
Solar collector
Thermal losses
Transparent insulation material (TIM)
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_c30d4e970f49874e5817451c3cc3ce0e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4338 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Integration of transparent insulation materials into solar collector devices |
title |
Integration of transparent insulation materials into solar collector devices |
spellingShingle |
Integration of transparent insulation materials into solar collector devices Efficiency Solar collector Thermal losses Transparent insulation material (TIM) |
title_short |
Integration of transparent insulation materials into solar collector devices |
title_full |
Integration of transparent insulation materials into solar collector devices |
title_fullStr |
Integration of transparent insulation materials into solar collector devices |
title_full_unstemmed |
Integration of transparent insulation materials into solar collector devices |
title_sort |
Integration of transparent insulation materials into solar collector devices |
dc.contributor.affiliation.spa.fl_str_mv |
Osorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia Rivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, Colombia Girurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States Yang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States Hovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United States Ordonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States |
dc.subject.keyword.eng.fl_str_mv |
Efficiency Solar collector Thermal losses Transparent insulation material (TIM) |
topic |
Efficiency Solar collector Thermal losses Transparent insulation material (TIM) |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:49Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:49Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
0038092X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4338 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.solener.2017.03.011 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
0038092X 10.1016/j.solener.2017.03.011 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4338 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378df |
dc.relation.ispartofes.spa.fl_str_mv |
Solar Energy |
dc.relation.references.spa.fl_str_mv |
Atkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122 Bahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368 Bejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015) Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368 Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209 Capeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187 Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588 Chwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210 Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC Press Falcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National Laboratories Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285 Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721 Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169 Garbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106 Ghoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105 Girurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42 Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344 Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313 Ho, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664 Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846 Ho, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970 Kalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295 Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306 Karuppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8 Karwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546 Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223 Kumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812 Lata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002 Lim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572 Londoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86 Muñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149 Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257 Ordonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934 Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368 Ozisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACES Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438 Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513 Rommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380 Saxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890 (2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017) Sharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435 Soo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083 Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550 Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110 Wagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4338/1/Articulo.html |
bitstream.checksum.fl_str_mv |
92ace6f1b10ed94ff51816d56da957f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159131911651328 |
spelling |
2017-12-19T19:36:49Z2017-12-19T19:36:49Z20170038092Xhttp://hdl.handle.net/11407/433810.1016/j.solener.2017.03.011reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínengElsevier LtdFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378dfSolar EnergyAtkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122Bahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368Bejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015)Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209Capeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588Chwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC PressFalcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National LaboratoriesFarooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169Garbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106Ghoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105Girurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313Ho, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846Ho, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970Kalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306Karuppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8Karwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223Kumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812Lata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002Lim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572Londoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86Muñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257Ordonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368Ozisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACESRodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513Rommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380Saxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890(2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017)Sharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435Soo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110Wagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811ScopusIntegration of transparent insulation materials into solar collector devicesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Osorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, ColombiaRivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, ColombiaGirurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesYang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesHovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United StatesOrdonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesOsorio J.D.Rivera-Alvarez A.Girurugwiro P.Yang S.Hovsapian R.Ordonez J.C.Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United StatesFacultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, ColombiaIngeniería Térmica Ltda, Medellín, ColombiaIdaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United StatesEfficiencySolar collectorThermal lossesTransparent insulation material (TIM)The integration of Transparent Insulation Materials (TIMs) into Flat Plate Collectors (FPCs), Parabolic Trough Collectors (PTCs), and Central Receiver (CR) collectors is studied in this paper. A general model including optical and thermal analyses is developed. The effects of TIM's properties, such as the emittance, thermal conductivity, extinction coefficient, and thickness, on the collectors’ performance, are analyzed. At low absorber temperatures, performances of traditional-type collectors are relatively high. The efficiency of these collectors reduces dramatically at high temperatures due to the increment in heat losses. The incorporation of a TIM decreases thermal losses, leading to higher collectors’ efficiencies at high absorber temperatures. The main goal of this study is to determine the critical operation temperature from which thermal losses reduction overcome the optical efficiency losses due to a TIM integration. In general, for high performance collectors, TIMs are characterized by low emittances and thermal conductivities, high transmittances, and low extinction coefficients. © 2017 Elsevier Ltdhttp://purl.org/coar/access_right/c_16ecORIGINALArticulo.htmltext/html661http://repository.udem.edu.co/bitstream/11407/4338/1/Articulo.html92ace6f1b10ed94ff51816d56da957f6MD5111407/4338oai:repository.udem.edu.co:11407/43382020-05-27 16:20:12.644Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |