A population balance model of ball wear in grinding mills: An experimental case study
A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4853
- Acceso en línea:
- http://hdl.handle.net/11407/4853
- Palabra clave:
- Ball grinding
Ceramic ball
Grinding law
Population balance model
Alumina
Aluminum oxide
Ceramic materials
Grinding (machining)
Silica
Silica sand
Wear of materials
A-ceramics
Ball grinding
Ceramic balls
Population balance modeling
Steady state
Wear equations
Wear law
Zero order
Ball mills
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_c104f1ce21e2542ba340f2d93431f866 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4853 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A population balance model of ball wear in grinding mills: An experimental case study |
title |
A population balance model of ball wear in grinding mills: An experimental case study |
spellingShingle |
A population balance model of ball wear in grinding mills: An experimental case study Ball grinding Ceramic ball Grinding law Population balance model Alumina Aluminum oxide Ceramic materials Grinding (machining) Silica Silica sand Wear of materials A-ceramics Ball grinding Ceramic balls Population balance modeling Steady state Wear equations Wear law Zero order Ball mills |
title_short |
A population balance model of ball wear in grinding mills: An experimental case study |
title_full |
A population balance model of ball wear in grinding mills: An experimental case study |
title_fullStr |
A population balance model of ball wear in grinding mills: An experimental case study |
title_full_unstemmed |
A population balance model of ball wear in grinding mills: An experimental case study |
title_sort |
A population balance model of ball wear in grinding mills: An experimental case study |
dc.contributor.affiliation.spa.fl_str_mv |
Bürger, R., Universidad de Concepción;Bustamante, O., Universidad Nacional de Colombia;Fulla, M.R., Universidad Nacional de Colombia; Institución Universitaria Pascual Bravo;Rivera, I.E., Institución Universitaria Pascual Bravo; Universidad de Medellín |
dc.subject.spa.fl_str_mv |
Ball grinding Ceramic ball Grinding law Population balance model Alumina Aluminum oxide Ceramic materials Grinding (machining) Silica Silica sand Wear of materials A-ceramics Ball grinding Ceramic balls Population balance modeling Steady state Wear equations Wear law Zero order Ball mills |
topic |
Ball grinding Ceramic ball Grinding law Population balance model Alumina Aluminum oxide Ceramic materials Grinding (machining) Silica Silica sand Wear of materials A-ceramics Ball grinding Ceramic balls Population balance modeling Steady state Wear equations Wear law Zero order Ball mills |
description |
A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics wear equations. It turns out that the wear law for all three different sized balls is of zero order. These experimental results are introduced into the model to obtain the ball charge of the mill at steady state and the alumina consumption by wear. © 2018 Elsevier Ltd |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-10-31T13:44:17Z |
dc.date.available.none.fl_str_mv |
2018-10-31T13:44:17Z |
dc.date.created.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
8926875 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4853 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.mineng.2018.09.004 |
identifier_str_mv |
8926875 10.1016/j.mineng.2018.09.004 |
url |
http://hdl.handle.net/11407/4853 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053121897&doi=10.1016%2fj.mineng.2018.09.004&partnerID=40&md5=4b6f4ade683ac5f88f9943fa265e670d |
dc.relation.citationvolume.spa.fl_str_mv |
128 |
dc.relation.citationstartpage.spa.fl_str_mv |
288 |
dc.relation.citationendpage.spa.fl_str_mv |
293 |
