A population balance model of ball wear in grinding mills: An experimental case study

A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4853
Acceso en línea:
http://hdl.handle.net/11407/4853
Palabra clave:
Ball grinding
Ceramic ball
Grinding law
Population balance model
Alumina
Aluminum oxide
Ceramic materials
Grinding (machining)
Silica
Silica sand
Wear of materials
A-ceramics
Ball grinding
Ceramic balls
Population balance modeling
Steady state
Wear equations
Wear law
Zero order
Ball mills
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c104f1ce21e2542ba340f2d93431f866
oai_identifier_str oai:repository.udem.edu.co:11407/4853
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv A population balance model of ball wear in grinding mills: An experimental case study
title A population balance model of ball wear in grinding mills: An experimental case study
spellingShingle A population balance model of ball wear in grinding mills: An experimental case study
Ball grinding
Ceramic ball
Grinding law
Population balance model
Alumina
Aluminum oxide
Ceramic materials
Grinding (machining)
Silica
Silica sand
Wear of materials
A-ceramics
Ball grinding
Ceramic balls
Population balance modeling
Steady state
Wear equations
Wear law
Zero order
Ball mills
title_short A population balance model of ball wear in grinding mills: An experimental case study
title_full A population balance model of ball wear in grinding mills: An experimental case study
title_fullStr A population balance model of ball wear in grinding mills: An experimental case study
title_full_unstemmed A population balance model of ball wear in grinding mills: An experimental case study
title_sort A population balance model of ball wear in grinding mills: An experimental case study
dc.contributor.affiliation.spa.fl_str_mv Bürger, R., Universidad de Concepción;Bustamante, O., Universidad Nacional de Colombia;Fulla, M.R., Universidad Nacional de Colombia; Institución Universitaria Pascual Bravo;Rivera, I.E., Institución Universitaria Pascual Bravo; Universidad de Medellín
dc.subject.spa.fl_str_mv Ball grinding
Ceramic ball
Grinding law
Population balance model
Alumina
Aluminum oxide
Ceramic materials
Grinding (machining)
Silica
Silica sand
Wear of materials
A-ceramics
Ball grinding
Ceramic balls
Population balance modeling
Steady state
Wear equations
Wear law
Zero order
Ball mills
topic Ball grinding
Ceramic ball
Grinding law
Population balance model
Alumina
Aluminum oxide
Ceramic materials
Grinding (machining)
Silica
Silica sand
Wear of materials
A-ceramics
Ball grinding
Ceramic balls
Population balance modeling
Steady state
Wear equations
Wear law
Zero order
Ball mills
description A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics wear equations. It turns out that the wear law for all three different sized balls is of zero order. These experimental results are introduced into the model to obtain the ball charge of the mill at steady state and the alumina consumption by wear. © 2018 Elsevier Ltd
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:17Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:17Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 8926875
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4853
dc.identifier.doi.none.fl_str_mv 10.1016/j.mineng.2018.09.004
identifier_str_mv 8926875
10.1016/j.mineng.2018.09.004
url http://hdl.handle.net/11407/4853
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053121897&doi=10.1016%2fj.mineng.2018.09.004&partnerID=40&md5=4b6f4ade683ac5f88f9943fa265e670d
dc.relation.citationvolume.spa.fl_str_mv 128
dc.relation.citationstartpage.spa.fl_str_mv 288
dc.relation.citationendpage.spa.fl_str_mv 293
dc.relation.ispartofes.spa.fl_str_mv Minerals Engineering
dc.relation.references.spa.fl_str_mv Austin, L.G., Concha, F., (1994), Diseño y Simulación de Circuitos de Molienda y Clasificación (Design and Classification of Grinding and Classification Circuits). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Subprograma de Tecnología Mineral. Red de Fragmentación XIII-A. Concepción, Chile (in Spanish);Austin, L.G., Klimpel, R.R., Ball wear and ball size distribution in tumbling ball mills (1985) Powder Technol., 41, pp. 279-286;Austin, L.G., Klimpel, R.R., Luckie, P.T., (1984), Process Engineering of Size Reduction: Ball Milling. Society of Mining Engineers (SME), New York;Bond, F.C., Wear and size distribution of grinding balls (1943) Trans. Am. Instn. Min. Met. Eng., 153, pp. 373-384;Bond, F.C., Grinding ball size selection (1958) Min. Eng., 10, pp. 592-595;Bond, F.C., New Equation for Calculating the Work Index from A-C Closed Circuit Ball Mill Grindability Test (1960), Allis Chalmer Publications;Bürger, R., Karlsen, K.H., Towers, J.D., Closed-form and finite difference solutions to a population balance model of grinding mills (2005) J. Eng. Math., 51, pp. 165-195;Davis, E.W., Fine crushing in ball-mills (1919) Trans. Am. Instn. Min. Met. Eng., 61, pp. 250-294;Fuerstenau, D.W., Abouzeid, A.-Z.M., The energy efficiency of ball milling in comminution (2002) Int. J. Min. Process., 67, pp. 161-185;Fuerstenau, D.W., Abouzeid, A.-Z.M., Role of feed moisture in high pressure roll mill comminution (2007) Int. J. Min. Process., 82, pp. 203-210;Hulburt, H.M., Katz, S., Some problems in particle technology (1964) Chem. Eng. Sci., 19, pp. 555-574;Jakobsen, H.A., The population balance equation (2008) Chemical Reactor Modeling, pp. 07-865. , H.A. Jakobsen Springer-Verlag Berlin;Menacho, J.M., (1985), Modelo de Desgaste de Bolas y Optimización de su Perfil de Tamaño en Molinos Rotatorios Continuos (Model of Ball Wear and Optimization of Size Profiles in Rotating Continuous Mills). Avances en Mineralúrgia. Volumen 1. Serie de Metalurgia Extractiva. Universidad de Concepción, Concepción, Chile (in Spanish);Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: I. Zero-order wear rate (1986) Powder Technol., 47, pp. 87-96;Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: II. General solution (1987) Powder Technol., 52, pp. 267-277;Powell, M.S., Nurick, G.N., A study of charge motion in rotary mills. Part 1-extension of the theory (1996) Min. Eng., 9, pp. 259-268;Ramkrishna, D., Population Balances: Theories and Applications to Particulate Systems in Engineering (2000), Academic Press San Diego;Rose, H.E., Sullivan, R.M.E., A Treatise on Internal Mechanics of Ball, Tube, and Rod Mills (1958), Constable and Company London;Sepúlveda, J.E., Methodologies for the evaluation of grinding media consumption rates at full plant scale (2004) Min. Eng., 17, pp. 1269-1279;Verkoeijen, D., Pouw, G.A., Meesters, G.M.H., Scarlett, B., Population balances for particulate processes-a volume approach (2002) Chem. Eng. Sci., 57, pp. 2287-2303
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier Ltd
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159210629300224
spelling 2018-10-31T13:44:17Z2018-10-31T13:44:17Z20188926875http://hdl.handle.net/11407/485310.1016/j.mineng.2018.09.004A general and realistic population balance model is applied to a ceramic ball mill. The experimental data are obtained for three differently sized balls. The mill is operated 500 h with silica sand during 8 cycles. After each cycle, the mill is stopped to measure the ball wear to obtain the kinetics wear equations. It turns out that the wear law for all three different sized balls is of zero order. These experimental results are introduced into the model to obtain the ball charge of the mill at steady state and the alumina consumption by wear. © 2018 Elsevier LtdengElsevier LtdIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053121897&doi=10.1016%2fj.mineng.2018.09.004&partnerID=40&md5=4b6f4ade683ac5f88f9943fa265e670d128288293Minerals EngineeringAustin, L.G., Concha, F., (1994), Diseño y Simulación de Circuitos de Molienda y Clasificación (Design and Classification of Grinding and Classification Circuits). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). Subprograma de Tecnología Mineral. Red de Fragmentación XIII-A. Concepción, Chile (in Spanish);Austin, L.G., Klimpel, R.R., Ball wear and ball size distribution in tumbling ball mills (1985) Powder Technol., 41, pp. 279-286;Austin, L.G., Klimpel, R.R., Luckie, P.T., (1984), Process Engineering of Size Reduction: Ball Milling. Society of Mining Engineers (SME), New York;Bond, F.C., Wear and size distribution of grinding balls (1943) Trans. Am. Instn. Min. Met. Eng., 153, pp. 373-384;Bond, F.C., Grinding ball size selection (1958) Min. Eng., 10, pp. 592-595;Bond, F.C., New Equation for Calculating the Work Index from A-C Closed Circuit Ball Mill Grindability Test (1960), Allis Chalmer Publications;Bürger, R., Karlsen, K.H., Towers, J.D., Closed-form and finite difference solutions to a population balance model of grinding mills (2005) J. Eng. Math., 51, pp. 165-195;Davis, E.W., Fine crushing in ball-mills (1919) Trans. Am. Instn. Min. Met. Eng., 61, pp. 250-294;Fuerstenau, D.W., Abouzeid, A.-Z.M., The energy efficiency of ball milling in comminution (2002) Int. J. Min. Process., 67, pp. 161-185;Fuerstenau, D.W., Abouzeid, A.-Z.M., Role of feed moisture in high pressure roll mill comminution (2007) Int. J. Min. Process., 82, pp. 203-210;Hulburt, H.M., Katz, S., Some problems in particle technology (1964) Chem. Eng. Sci., 19, pp. 555-574;Jakobsen, H.A., The population balance equation (2008) Chemical Reactor Modeling, pp. 07-865. , H.A. Jakobsen Springer-Verlag Berlin;Menacho, J.M., (1985), Modelo de Desgaste de Bolas y Optimización de su Perfil de Tamaño en Molinos Rotatorios Continuos (Model of Ball Wear and Optimization of Size Profiles in Rotating Continuous Mills). Avances en Mineralúrgia. Volumen 1. Serie de Metalurgia Extractiva. Universidad de Concepción, Concepción, Chile (in Spanish);Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: I. Zero-order wear rate (1986) Powder Technol., 47, pp. 87-96;Menacho, J.M., Concha, F., Mathematical model of ball wear in grinding mills: II. General solution (1987) Powder Technol., 52, pp. 267-277;Powell, M.S., Nurick, G.N., A study of charge motion in rotary mills. Part 1-extension of the theory (1996) Min. Eng., 9, pp. 259-268;Ramkrishna, D., Population Balances: Theories and Applications to Particulate Systems in Engineering (2000), Academic Press San Diego;Rose, H.E., Sullivan, R.M.E., A Treatise on Internal Mechanics of Ball, Tube, and Rod Mills (1958), Constable and Company London;Sepúlveda, J.E., Methodologies for the evaluation of grinding media consumption rates at full plant scale (2004) Min. Eng., 17, pp. 1269-1279;Verkoeijen, D., Pouw, G.A., Meesters, G.M.H., Scarlett, B., Population balances for particulate processes-a volume approach (2002) Chem. Eng. Sci., 57, pp. 2287-2303ScopusBall grindingCeramic ballGrinding lawPopulation balance modelAluminaAluminum oxideCeramic materialsGrinding (machining)SilicaSilica sandWear of materialsA-ceramicsBall grindingCeramic ballsPopulation balance modelingSteady stateWear equationsWear lawZero orderBall millsA population balance model of ball wear in grinding mills: An experimental case studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bürger, R., Universidad de Concepción;Bustamante, O., Universidad Nacional de Colombia;Fulla, M.R., Universidad Nacional de Colombia; Institución Universitaria Pascual Bravo;Rivera, I.E., Institución Universitaria Pascual Bravo; Universidad de MedellínBürger R.Bustamante O.Fulla M.R.Rivera I.E.http://purl.org/coar/access_right/c_16ec11407/4853oai:repository.udem.edu.co:11407/48532020-05-27 18:26:40.799Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co