Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies

Grafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescen...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4261
Acceso en línea:
http://hdl.handle.net/11407/4261
Palabra clave:
Amides
Chromium compounds
Ethylene
Ligands
Luminescence
Nitrogen
Nuclear magnetic resonance spectroscopy
Polymerization
Silica
Spectroscopy
Structural properties
Surface properties
Ytterbium
Alkane dehydrogenations
Chemical and physical properties
Dynamic nuclear polarization
Luminescence properties
Luminescence spectroscopy
Non-radiative deactivation
Photophysical properties
Spectroscopic technique
Electron spin resonance spectroscopy
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c2b2a91a943266460b81ba6532e514c7
oai_identifier_str oai:repository.udem.edu.co:11407/4261
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
title Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
spellingShingle Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
Amides
Chromium compounds
Ethylene
Ligands
Luminescence
Nitrogen
Nuclear magnetic resonance spectroscopy
Polymerization
Silica
Spectroscopy
Structural properties
Surface properties
Ytterbium
Alkane dehydrogenations
Chemical and physical properties
Dynamic nuclear polarization
Luminescence properties
Luminescence spectroscopy
Non-radiative deactivation
Photophysical properties
Spectroscopic technique
Electron spin resonance spectroscopy
title_short Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
title_full Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
title_fullStr Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
title_full_unstemmed Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
title_sort Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies
dc.contributor.affiliation.spa.fl_str_mv Delley, M.F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland
Lapadula, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland
Núñez-Zarur, F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N 30-65, Medellín, Colombia
Comas-Vives, A., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland
Kalendra, V., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Faculty of Physics, Vilnius University, Sauletekio 9, Vilnius, Lithuania
Jeschke, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland
Baabe, D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, Germany
Walter, M.D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, Germany
Rossini, A.J., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Lesage, A., Centre de RMN À Tres Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Villeurbanne, France
Emsley, L., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Maury, O., Laboratoire de Chimie de l'Ens Lyon, Université de Lyon (CNRS/ENS Lyon/UCB LyonUMR 5182), 46 alleé d'Italie, Lyon, France
Copéret, C., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland
dc.subject.keyword.eng.fl_str_mv Amides
Chromium compounds
Ethylene
Ligands
Luminescence
Nitrogen
Nuclear magnetic resonance spectroscopy
Polymerization
Silica
Spectroscopy
Structural properties
Surface properties
Ytterbium
Alkane dehydrogenations
Chemical and physical properties
Dynamic nuclear polarization
Luminescence properties
Luminescence spectroscopy
Non-radiative deactivation
Photophysical properties
Spectroscopic technique
Electron spin resonance spectroscopy
topic Amides
Chromium compounds
Ethylene
Ligands
Luminescence
Nitrogen
Nuclear magnetic resonance spectroscopy
Polymerization
Silica
Spectroscopy
Structural properties
Surface properties
Ytterbium
Alkane dehydrogenations
Chemical and physical properties
Dynamic nuclear polarization
Luminescence properties
Luminescence spectroscopy
Non-radiative deactivation
Photophysical properties
Spectroscopic technique
Electron spin resonance spectroscopy
description Grafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:42Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:42Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 27863
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4261
dc.identifier.doi.none.fl_str_mv 10.1021/jacs.7b02179
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 27863
10.1021/jacs.7b02179
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4261
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021997782&doi=10.1021%2fjacs.7b02179&partnerID=40&md5=87369cc3927c18a3b47e476d8ee2231b
dc.relation.ispartofes.spa.fl_str_mv Journal of the American Chemical Society
Journal of the American Chemical Society Volume 139, Issue 26, 5 July 2017, Pages 8855-8867
dc.relation.references.spa.fl_str_mv Allouche, F., Lapadula, G., Siddiqi, G., Lukens, W. W., Maury, O., Le Guennic, B., . . . Copéret, C. (2017). Magnetic memory from site isolated dy(III) on silica materials. ACS Central Science, 3(3), 244-249. doi:10.1021/acscentsci.7b00035
Alyea, E. C., Bradley, D. C., Copperthwaite, R. G., & Sales, K. D. (1973). Three-co-ordinated transition-metal compounds. part II. electronic spectra and magnetism of tris(bistrimethylsilylamido)derivatives of scandium, titanium, vanadium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 185-191. doi:10.1039/DT9730000185
Anwander, R. (2001). SOMC@PMS. surface organometallic chemistry at periodic mesoporous silica. Chemistry of Materials, 13(12), 4419-4438. doi:10.1021/cm0111534
Anwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E., & Spiegler, M. (1998). Synthesis and structural characterisation of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41. Journal of the Chemical Society - Dalton Transactions, (5), 847-858.
Asefa, T., Kruk, M., Coombs, N., Grondey, H., MacLachlan, M. J., Jaroniec, M., & Ozin, G. A. (2003). Novel route to periodic mesoporous aminosilicas, PMAs: Ammonolysis of periodic mesoporous organosilicas.Journal of the American Chemical Society, 125(38), 11662-11673. doi:10.1021/ja036080z
Barrera, J. A., & Wilcox, D. E. (1992). EPR study of the toluene solution properties of the chromium(III)-alkyl complexes [CpCrMeCl]2, [Cp*CrRCl]2 (R = me, et, CH2SiMe3), and [Cp*CrMeBr]2: Dimer-monomer equilibria in solution. Inorganic Chemistry, 31(10), 1745-1752.
Becerra, L. R., Gerfen, G. J., Bellew, B. F., Bryant, J. A., Hall, D. A., Inati, S. J., . . . Griffin, R. G. (1995). A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies. Journal of Magnetic Resonance, Series A, 117(1), 28-40. doi:10.1006/jmra.1995.9975
Becerra, L. R., Gerfen, G. J., Temkin, R. J., Singel, D. J., & Griffin, R. G. (1993). Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Physical Review Letters, 71(21), 3561-3564. doi:10.1103/PhysRevLett.71.3561
Berry, A. J., & O'Neill, H. S. C. (2004). A XANES determination of the oxidation state of chromium in silicate glasses. American Mineralogist, 89(5-6), 790-798.
Binnemans, K. (2015). Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 295, 1-45. doi:10.1016/j.ccr.2015.02.015
Binnemans, K., Van Herck, K., & Görller-Walrand, C. (1997). Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chemical Physics Letters, 266(3-4), 297-302.
Bradley, D. C., Copperthwaite, R. G., Cotton, S. A., Sales, K. D., & Gibson, J. F. (1973). Three-co-ordinated transition-metal compounds. part III. electron spin resonance studies on tris(bistrimethylsilylamido)derivatives of titanium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 191-194. doi:10.1039/DT9730000191
Buijink, J. K. F., Van Vlaanderen, J. J. M., Crocker, M., & Niele, F. G. M. (2004). Propylene epoxidation over titanium-on-silica catalyst - the heart of the SMPO process. Catalysis Today, 93-95, 199-204. doi:10.1016/j.cattod.2004.06.041
Bünzli, J. -. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110(5), 2729-2755. doi:10.1021/cr900362e
Bünzli, J. C. G., Chauvin, A. -., Kim, H. K., Deiters, E., & Eliseeva, S. V. (2010). Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordination Chemistry Reviews, 254(21-22), 2623-2633. doi:10.1016/j.ccr.2010.04.002
Bürger, H., & Wannagat, U. (1964). Silylamido-verbindungen von chrom, mangan, nickel und kupfer - beiträge zur chemie der silicium-stickstoff-verbindungen, 43. mitt. Monatshefte Für Chemie, 95(4-5), 1099-1102. doi:10.1007/BF00904702
Carver, T. R., & Slichter, C. P. (1953). Polarization of nuclear spins in metals [15]. Physical Review, 92(1), 212-213. doi:10.1103/PhysRev.92.212.2
Chen, R. (2003). Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 102-103(SPEC), 510-518. doi:10.1016/S0022-2313(02)00601-4
Cherian, M., Rao, M. S., Hirt, A. M., Wachs, I. E., & Deo, G. (2002). Oxidative dehydrogenation of propane over supported chromia catalysts: Influence of oxide supports and chromia loading. Journal of Catalysis, 211(2), 482-495. doi:10.1006/jcat.2002.3759
Coles, M. P., Lugmair, C. G., Terry, K. W., & Tilley, T. D. (2000). Titania-silica materials from the molecular precursor ti[OSi(O(t)bu)3]4: Selective epoxidation catalysts. Chemistry of Materials, 12(1), 122-131. doi:10.1021/cm990444y
Comas-Vives, A. (2016). Amorphous SiO2 surface models: Energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical Chemistry Chemical Physics, 18(10), 7475-7482. doi:10.1039/c6cp00602g
Conley, M. P., Delley, M. F., Núnez-Zarur, F., Comas-Vives, A., & Copéret, C. (2015). Heterolytic activation of C-H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorganic Chemistry, 54(11), 5065-5078. doi:10.1021/ic502696n
Conley, M. P., Delley, M. F., Siddiqi, G., Lapadula, G., Norsic, S., Monteil, V., . . . Copéret, C. (2014). Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C=H bond activation. Angewandte Chemie - International Edition, 53(7), 1872-1876. doi:10.1002/anie.201308983
Copéret, C. (2010). C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chemical Reviews, 110(2), 656-680. doi:10.1021/cr900122p
Copéret, C., Comas-Vives, A., Conley, M. P., Estes, D. P., Fedorov, A., Mougel, V., . . . Zhizhko, P. A. (2016). Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: Strategies, methods, structures, and activities. Chemical Reviews, 116(2), 323-421. doi:10.1021/acs.chemrev.5b00373
Delley, M. F. (2015). A molecular approach to well-defined metal sites supported on oxides with oxidation state and nuclearity control. Chimia, 69(4), 168-171. doi:10.2533/chimia.2015.168
Delley, M. F., Núñez-Zarur, F., Conley, M. P., Comas-Vives, A., Siddiqi, G., Norsic, S., . . . Copéret, C. (2014). Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11624-11629. doi:10.1073/pnas.1405314111
Delley, M. F., Silaghi, M. -., Nuñez-Zarur, F., Kovtunov, K. V., Salnikov, O. G., Estes, D. P., . . . Coperet, C. (2017). X-H bond activation on cr(III),O sites (X = R, H): Key steps in dehydrogenation and hydrogenation processes. Organometallics, 36(1), 234-244. doi:10.1021/acs.organomet.6b00744
Dombrowski, J. P., Johnson, G. R., Bell, A. T., & Tilley, T. D. (2016). Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry. Dalton Transactions, 45(27), 11025-11034. doi:10.1039/c6dt01676f
Estes, D. P., Siddiqi, G., Allouche, F., Kovtunov, K. V., Safonova, O. V., Trigub, A. L., . . . Copéret, C. (2016). C-H activation on co,O sites: Isolated surface sites versus molecular analogs. Journal of the American Chemical Society, 138(45), 14987-14997. doi:10.1021/jacs.6b08705
Floryan, L., Borosy, A. P., Núñez-Zarur, F., Comas-Vives, A., & Copéret, C. (2017). Strain effect and dual initiation pathway in CrIII/SiO2polymerization catalysts from amorphous periodic models. Journal of Catalysis, 346, 50-56. doi:10.1016/j.jcat.2016.11.037
Fujdala, K. L., Brutchey, R. L., & Tilley, T. D. (2005). Tailored oxide materials via thermolytic molecular precursor (TMP) methods. Top.Organomet.Chem., 16, 69-115.
Fujdala, K. L., & Tilley, T. D. (2003). Design and synthesis of heterogeneous catalysts: The thermolytic molecular precursor approach. Journal of Catalysis, 216(1-2), 265-275. doi:10.1016/S0021-9517(02)00106-9
Fujdala, K. L., & Tilley, T. D. (2002). New vanadium tris(tert-butoxy)siloxy complexes and their thermolytic conversions to vanadia-silica materials. Chemistry of Materials, 14(3), 1376-1384. doi:10.1021/cm011524g
Fujdala, K. L., & Tilley, T. D. (2003). Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane. Journal of Catalysis, 218(1), 123-134. doi:10.1016/S0021-9517(03)00141-6
Fujdala, K. L., & Tilley, T. D. (2001). Thermolytic transformation of tris(alkoxy)siloxychromium(IV) single-source molecular precursors to catalytic chromia-silica materials. Chemistry of Materials, 13(5), 1817-1827. doi:10.1021/cm010027x
Gajan, D., Schwarzwälder, M., Conley, M. P., Grüning, W. R., Rossini, A. J., Zagdoun, A., . . . Copéret, C. (2013). Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials. Journal of the American Chemical Society, 135(41), 15459-15466. doi:10.1021/ja405822h
Gauvin, R. M., Delevoye, L., Hassan, R. A., Keldenich, J., & Mortreux, A. (2007). Well-defined silica-supported rare-earth silylamides. Inorganic Chemistry, 46(4), 1062-1070. doi:10.1021/ic0610334
Gauvin, R. M., & Mortreux, A. (2005). Silica-supported lanthanide silylamides for methyl methacrylate polymerisation: Controlled grafting induces controlled reactivity. Chemical Communications, (9), 1146-1148. doi:10.1039/b416533k
Getsoian, A., Das, U., Camacho-Bunquin, J., Zhang, G., Gallagher, J. R., Hu, B., . . . Hock, A. S. (2016). Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in ga K-edge XANES. Catalysis Science and Technology, 6(16), 6339-6353. doi:10.1039/c6cy00698a
Groppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2005). The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: A frontier for the characterization methods. Chemical Reviews, 105(1), 115-183. doi:10.1021/cr040083s
Guzman, J., & Gates, B. C. (2003). Supported molecular catalysts: Metal complexes and clusters on oxides and zeolites. Journal of the Chemical Society.Dalton Transactions, (17), 3303-3318.
Hall, D. A., Maus, D. C., Gerfen, G. J., Inati, S. J., Becerra, L. R., Dahlquist, F. W., & Griffin, R. G. (1997). Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science, 276(5314), 930-932. doi:10.1126/science.276.5314.930
Hocking, R. K., & Solomon, E. I. (2012). Ligand field and molecular orbital theories of transition metal X-ray absorption edge transitions doi:10.1007/430_2011_60
Hu, B., Bean Getsoian, A., Schweitzer, N. M., Das, U., Kim, H., Niklas, J., . . . Hock, A. S. (2015). Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism. Journal of Catalysis, 322, 24-37. doi:10.1016/j.jcat.2014.10.018
Hu, B., Schweitzer, N. M., Zhang, G., Kraft, S. J., Childers, D. J., Lanci, M. P., . . . Hock, A. S. (2015). Isolated FeII on silica as a selective propane dehydrogenation catalyst. ACS Catalysis, 5(6), 3494-3503. doi:10.1021/acscatal.5b00248
Kobayashi, T., Perras, F. A., Slowing, I. I., Sadow, A. D., & Pruski, M. (2015). Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catalysis, 5(12), 7055-7062. doi:10.1021/acscatal.5b02039
Köhn, R. D., Kociok-Köhn, G., & Haufe, M. (1996). High yield synthesis of [cr{N(SiMe3)2}] and accurate structure determination by cocrystallization with mez6Si2. Chemische Berichte, 129(1), 25-27.
Kuska, H. A., & Rogers, M. T. (1965). Single-crystal ESR spectra and covalent bonding in [cr(CN) 5NO]3- ion. The Journal of Chemical Physics, 42(9), 3034-3039.
Lapadula, G., Bourdolle, A., Allouche, F., Conley, M. P., Del Rosal, I., Maron, L., . . . Andersen, R. A. (2014). Near-IR two photon microscopy imaging of silica nanoparticles functionalized with isolated sensitized yb(III) centers. Chemistry of Materials, 26(2), 1062-1073. doi:10.1021/cm404140q
Lapadula, G., Conley, M. P., Copéret, C., & Andersen, R. A. (2015). Synthesis and characterization of rare earth siloxide complexes, M[OSi(OtBu)3]3(L)x where L is HOSi(OtBu)3 and x = 0 or 1.Organometallics, 34(11), 2271-2277. doi:10.1021/om501047g
Lapadula, G., Trummer, D., Conley, M. P., Steinmann, M., Ran, Y. -., Brasselet, S., . . . Copéret, C. (2015). One-photon near-infrared sensitization of well-defined yb(III) surface complexes for NIR-to-NIR single nanoparticle imaging. Chemistry of Materials, 27(6), 2033-2039. doi:10.1021/acs.chemmater.5b00306
Le Roux, E., & Anwander, R. (2009). Surface organolanthanide and -actinide chemistry. Modern surface organometallic chemistry (pp. 455-512) doi:10.1002/9783527627097.ch12
Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2011). Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. Journal of the American Chemical Society, 133(7), 2104-2107. doi:10.1021/ja110791d
Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2010). Surface enhanced NMR spectroscopy by dynamic nuclear polarization. Journal of the American Chemical Society, 132(44), 15459-15461. doi:10.1021/ja104771z
Liang, Y., & Anwander, R. (2013). Nanostructured catalysts via metal amide-promoted smart grafting. Dalton Transactions, 42(35), 12521-12545. doi:10.1039/c3dt51346g
Lwin, S., & Wachs, I. E. (2014). Olefin metathesis by supported metal oxide catalysts. ACS Catalysis, 4(8), 2505-2520. doi:10.1021/cs500528h
Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K. -., Joo, C. -., Mak-Jurkauskas, M. L., . . . Griffin, R. G. (2008). Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 128(5) doi:10.1063/1.2833582
Métivier, R., Leray, I., Lefèvre, J. -., Roy-Auberger, M., Zanier-Szydlowski, N., & Valeur, B. (2003). Characterization of alumina surfaces by fluorescence spectroscopy. part 2. photophysics of a bound pyrene derivative as a probe of the spatial distribution of reactive hydroxyl groups. Physical Chemistry Chemical Physics, 5(4), 758-766. doi:10.1039/b209735d
Monoi, T., Ikeda, H., Ohira, H., & Sasaki, Y. (2002). Ethylene polymerization with silica-supported cr[N(SiMe3)2]3/alumoxane catalyst. Polymer Journal, 34(6), 461-465. doi:10.1295/polymj.34.461
Mougel, V., Chan, K. -., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., . . . Copéret, C. (2016). Low temperature activation of supported metathesis catalysts by organosilicon reducing agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176
Ni, Q. Z., Daviso, E., Can, T. V., Markhasin, E., Jawla, S. K., Swager, T. M., . . . Griffin, R. G. (2013). High frequency dynamic nuclear polarization. Accounts of Chemical Research, 46(9), 1933-1941. doi:10.1021/ar300348n
Overhauser, A. W. (1953). Polarization of nuclei in metals. Physical Review, 92(2), 411-415. doi:10.1103/PhysRev.92.411
Pantelouris, A., Modrow, H., Pantelouris, M., Hormes, J., & Reinen, D. (2004). The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chemical Physics, 300(1-3), 13-22. doi:10.1016/j.chemphys.2003.12.017
Pedersen, E., & Kallesoe, S. (1975). Electron spin resonance spectra of tetragonal chromium (III) complexes. II. frozen-solution and powder spectra of [cr(NH3)5X]n+. A correlation with zero-field splittings and g factors obtained from complete d3-configuration calculations. Inorganic Chemistry, 14(1), 85-88. doi:10.1021/ic50143a018
Pelletier, J. D. A., & Basset, J. -. (2016). Catalysis by design: Well-defined single-site heterogeneous catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518
Rendón, N., Bourdolle, A., Baldeck, P. L., Le Bozec, H., Andraud, C., Brasselet, S., . . . Maury, O. (2011). Bright luminescent silica nanoparticles for two-photon microscopy imaging via controlled formation of 4,4′-diethylaminostyryl-2,2′-bipyridine zn(II) surface complexes. Chemistry of Materials, 23(13), 3228-3236. doi:10.1021/cm2010852
Rossini, A. J., Zagdoun, A., Lelli, M., Lesage, A., Copéret, C., & Emsley, L. (2013). Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 46(9), 1942-1951. doi:10.1021/ar300322x
Rulkens, R., Male, J. L., Terry, K. W., Olthof, B., Khodakov, A., Bell, A. T., . . . Don Tilley, T. (1999). Vanadyl tert-butoxy orthosilicate, OV[OSi(OtBu)3]3: A model for isolated vanadyl sites on silica and a precursor to vanadia-silica xerogels a. Chemistry of Materials, 11(10), 2966-2973.
Rulkens, R., & Tilley, T. D. (1998). A molecular precursor route to active and selective vanadia-silica- zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane [10]. Journal of the American Chemical Society, 120(38), 9959-9960. doi:10.1021/ja981798d
Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436
Searles, K., Siddiqi, G., Safonova, O. V., & Copéret, C. (2017). Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts. Chemical Science, 8(4), 2661-2666. doi:10.1039/c6sc05178b
Solomon, E. I., & Bell, C. B. (2010). Inorganic and bioinorganic spectroscopy. Physical inorganic chemistry: Principles, methods, and models (pp. 1-37) doi:10.1002/9780470602539.ch1
Solomon, E. I., Hedman, B., Hodgson, K. O., Dey, A., & Szilagyi, R. K. (2005). Ligand K-edge X-ray absorption spectroscopy: Covalency of ligand-metal bonds. Coordination Chemistry Reviews, 249(1-2), 97-129. doi:10.1016/j.ccr.2004.03.020
Tada, M., & Iwasawa, Y. (2007). Advanced design of catalytically active reaction space at surfaces for selective catalysis. Coordination Chemistry Reviews, 251(21-24), 2702-2716. doi:10.1016/j.ccr.2007.06.008
Terry, K. W., Lugmair, C. G., & Tilley, T. D. (1997). Tris(tert-butoxy)siloxy complexes as single-source precursors to homogeneous zirconia- and hafnia-silica materials. an alternative to the sol-gel method.Journal of the American Chemical Society, 119(41), 9745-9756. doi:10.1021/ja971405v
Thomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-site heterogeneous catalysts. Angewandte Chemie - International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473
Weckhuysen, B. M., Schoonheydt, R. A., Mabbs, F. E., & Collison, D. (1996). Electron paramagnetic resonance of heterogeneous chromium catalysts. Journal of the Chemical Society - Faraday Transactions, 92(13), 2431-2436.
Weckhuysen, B. M., Wachs, I. E., & Schoonheydt, R. A. (1996). Surface chemistry and spectroscopy of chromium in inorganic oxides. Chemical Reviews, 96(8), 3327-3349.
Wegener, S. L., Marks, T. J., & Stair, P. C. (2012). Design strategies for the molecular level synthesis of supported catalysts. Accounts of Chemical Research, 45(2), 206-214. doi:10.1021/ar2001342
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481177341788160
spelling 2017-12-19T19:36:42Z2017-12-19T19:36:42Z201727863http://hdl.handle.net/11407/426110.1021/jacs.7b02179reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínGrafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021997782&doi=10.1021%2fjacs.7b02179&partnerID=40&md5=87369cc3927c18a3b47e476d8ee2231bJournal of the American Chemical SocietyJournal of the American Chemical Society Volume 139, Issue 26, 5 July 2017, Pages 8855-8867Allouche, F., Lapadula, G., Siddiqi, G., Lukens, W. W., Maury, O., Le Guennic, B., . . . Copéret, C. (2017). Magnetic memory from site isolated dy(III) on silica materials. ACS Central Science, 3(3), 244-249. doi:10.1021/acscentsci.7b00035Alyea, E. C., Bradley, D. C., Copperthwaite, R. G., & Sales, K. D. (1973). Three-co-ordinated transition-metal compounds. part II. electronic spectra and magnetism of tris(bistrimethylsilylamido)derivatives of scandium, titanium, vanadium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 185-191. doi:10.1039/DT9730000185Anwander, R. (2001). SOMC@PMS. surface organometallic chemistry at periodic mesoporous silica. Chemistry of Materials, 13(12), 4419-4438. doi:10.1021/cm0111534Anwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E., & Spiegler, M. (1998). Synthesis and structural characterisation of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41. Journal of the Chemical Society - Dalton Transactions, (5), 847-858.Asefa, T., Kruk, M., Coombs, N., Grondey, H., MacLachlan, M. J., Jaroniec, M., & Ozin, G. A. (2003). Novel route to periodic mesoporous aminosilicas, PMAs: Ammonolysis of periodic mesoporous organosilicas.Journal of the American Chemical Society, 125(38), 11662-11673. doi:10.1021/ja036080zBarrera, J. A., & Wilcox, D. E. (1992). EPR study of the toluene solution properties of the chromium(III)-alkyl complexes [CpCrMeCl]2, [Cp*CrRCl]2 (R = me, et, CH2SiMe3), and [Cp*CrMeBr]2: Dimer-monomer equilibria in solution. Inorganic Chemistry, 31(10), 1745-1752.Becerra, L. R., Gerfen, G. J., Bellew, B. F., Bryant, J. A., Hall, D. A., Inati, S. J., . . . Griffin, R. G. (1995). A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies. Journal of Magnetic Resonance, Series A, 117(1), 28-40. doi:10.1006/jmra.1995.9975Becerra, L. R., Gerfen, G. J., Temkin, R. J., Singel, D. J., & Griffin, R. G. (1993). Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Physical Review Letters, 71(21), 3561-3564. doi:10.1103/PhysRevLett.71.3561Berry, A. J., & O'Neill, H. S. C. (2004). A XANES determination of the oxidation state of chromium in silicate glasses. American Mineralogist, 89(5-6), 790-798.Binnemans, K. (2015). Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 295, 1-45. doi:10.1016/j.ccr.2015.02.015Binnemans, K., Van Herck, K., & Görller-Walrand, C. (1997). Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chemical Physics Letters, 266(3-4), 297-302.Bradley, D. C., Copperthwaite, R. G., Cotton, S. A., Sales, K. D., & Gibson, J. F. (1973). Three-co-ordinated transition-metal compounds. part III. electron spin resonance studies on tris(bistrimethylsilylamido)derivatives of titanium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 191-194. doi:10.1039/DT9730000191Buijink, J. K. F., Van Vlaanderen, J. J. M., Crocker, M., & Niele, F. G. M. (2004). Propylene epoxidation over titanium-on-silica catalyst - the heart of the SMPO process. Catalysis Today, 93-95, 199-204. doi:10.1016/j.cattod.2004.06.041Bünzli, J. -. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110(5), 2729-2755. doi:10.1021/cr900362eBünzli, J. C. G., Chauvin, A. -., Kim, H. K., Deiters, E., & Eliseeva, S. V. (2010). Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordination Chemistry Reviews, 254(21-22), 2623-2633. doi:10.1016/j.ccr.2010.04.002Bürger, H., & Wannagat, U. (1964). Silylamido-verbindungen von chrom, mangan, nickel und kupfer - beiträge zur chemie der silicium-stickstoff-verbindungen, 43. mitt. Monatshefte Für Chemie, 95(4-5), 1099-1102. doi:10.1007/BF00904702Carver, T. R., & Slichter, C. P. (1953). Polarization of nuclear spins in metals [15]. Physical Review, 92(1), 212-213. doi:10.1103/PhysRev.92.212.2Chen, R. (2003). Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 102-103(SPEC), 510-518. doi:10.1016/S0022-2313(02)00601-4Cherian, M., Rao, M. S., Hirt, A. M., Wachs, I. E., & Deo, G. (2002). Oxidative dehydrogenation of propane over supported chromia catalysts: Influence of oxide supports and chromia loading. Journal of Catalysis, 211(2), 482-495. doi:10.1006/jcat.2002.3759Coles, M. P., Lugmair, C. G., Terry, K. W., & Tilley, T. D. (2000). Titania-silica materials from the molecular precursor ti[OSi(O(t)bu)3]4: Selective epoxidation catalysts. Chemistry of Materials, 12(1), 122-131. doi:10.1021/cm990444yComas-Vives, A. (2016). Amorphous SiO2 surface models: Energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical Chemistry Chemical Physics, 18(10), 7475-7482. doi:10.1039/c6cp00602gConley, M. P., Delley, M. F., Núnez-Zarur, F., Comas-Vives, A., & Copéret, C. (2015). Heterolytic activation of C-H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorganic Chemistry, 54(11), 5065-5078. doi:10.1021/ic502696nConley, M. P., Delley, M. F., Siddiqi, G., Lapadula, G., Norsic, S., Monteil, V., . . . Copéret, C. (2014). Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C=H bond activation. Angewandte Chemie - International Edition, 53(7), 1872-1876. doi:10.1002/anie.201308983Copéret, C. (2010). C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chemical Reviews, 110(2), 656-680. doi:10.1021/cr900122pCopéret, C., Comas-Vives, A., Conley, M. P., Estes, D. P., Fedorov, A., Mougel, V., . . . Zhizhko, P. A. (2016). Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: Strategies, methods, structures, and activities. Chemical Reviews, 116(2), 323-421. doi:10.1021/acs.chemrev.5b00373Delley, M. F. (2015). A molecular approach to well-defined metal sites supported on oxides with oxidation state and nuclearity control. Chimia, 69(4), 168-171. doi:10.2533/chimia.2015.168Delley, M. F., Núñez-Zarur, F., Conley, M. P., Comas-Vives, A., Siddiqi, G., Norsic, S., . . . Copéret, C. (2014). Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11624-11629. doi:10.1073/pnas.1405314111Delley, M. F., Silaghi, M. -., Nuñez-Zarur, F., Kovtunov, K. V., Salnikov, O. G., Estes, D. P., . . . Coperet, C. (2017). X-H bond activation on cr(III),O sites (X = R, H): Key steps in dehydrogenation and hydrogenation processes. Organometallics, 36(1), 234-244. doi:10.1021/acs.organomet.6b00744Dombrowski, J. P., Johnson, G. R., Bell, A. T., & Tilley, T. D. (2016). Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry. Dalton Transactions, 45(27), 11025-11034. doi:10.1039/c6dt01676fEstes, D. P., Siddiqi, G., Allouche, F., Kovtunov, K. V., Safonova, O. V., Trigub, A. L., . . . Copéret, C. (2016). C-H activation on co,O sites: Isolated surface sites versus molecular analogs. Journal of the American Chemical Society, 138(45), 14987-14997. doi:10.1021/jacs.6b08705Floryan, L., Borosy, A. P., Núñez-Zarur, F., Comas-Vives, A., & Copéret, C. (2017). Strain effect and dual initiation pathway in CrIII/SiO2polymerization catalysts from amorphous periodic models. Journal of Catalysis, 346, 50-56. doi:10.1016/j.jcat.2016.11.037Fujdala, K. L., Brutchey, R. L., & Tilley, T. D. (2005). Tailored oxide materials via thermolytic molecular precursor (TMP) methods. Top.Organomet.Chem., 16, 69-115.Fujdala, K. L., & Tilley, T. D. (2003). Design and synthesis of heterogeneous catalysts: The thermolytic molecular precursor approach. Journal of Catalysis, 216(1-2), 265-275. doi:10.1016/S0021-9517(02)00106-9Fujdala, K. L., & Tilley, T. D. (2002). New vanadium tris(tert-butoxy)siloxy complexes and their thermolytic conversions to vanadia-silica materials. Chemistry of Materials, 14(3), 1376-1384. doi:10.1021/cm011524gFujdala, K. L., & Tilley, T. D. (2003). Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane. Journal of Catalysis, 218(1), 123-134. doi:10.1016/S0021-9517(03)00141-6Fujdala, K. L., & Tilley, T. D. (2001). Thermolytic transformation of tris(alkoxy)siloxychromium(IV) single-source molecular precursors to catalytic chromia-silica materials. Chemistry of Materials, 13(5), 1817-1827. doi:10.1021/cm010027xGajan, D., Schwarzwälder, M., Conley, M. P., Grüning, W. R., Rossini, A. J., Zagdoun, A., . . . Copéret, C. (2013). Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials. Journal of the American Chemical Society, 135(41), 15459-15466. doi:10.1021/ja405822hGauvin, R. M., Delevoye, L., Hassan, R. A., Keldenich, J., & Mortreux, A. (2007). Well-defined silica-supported rare-earth silylamides. Inorganic Chemistry, 46(4), 1062-1070. doi:10.1021/ic0610334Gauvin, R. M., & Mortreux, A. (2005). Silica-supported lanthanide silylamides for methyl methacrylate polymerisation: Controlled grafting induces controlled reactivity. Chemical Communications, (9), 1146-1148. doi:10.1039/b416533kGetsoian, A., Das, U., Camacho-Bunquin, J., Zhang, G., Gallagher, J. R., Hu, B., . . . Hock, A. S. (2016). Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in ga K-edge XANES. Catalysis Science and Technology, 6(16), 6339-6353. doi:10.1039/c6cy00698aGroppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2005). The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: A frontier for the characterization methods. Chemical Reviews, 105(1), 115-183. doi:10.1021/cr040083sGuzman, J., & Gates, B. C. (2003). Supported molecular catalysts: Metal complexes and clusters on oxides and zeolites. Journal of the Chemical Society.Dalton Transactions, (17), 3303-3318.Hall, D. A., Maus, D. C., Gerfen, G. J., Inati, S. J., Becerra, L. R., Dahlquist, F. W., & Griffin, R. G. (1997). Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science, 276(5314), 930-932. doi:10.1126/science.276.5314.930Hocking, R. K., & Solomon, E. I. (2012). Ligand field and molecular orbital theories of transition metal X-ray absorption edge transitions doi:10.1007/430_2011_60Hu, B., Bean Getsoian, A., Schweitzer, N. M., Das, U., Kim, H., Niklas, J., . . . Hock, A. S. (2015). Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism. Journal of Catalysis, 322, 24-37. doi:10.1016/j.jcat.2014.10.018Hu, B., Schweitzer, N. M., Zhang, G., Kraft, S. J., Childers, D. J., Lanci, M. P., . . . Hock, A. S. (2015). Isolated FeII on silica as a selective propane dehydrogenation catalyst. ACS Catalysis, 5(6), 3494-3503. doi:10.1021/acscatal.5b00248Kobayashi, T., Perras, F. A., Slowing, I. I., Sadow, A. D., & Pruski, M. (2015). Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catalysis, 5(12), 7055-7062. doi:10.1021/acscatal.5b02039Köhn, R. D., Kociok-Köhn, G., & Haufe, M. (1996). High yield synthesis of [cr{N(SiMe3)2}] and accurate structure determination by cocrystallization with mez6Si2. Chemische Berichte, 129(1), 25-27.Kuska, H. A., & Rogers, M. T. (1965). Single-crystal ESR spectra and covalent bonding in [cr(CN) 5NO]3- ion. The Journal of Chemical Physics, 42(9), 3034-3039.Lapadula, G., Bourdolle, A., Allouche, F., Conley, M. P., Del Rosal, I., Maron, L., . . . Andersen, R. A. (2014). Near-IR two photon microscopy imaging of silica nanoparticles functionalized with isolated sensitized yb(III) centers. Chemistry of Materials, 26(2), 1062-1073. doi:10.1021/cm404140qLapadula, G., Conley, M. P., Copéret, C., & Andersen, R. A. (2015). Synthesis and characterization of rare earth siloxide complexes, M[OSi(OtBu)3]3(L)x where L is HOSi(OtBu)3 and x = 0 or 1.Organometallics, 34(11), 2271-2277. doi:10.1021/om501047gLapadula, G., Trummer, D., Conley, M. P., Steinmann, M., Ran, Y. -., Brasselet, S., . . . Copéret, C. (2015). One-photon near-infrared sensitization of well-defined yb(III) surface complexes for NIR-to-NIR single nanoparticle imaging. Chemistry of Materials, 27(6), 2033-2039. doi:10.1021/acs.chemmater.5b00306Le Roux, E., & Anwander, R. (2009). Surface organolanthanide and -actinide chemistry. Modern surface organometallic chemistry (pp. 455-512) doi:10.1002/9783527627097.ch12Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2011). Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. Journal of the American Chemical Society, 133(7), 2104-2107. doi:10.1021/ja110791dLesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2010). Surface enhanced NMR spectroscopy by dynamic nuclear polarization. Journal of the American Chemical Society, 132(44), 15459-15461. doi:10.1021/ja104771zLiang, Y., & Anwander, R. (2013). Nanostructured catalysts via metal amide-promoted smart grafting. Dalton Transactions, 42(35), 12521-12545. doi:10.1039/c3dt51346gLwin, S., & Wachs, I. E. (2014). Olefin metathesis by supported metal oxide catalysts. ACS Catalysis, 4(8), 2505-2520. doi:10.1021/cs500528hMaly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K. -., Joo, C. -., Mak-Jurkauskas, M. L., . . . Griffin, R. G. (2008). Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 128(5) doi:10.1063/1.2833582Métivier, R., Leray, I., Lefèvre, J. -., Roy-Auberger, M., Zanier-Szydlowski, N., & Valeur, B. (2003). Characterization of alumina surfaces by fluorescence spectroscopy. part 2. photophysics of a bound pyrene derivative as a probe of the spatial distribution of reactive hydroxyl groups. Physical Chemistry Chemical Physics, 5(4), 758-766. doi:10.1039/b209735dMonoi, T., Ikeda, H., Ohira, H., & Sasaki, Y. (2002). Ethylene polymerization with silica-supported cr[N(SiMe3)2]3/alumoxane catalyst. Polymer Journal, 34(6), 461-465. doi:10.1295/polymj.34.461Mougel, V., Chan, K. -., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., . . . Copéret, C. (2016). Low temperature activation of supported metathesis catalysts by organosilicon reducing agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176Ni, Q. Z., Daviso, E., Can, T. V., Markhasin, E., Jawla, S. K., Swager, T. M., . . . Griffin, R. G. (2013). High frequency dynamic nuclear polarization. Accounts of Chemical Research, 46(9), 1933-1941. doi:10.1021/ar300348nOverhauser, A. W. (1953). Polarization of nuclei in metals. Physical Review, 92(2), 411-415. doi:10.1103/PhysRev.92.411Pantelouris, A., Modrow, H., Pantelouris, M., Hormes, J., & Reinen, D. (2004). The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chemical Physics, 300(1-3), 13-22. doi:10.1016/j.chemphys.2003.12.017Pedersen, E., & Kallesoe, S. (1975). Electron spin resonance spectra of tetragonal chromium (III) complexes. II. frozen-solution and powder spectra of [cr(NH3)5X]n+. A correlation with zero-field splittings and g factors obtained from complete d3-configuration calculations. Inorganic Chemistry, 14(1), 85-88. doi:10.1021/ic50143a018Pelletier, J. D. A., & Basset, J. -. (2016). Catalysis by design: Well-defined single-site heterogeneous catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518Rendón, N., Bourdolle, A., Baldeck, P. L., Le Bozec, H., Andraud, C., Brasselet, S., . . . Maury, O. (2011). Bright luminescent silica nanoparticles for two-photon microscopy imaging via controlled formation of 4,4′-diethylaminostyryl-2,2′-bipyridine zn(II) surface complexes. Chemistry of Materials, 23(13), 3228-3236. doi:10.1021/cm2010852Rossini, A. J., Zagdoun, A., Lelli, M., Lesage, A., Copéret, C., & Emsley, L. (2013). Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 46(9), 1942-1951. doi:10.1021/ar300322xRulkens, R., Male, J. L., Terry, K. W., Olthof, B., Khodakov, A., Bell, A. T., . . . Don Tilley, T. (1999). Vanadyl tert-butoxy orthosilicate, OV[OSi(OtBu)3]3: A model for isolated vanadyl sites on silica and a precursor to vanadia-silica xerogels a. Chemistry of Materials, 11(10), 2966-2973.Rulkens, R., & Tilley, T. D. (1998). A molecular precursor route to active and selective vanadia-silica- zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane [10]. Journal of the American Chemical Society, 120(38), 9959-9960. doi:10.1021/ja981798dSattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436Searles, K., Siddiqi, G., Safonova, O. V., & Copéret, C. (2017). Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts. Chemical Science, 8(4), 2661-2666. doi:10.1039/c6sc05178bSolomon, E. I., & Bell, C. B. (2010). Inorganic and bioinorganic spectroscopy. Physical inorganic chemistry: Principles, methods, and models (pp. 1-37) doi:10.1002/9780470602539.ch1Solomon, E. I., Hedman, B., Hodgson, K. O., Dey, A., & Szilagyi, R. K. (2005). Ligand K-edge X-ray absorption spectroscopy: Covalency of ligand-metal bonds. Coordination Chemistry Reviews, 249(1-2), 97-129. doi:10.1016/j.ccr.2004.03.020Tada, M., & Iwasawa, Y. (2007). Advanced design of catalytically active reaction space at surfaces for selective catalysis. Coordination Chemistry Reviews, 251(21-24), 2702-2716. doi:10.1016/j.ccr.2007.06.008Terry, K. W., Lugmair, C. G., & Tilley, T. D. (1997). Tris(tert-butoxy)siloxy complexes as single-source precursors to homogeneous zirconia- and hafnia-silica materials. an alternative to the sol-gel method.Journal of the American Chemical Society, 119(41), 9745-9756. doi:10.1021/ja971405vThomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-site heterogeneous catalysts. Angewandte Chemie - International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473Weckhuysen, B. M., Schoonheydt, R. A., Mabbs, F. E., & Collison, D. (1996). Electron paramagnetic resonance of heterogeneous chromium catalysts. Journal of the Chemical Society - Faraday Transactions, 92(13), 2431-2436.Weckhuysen, B. M., Wachs, I. E., & Schoonheydt, R. A. (1996). Surface chemistry and spectroscopy of chromium in inorganic oxides. Chemical Reviews, 96(8), 3327-3349.Wegener, S. L., Marks, T. J., & Stair, P. C. (2012). Design strategies for the molecular level synthesis of supported catalysts. Accounts of Chemical Research, 45(2), 206-214. doi:10.1021/ar2001342ScopusLocal Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence SpectroscopiesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Delley, M.F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandLapadula, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandNúñez-Zarur, F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N 30-65, Medellín, ColombiaComas-Vives, A., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandKalendra, V., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Faculty of Physics, Vilnius University, Sauletekio 9, Vilnius, LithuaniaJeschke, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandBaabe, D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, GermanyWalter, M.D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, GermanyRossini, A.J., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandLesage, A., Centre de RMN À Tres Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Villeurbanne, FranceEmsley, L., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandMaury, O., Laboratoire de Chimie de l'Ens Lyon, Université de Lyon (CNRS/ENS Lyon/UCB LyonUMR 5182), 46 alleé d'Italie, Lyon, FranceCopéret, C., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandDelley M.F.Lapadula G.Núñez-Zarur F.Comas-Vives A.Kalendra V.Jeschke G.Baabe D.Walter M.D.Rossini A.J.Lesage A.Emsley L.Maury O.Copéret C.Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, SwitzerlandFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N 30-65, Medellín, ColombiaFaculty of Physics, Vilnius University, Sauletekio 9, Vilnius, LithuaniaInstitut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, GermanyInstitut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandCentre de RMN À Tres Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Villeurbanne, FranceLaboratoire de Chimie de l'Ens Lyon, Université de Lyon (CNRS/ENS Lyon/UCB LyonUMR 5182), 46 alleé d'Italie, Lyon, FranceAmidesChromium compoundsEthyleneLigandsLuminescenceNitrogenNuclear magnetic resonance spectroscopyPolymerizationSilicaSpectroscopyStructural propertiesSurface propertiesYtterbiumAlkane dehydrogenationsChemical and physical propertiesDynamic nuclear polarizationLuminescence propertiesLuminescence spectroscopyNon-radiative deactivationPhotophysical propertiesSpectroscopic techniqueElectron spin resonance spectroscopyGrafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society.http://purl.org/coar/access_right/c_16ec11407/4261oai:repository.udem.edu.co:11407/42612020-05-27 18:29:00.631Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co