dc.relation.ispartofes.spa.fl_str_mv |
Minerals Engineering |
dc.relation.references.spa.fl_str_mv |
Austin, L.G., Concha, F., (1994), Diseño y Simulación de Circuitos de Molienda y Clasificación (Design and Classification of Grinding and Classification Circuits). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Subprograma de Tecnología Mineral. Red de Fragmentación XIII-A. Concepción, Chile (in Spanish);Austin, L.G., Klimpel, R.R., Ball wear and ball size distribution in tumbling ball mills (1985) Powder Technol., 41, pp. 279-286;Austin, L.G., Klimpel, R.R., Luckie, P.T., (1984), Process Engineering of Size Reduction: Ball Milling. Society of Mining Engineers (SME), New York;Bond, F.C., Wear and size distribution of grinding balls (1943) Trans. Am. Instn. Min. Met. Eng., 153, pp. 373-384;Bond, F.C., Grinding ball size selection (1958) Min. Eng., 10, pp. 592-595;Bond, F.C., New Equation for Calculating the Work Index from A-C Closed Circuit Ball Mill Grindability Test (1960), Allis Chalmer Publications;Bürger, R., Karlsen, K.H., Towers, J.D., Closed-form and finite difference solutions to a population balance model of grinding mills (2005) J. Eng. Math., 51, pp. 165-195;Davis, E.W., Fine crushing in ball-mills (1919) Trans. Am. Instn. Min. Met. Eng., 61, pp. 250-294;Fuerstenau, D.W., Abouzeid, A.-Z.M., The energy efficiency of ball milling in comminution (2002) Int. J. Min. Process., 67, pp. 161-185;Fuerstenau, D.W., Abouzeid, A.-Z.M., Role of feed moisture in high pressure roll mill comminution (2007) Int. J. Min. Process., 82, pp. 203-210;Hulburt, H.M., Katz, S., Some problems in particle technology (1964) Chem. Eng. Sci., 19, pp. 555-574;Jakobsen, H.A., The population balance equation (2008) Chemical Reactor Modeling, pp. 07-865. , H.A. Jakobsen Springer-Verlag Berlin;Menacho, J.M., (1985), Modelo de Desgaste de Bolas y Optimización de su Perfil de Tamaño en Molinos Rotatorios Continuos (Model of Ball Wear and Optimization of Size Profiles in Rotating Continuous Mills). Avances en Mineralúrgia. Volumen 1. Serie de Metalurgia Extractiva. Universidad de Concepción, Concepción, Chile (in Spanish);Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: I. Zero-order wear rate (1986) Powder Technol., 47, pp. 87-96;Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: II. General solution (1987) Powder Technol., 52, pp. 267-277;Powell, M.S., Nurick, G.N., A study of charge motion in rotary mills. Part 1-extension of the theory (1996) Min. Eng., 9, pp. 259-268;Ramkrishna, D., Population Balances: Theories and Applications to Particulate Systems in Engineering (2000), Academic Press San Diego;Rose, H.E., Sullivan, R.M.E., A Treatise on Internal Mechanics of Ball, Tube, and Rod Mills (1958), Constable and Company London;Sepúlveda, J.E., Methodologies for the evaluation of grinding media consumption rates at full plant scale (2004) Min. Eng., 17, pp. 1269-1279;Verkoeijen, D., Pouw, G.A., Meesters, G.M.H., Scarlett, B., Population balances for particulate processes-a volume approach (2002) Chem. Eng. Sci., 57, pp. 2287-2303 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159210629300224 |
spelling |
2018-10-31T13:44:17Z2018-10-31T13:44:17Z20188926875http://hdl.handle.net/11407/485310.1016/j.mineng.2018.09.004A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics wear equations. It turns out that the wear law for all three different sized balls is of zero order. These experimental results are introduced into the model to obtain the ball charge of the mill at steady state and the alumina consumption by wear. © 2018 Elsevier LtdengElsevier LtdIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053121897&doi=10.1016%2fj.mineng.2018.09.004&partnerID=40&md5=4b6f4ade683ac5f88f9943fa265e670d128288293Minerals EngineeringAustin, L.G., Concha, F., (1994), Diseño y Simulación de Circuitos de Molienda y Clasificación (Design and Classification of Grinding and Classification Circuits). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Subprograma de Tecnología Mineral. Red de Fragmentación XIII-A. Concepción, Chile (in Spanish);Austin, L.G., Klimpel, R.R., Ball wear and ball size distribution in tumbling ball mills (1985) Powder Technol., 41, pp. 279-286;Austin, L.G., Klimpel, R.R., Luckie, P.T., (1984), Process Engineering of Size Reduction: Ball Milling. Society of Mining Engineers (SME), New York;Bond, F.C., Wear and size distribution of grinding balls (1943) Trans. Am. Instn. Min. Met. Eng., 153, pp. 373-384;Bond, F.C., Grinding ball size selection (1958) Min. Eng., 10, pp. 592-595;Bond, F.C., New Equation for Calculating the Work Index from A-C Closed Circuit Ball Mill Grindability Test (1960), Allis Chalmer Publications;Bürger, R., Karlsen, K.H., Towers, J.D., Closed-form and finite difference solutions to a population balance model of grinding mills (2005) J. Eng. Math., 51, pp. 165-195;Davis, E.W., Fine crushing in ball-mills (1919) Trans. Am. Instn. Min. Met. Eng., 61, pp. 250-294;Fuerstenau, D.W., Abouzeid, A.-Z.M., The energy efficiency of ball milling in comminution (2002) Int. J. Min. Process., 67, pp. 161-185;Fuerstenau, D.W., Abouzeid, A.-Z.M., Role of feed moisture in high pressure roll mill comminution (2007) Int. J. Min. Process., 82, pp. 203-210;Hulburt, H.M., Katz, S., Some problems in particle technology (1964) Chem. Eng. Sci., 19, pp. 555-574;Jakobsen, H.A., The population balance equation (2008) Chemical Reactor Modeling, pp. 07-865. , H.A. Jakobsen Springer-Verlag Berlin;Menacho, J.M., (1985), Modelo de Desgaste de Bolas y Optimización de su Perfil de Tamaño en Molinos Rotatorios Continuos (Model of Ball Wear and Optimization of Size Profiles in Rotating Continuous Mills). Avances en Mineralúrgia. Volumen 1. Serie de Metalurgia Extractiva. Universidad de Concepción, Concepción, Chile (in Spanish);Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: I. Zero-order wear rate (1986) Powder Technol., 47, pp. 87-96;Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: II. General solution (1987) Powder Technol., 52, pp. 267-277;Powell, M.S., Nurick, G.N., A study of charge motion in rotary mills. Part 1-extension of the theory (1996) Min. Eng., 9, pp. 259-268;Ramkrishna, D., Population Balances: Theories and Applications to Particulate Systems in Engineering (2000), Academic Press San Diego;Rose, H.E., Sullivan, R.M.E., A Treatise on Internal Mechanics of Ball, Tube, and Rod Mills (1958), Constable and Company London;Sepúlveda, J.E., Methodologies for the evaluation of grinding media consumption rates at full plant scale (2004) Min. Eng., 17, pp. 1269-1279;Verkoeijen, D., Pouw, G.A., Meesters, G.M.H., Scarlett, B., Population balances for particulate processes-a volume approach (2002) Chem. Eng. Sci., 57, pp. 2287-2303ScopusBall grindingCeramic ballGrinding lawPopulation balance modelAluminaAluminum oxideCeramic materialsGrinding (machining)SilicaSilica sandWear of materialsA-ceramicsBall grindingCeramic ballsPopulation balance modelingSteady stateWear equationsWear lawZero orderBall millsA population balance model of ball wear in grinding mills: An experimental case studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bürger, R., Universidad de Concepción;Bustamante, O., Universidad Nacional de Colombia;Fulla, M.R., Universidad Nacional de Colombia; Institución Universitaria Pascual Bravo;Rivera, I.E., Institución Universitaria Pascual Bravo; Universidad de MedellínBürger R.Bustamante O.Fulla M.R.Rivera I.E.http://purl.org/coar/access_right/c_16ec11407/4853oai:repository.udem.edu.co:11407/48532020-05-27 18:26:40.799Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |