Tight-binding model for opto-electronic properties of penta-graphene nanostructures

We present a tight-binding parametrization for penta-graphene that correctly describes its electronic band structure and linear optical response. The set of parameters is validated by comparing to ab-initio density functional theory calculations for single-layer penta-graphene, showing a very good g...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4905
Acceso en línea:
http://hdl.handle.net/11407/4905
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:We present a tight-binding parametrization for penta-graphene that correctly describes its electronic band structure and linear optical response. The set of parameters is validated by comparing to ab-initio density functional theory calculations for single-layer penta-graphene, showing a very good global agreement. We apply this parameterization to penta-graphene nanoribbons, achieving an adequate description of quantum-size effects. Additionally, a symmetry-based analysis of the energy band structure and the optical transitions involved in the absorption spectra is introduced, allowing for the interpretation of the optoelectronic features of these systems. © 2018, The Author(s).