Implementation of the two-dimensional electrostatic particle-in-cell method
We provide a guide to implementing the particle-in-cell algorithm, which is useful for simulating diverse phenomena in plasmas. We focus on two-dimensional systems which have vector fields with three Cartesian components but depend only on two spatial coordinates. We describe the algorithm in detail...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5693
- Acceso en línea:
- http://hdl.handle.net/11407/5693
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_b9c186daf9d9e663baf696c021265f26 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5693 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title |
Implementation of the two-dimensional electrostatic particle-in-cell method |
spellingShingle |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title_short |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title_full |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title_fullStr |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title_full_unstemmed |
Implementation of the two-dimensional electrostatic particle-in-cell method |
title_sort |
Implementation of the two-dimensional electrostatic particle-in-cell method |
description |
We provide a guide to implementing the particle-in-cell algorithm, which is useful for simulating diverse phenomena in plasmas. We focus on two-dimensional systems which have vector fields with three Cartesian components but depend only on two spatial coordinates. We describe the algorithm in detail, including particle-to-grid interpolation, the fast Fourier transform, the Boris algorithm, and the use of dimensionless units. As an example, we discuss a simulation of the two-stream instability, which occurs in a plasma system composed of two counter-streaming electrons and an ion background at rest. © 2020 American Association of Physics Teachers. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:41Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:41Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
29505 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5693 |
dc.identifier.doi.none.fl_str_mv |
10.1119/10.0000375 |
identifier_str_mv |
29505 10.1119/10.0000375 |
url |
http://hdl.handle.net/11407/5693 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078927777&doi=10.1119%2f10.0000375&partnerID=40&md5=cfb460ddaed58ff53e092245f1cddbe3 |
dc.relation.citationvolume.none.fl_str_mv |
88 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
159 |
dc.relation.citationendpage.none.fl_str_mv |
167 |
dc.relation.references.none.fl_str_mv |
Chen, F.F., (1984) Introduction to Plasma Physics and Controlled Fusion, , Springer, New York Havlí?ková, E., Fluid model of plasma and computational methods for solution (2006) WDS'06 Proceedings of Contributed Papers, Part III (4), pp. 180-186. , Prague, Czech Republic Howes, G.G., Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas (2009) Nonlinear Processes Geophys., 16 (2), pp. 219-232 Dendy, R.O., (1990) Plasma Dynamics, , Oxford U. P., Oxford, UK Piel, A., (2010) Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas, , Springer, New York Verboncoeur, J.P., Particle simulation of plasmas: Review and advances (2005) Plasma Phys. Controlled Fusion, 47, pp. A231-A260 Birdsall, C.K., Langdon, A.B., (2004) Plasma Physics Via Computer Simulation, , Taylor & Francis, Oxfordshire, UK Pritchett, P.L., Particle-in-cell simulation of plasmas - A tutorial (2003) Space Plasma Simulation, 615, pp. 1-24. , edited by C. T. Büchner, Jörg Scholer, and Manfred Dum, Lecture Notes in Physics (Springer, New York) Benedetti, C., Sgattoni, A., Turchetti, G., Londrillo, P., ALaDyn: A high-accuracy PIC code for the Maxwell-Vlasov equations (2008) IEEE Trans. Plasma Sci., 36 (4), pp. 1790-1798 Martins, S.F., Fonseca, R.A., Vieira, J., Silva, L.O., Lu, W., Mori, W.B., Modeling laser Wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames (2010) Phys. Plasmas, 17 Klimo, O., Weber, S., Tikhonchuk, V.T., Limpouch, J., Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario (2010) Plasma Phys. Controlled Fusion, 52 (5) Derouillat, J., Beck, A., Pérez, F., Vinci, T., Chiaramello, M., Grassi, A., Flé, M., Grech, M., SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation (2018) Comput. Phys. Commun., 222, pp. 351-373 https://github.com/UCLA-Plasma-Simulation-Group, UCLA Plasma Simulation Group Ellis, I.N., Strozzi, D.J., Winjum, B.J., Tsung, F.S., Grismayer, T., Mori, W.B., Fahlen, J.E., Williams, E.A., Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas (2012) Phys. Plasmas, 19 Yan, R., Ren, C., Li, J., Maximov, A.V., Mori, W.B., Sheng, Z.-M., Tsung, F.S., Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion (2012) Phys. Rev. Lett., 108 Mozer, F.S., Pritchett, P.L., Magnetic field reconnection: A first-principles perspective (2010) Phys. Today, 63 (6), pp. 34-39 Pritchett, P.L., Coroniti, F.V., A kinetic ballooning/interchange instability in the magnetotail (2010) J. Geophys. Res.: Space Phys., 15, pp. 1-11. , https://doi.org/10.1029/2009JA014752 Vieira, J., Martins, J.L., Pathak, V.B., Fonseca, R.A., Mori, W.B., Silva, L.O., Magnetically assisted self-injection and radiation generation for plasma-based acceleration (2012) Plasma Phys. Controlled Fusion, 54 Vieira, J., Fonseca, R.A., Mori, W.B., Silva, L.O., Ion motion in self-modulated plasma Wakefield accelerators (2012) Phys. Rev. Lett., 109 Kimura, W.D., Milchberg, H.M., Muggli, P., Li, X., Mori, W.B., Hollow plasma channel for positron plasma Wakefield acceleration (2011) Phys. Rev. Spec. Top. - Accel. Beams, 14 Verleye, B., Henri, P., Wuyts, R., Lapenta, G., Meerbergen, K., Implementation of a 2D electrostatic particle-in-cell algorithm in unified parallel C with dynamic load-balancing (2013) Comput. Fluids, 80 (1), pp. 10-16 Wolf, E.M., Causley, M., Christlieb, A., Bettencourt, M., A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver (2016) J. Comput. Phys., 326, pp. 342-372 Tajima, T., Clark, A., Craddock, G.G., Gilden, D.L., Leung, W.K., Li, Y.M., Robertson, J.A., Saltzman, B.J., Particle simulation of plasmas and stellar systems (1985) Am. J. Phys., 53, pp. 365-370 https://github.com/dfrodriguezp/PiCM-cpp, PiCM-cpp Miyake, T., Omura, Y., Matsumoto, H., Kojima, H., Two-dimensional computer simulations of electrostatic solitary waves observed by Geotail spacecraft (1998) J. Geophys. Res., 103, pp. 11841-11850. , https://doi.org/10.1029/98JA00760 Olson, J., Miloch, W.J., Ratynskaia, S., Yaroshenko, V., Potential structure around the Cassini spacecraft near the orbit of Enceladus (2010) Phys. Plasmas, 17 Blandón, J., Grisales, J., Riascos, H., Electrostatic plasma simulation by particle-in-cell method using ANACONDA package (2017) J. Phys.: Conf. Ser., 850. , in Dehnen, W., Read, J.I., N-body simulations of gravitational dynamics (2011) Eur. Phys. J. Plus, 126, p. 55 Aggarwal, S., Two-stream instability in plasmas with arbitrary (1979) Astrophys. Space Sci., 66, pp. 341-348 Umeda, T., Omura, Y., Miyake, T., Matsumoto, H., Ashour-Abdalla, M., Nonlinear evolution of the electron two-stream instability: Two-dimensional particle simulations (2006) J. Geophys. Res.: Space Phys., 111 (10), pp. 1-9. , https://doi.org/10.1029/2006JA011762 Forslund, D.W., Fundamentals of plasma simulation (1985) Space Sci. Rev., 42 (1-2), pp. 3-16 Weisstein, E.W., Discrete Fourier Transform, , http://mathworld.wolfram.com/DiscreteFourierTransform.html Boris, J.P., (1970) Acceleration Calculation from A Scalar Potential, , Report No. MATT-769 (Plasma Physics Laboratory, Princeton University) Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.M., Why is Boris algorithm so good? (2013) Phys. Plasmas, 20 (8) Boozer, A.D., Simulating a one-dimensional plasma (2010) Am. J. Phys., 78 (6), pp. 580-584 Hutchinson, I.H., Electron holes in phase space: What they are and why they matter (2017) Phys. Plasmas, 24 Ghorbanalilu, M., Abdollahzadeh, E., Rahbari, S.H., Particle-in-cell simulation of two stream instability in the non-extensive statistics (2014) Laser Part. Beams, 32 (3), pp. 399-407 Wu, M., Lu, Q., Zhu, J., Du, A., Wang, S., The magnetic structures of electron phase-space holes formed in the electron two-stream instability (2012) Astrophys. Space Sci., 338 (1), pp. 81-85 Mingyu, W., Quanming, L., Jie, Z., Peiran, W., Shui, W., Wu, M., Lu, Q., Wang, S., Electromagnetic particle-in-cell simulations of electron holes formed during the electron two-stream instability (2013) Plasma Sci. Technol., 15 (1), pp. 17-24 https://github.com/dfrodriguezp/PiCM-cpp/wiki, PiCM-cpWiki Engel, A.V., Cozens, J.R., Flame plasmas (1965) Advances in Electronics and Electron Physics, 20, pp. 99-146. , edited by L. L. Marton (Academic Press, Massachusetts) Sturrock, P.A., Excitation of plasma oscillations (1960) Phys. Rev., 117, pp. 1426-1429 Hasegawa, A., Theory of longitudinal plasma instabilities (1968) Phys. Rev., 169, pp. 204-214 Kumar, A., Shukla, C., Das, A., Kaw, P., Energy principle for excitations in plasmas with counterstreaming electron flows (2018) AIP Adv., 8 Anderson, D., Fedele, R., Lisak, M., A tutorial presentation of the two stream instability and Landau damping (2001) Am. J. Phys., 69 (12), pp. 1262-1266 Boyd, T.J.M., Sanderson, J.J., (2003) The Physics of Plasmas, , Cambridge U. P., Cambridge, UK Tomori, A., Plasma dispersion relation and instabilities in electron velocity distribution function (2014) WDS'14 Proceedings of Contributed Papers-Physics, pp. 298-303. , Prague, Czech Republic Matsumoto, H., Omura, Y., Particle simulation of electromagnetic waves and its application to space plasmas (1985) Computer Simulation of Space Plasmas (A86-21759 08-75), pp. 3-41. , edited by H. Matsumoto and T. Sato (Reidel Publishing, Dordrecht, Netherlands) Omura, Y., Matsumoto, H., Miyake, T., Kojima, H., Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail (1996) J. Geophys. Res.: Space Phys., 101 (A2), pp. 2685-2697. , https://doi.org/10.1029/95JA03145 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Association of Physics Teachers |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Association of Physics Teachers |
dc.source.none.fl_str_mv |
American Journal of Physics |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159190361374720 |
spelling |
20202020-04-29T14:53:41Z2020-04-29T14:53:41Z29505http://hdl.handle.net/11407/569310.1119/10.0000375We provide a guide to implementing the particle-in-cell algorithm, which is useful for simulating diverse phenomena in plasmas. We focus on two-dimensional systems which have vector fields with three Cartesian components but depend only on two spatial coordinates. We describe the algorithm in detail, including particle-to-grid interpolation, the fast Fourier transform, the Boris algorithm, and the use of dimensionless units. As an example, we discuss a simulation of the two-stream instability, which occurs in a plasma system composed of two counter-streaming electrons and an ion background at rest. © 2020 American Association of Physics Teachers.engAmerican Association of Physics TeachersFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078927777&doi=10.1119%2f10.0000375&partnerID=40&md5=cfb460ddaed58ff53e092245f1cddbe3882159167Chen, F.F., (1984) Introduction to Plasma Physics and Controlled Fusion, , Springer, New YorkHavlí?ková, E., Fluid model of plasma and computational methods for solution (2006) WDS'06 Proceedings of Contributed Papers, Part III (4), pp. 180-186. , Prague, Czech RepublicHowes, G.G., Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas (2009) Nonlinear Processes Geophys., 16 (2), pp. 219-232Dendy, R.O., (1990) Plasma Dynamics, , Oxford U. P., Oxford, UKPiel, A., (2010) Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas, , Springer, New YorkVerboncoeur, J.P., Particle simulation of plasmas: Review and advances (2005) Plasma Phys. Controlled Fusion, 47, pp. A231-A260Birdsall, C.K., Langdon, A.B., (2004) Plasma Physics Via Computer Simulation, , Taylor & Francis, Oxfordshire, UKPritchett, P.L., Particle-in-cell simulation of plasmas - A tutorial (2003) Space Plasma Simulation, 615, pp. 1-24. , edited by C. T. Büchner, Jörg Scholer, and Manfred Dum, Lecture Notes in Physics (Springer, New York)Benedetti, C., Sgattoni, A., Turchetti, G., Londrillo, P., ALaDyn: A high-accuracy PIC code for the Maxwell-Vlasov equations (2008) IEEE Trans. Plasma Sci., 36 (4), pp. 1790-1798Martins, S.F., Fonseca, R.A., Vieira, J., Silva, L.O., Lu, W., Mori, W.B., Modeling laser Wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames (2010) Phys. Plasmas, 17Klimo, O., Weber, S., Tikhonchuk, V.T., Limpouch, J., Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario (2010) Plasma Phys. Controlled Fusion, 52 (5)Derouillat, J., Beck, A., Pérez, F., Vinci, T., Chiaramello, M., Grassi, A., Flé, M., Grech, M., SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation (2018) Comput. Phys. Commun., 222, pp. 351-373https://github.com/UCLA-Plasma-Simulation-Group, UCLA Plasma Simulation GroupEllis, I.N., Strozzi, D.J., Winjum, B.J., Tsung, F.S., Grismayer, T., Mori, W.B., Fahlen, J.E., Williams, E.A., Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas (2012) Phys. Plasmas, 19Yan, R., Ren, C., Li, J., Maximov, A.V., Mori, W.B., Sheng, Z.-M., Tsung, F.S., Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion (2012) Phys. Rev. Lett., 108Mozer, F.S., Pritchett, P.L., Magnetic field reconnection: A first-principles perspective (2010) Phys. Today, 63 (6), pp. 34-39Pritchett, P.L., Coroniti, F.V., A kinetic ballooning/interchange instability in the magnetotail (2010) J. Geophys. Res.: Space Phys., 15, pp. 1-11. , https://doi.org/10.1029/2009JA014752Vieira, J., Martins, J.L., Pathak, V.B., Fonseca, R.A., Mori, W.B., Silva, L.O., Magnetically assisted self-injection and radiation generation for plasma-based acceleration (2012) Plasma Phys. Controlled Fusion, 54Vieira, J., Fonseca, R.A., Mori, W.B., Silva, L.O., Ion motion in self-modulated plasma Wakefield accelerators (2012) Phys. Rev. Lett., 109Kimura, W.D., Milchberg, H.M., Muggli, P., Li, X., Mori, W.B., Hollow plasma channel for positron plasma Wakefield acceleration (2011) Phys. Rev. Spec. Top. - Accel. Beams, 14Verleye, B., Henri, P., Wuyts, R., Lapenta, G., Meerbergen, K., Implementation of a 2D electrostatic particle-in-cell algorithm in unified parallel C with dynamic load-balancing (2013) Comput. Fluids, 80 (1), pp. 10-16Wolf, E.M., Causley, M., Christlieb, A., Bettencourt, M., A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver (2016) J. Comput. Phys., 326, pp. 342-372Tajima, T., Clark, A., Craddock, G.G., Gilden, D.L., Leung, W.K., Li, Y.M., Robertson, J.A., Saltzman, B.J., Particle simulation of plasmas and stellar systems (1985) Am. J. Phys., 53, pp. 365-370https://github.com/dfrodriguezp/PiCM-cpp, PiCM-cppMiyake, T., Omura, Y., Matsumoto, H., Kojima, H., Two-dimensional computer simulations of electrostatic solitary waves observed by Geotail spacecraft (1998) J. Geophys. Res., 103, pp. 11841-11850. , https://doi.org/10.1029/98JA00760Olson, J., Miloch, W.J., Ratynskaia, S., Yaroshenko, V., Potential structure around the Cassini spacecraft near the orbit of Enceladus (2010) Phys. Plasmas, 17Blandón, J., Grisales, J., Riascos, H., Electrostatic plasma simulation by particle-in-cell method using ANACONDA package (2017) J. Phys.: Conf. Ser., 850. , inDehnen, W., Read, J.I., N-body simulations of gravitational dynamics (2011) Eur. Phys. J. Plus, 126, p. 55Aggarwal, S., Two-stream instability in plasmas with arbitrary (1979) Astrophys. Space Sci., 66, pp. 341-348Umeda, T., Omura, Y., Miyake, T., Matsumoto, H., Ashour-Abdalla, M., Nonlinear evolution of the electron two-stream instability: Two-dimensional particle simulations (2006) J. Geophys. Res.: Space Phys., 111 (10), pp. 1-9. , https://doi.org/10.1029/2006JA011762Forslund, D.W., Fundamentals of plasma simulation (1985) Space Sci. Rev., 42 (1-2), pp. 3-16Weisstein, E.W., Discrete Fourier Transform, , http://mathworld.wolfram.com/DiscreteFourierTransform.htmlBoris, J.P., (1970) Acceleration Calculation from A Scalar Potential, , Report No. MATT-769 (Plasma Physics Laboratory, Princeton University)Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W.M., Why is Boris algorithm so good? (2013) Phys. Plasmas, 20 (8)Boozer, A.D., Simulating a one-dimensional plasma (2010) Am. J. Phys., 78 (6), pp. 580-584Hutchinson, I.H., Electron holes in phase space: What they are and why they matter (2017) Phys. Plasmas, 24Ghorbanalilu, M., Abdollahzadeh, E., Rahbari, S.H., Particle-in-cell simulation of two stream instability in the non-extensive statistics (2014) Laser Part. Beams, 32 (3), pp. 399-407Wu, M., Lu, Q., Zhu, J., Du, A., Wang, S., The magnetic structures of electron phase-space holes formed in the electron two-stream instability (2012) Astrophys. Space Sci., 338 (1), pp. 81-85Mingyu, W., Quanming, L., Jie, Z., Peiran, W., Shui, W., Wu, M., Lu, Q., Wang, S., Electromagnetic particle-in-cell simulations of electron holes formed during the electron two-stream instability (2013) Plasma Sci. Technol., 15 (1), pp. 17-24https://github.com/dfrodriguezp/PiCM-cpp/wiki, PiCM-cpWikiEngel, A.V., Cozens, J.R., Flame plasmas (1965) Advances in Electronics and Electron Physics, 20, pp. 99-146. , edited by L. L. Marton (Academic Press, Massachusetts)Sturrock, P.A., Excitation of plasma oscillations (1960) Phys. Rev., 117, pp. 1426-1429Hasegawa, A., Theory of longitudinal plasma instabilities (1968) Phys. Rev., 169, pp. 204-214Kumar, A., Shukla, C., Das, A., Kaw, P., Energy principle for excitations in plasmas with counterstreaming electron flows (2018) AIP Adv., 8Anderson, D., Fedele, R., Lisak, M., A tutorial presentation of the two stream instability and Landau damping (2001) Am. J. Phys., 69 (12), pp. 1262-1266Boyd, T.J.M., Sanderson, J.J., (2003) The Physics of Plasmas, , Cambridge U. P., Cambridge, UKTomori, A., Plasma dispersion relation and instabilities in electron velocity distribution function (2014) WDS'14 Proceedings of Contributed Papers-Physics, pp. 298-303. , Prague, Czech RepublicMatsumoto, H., Omura, Y., Particle simulation of electromagnetic waves and its application to space plasmas (1985) Computer Simulation of Space Plasmas (A86-21759 08-75), pp. 3-41. , edited by H. Matsumoto and T. Sato (Reidel Publishing, Dordrecht, Netherlands)Omura, Y., Matsumoto, H., Miyake, T., Kojima, H., Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail (1996) J. Geophys. Res.: Space Phys., 101 (A2), pp. 2685-2697. , https://doi.org/10.1029/95JA03145American Journal of PhysicsImplementation of the two-dimensional electrostatic particle-in-cell methodArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Rodríguez-Patiño, D.F., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Ramírez, S., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Salcedo-Gallo, J.S., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Hoyos, J.H., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombia; Restrepo-Parra, E., PCM Computational Applications, Departamento de Física y Química, Universidad Nacional de Colombia, Manizales, 170003, Colombia, Basic Sciences Faculty, Universidad de Medellín, Medellín, 050026, Colombiahttp://purl.org/coar/access_right/c_16ecRodríguez-Patiño D.F.Ramírez S.Salcedo-Gallo J.S.Hoyos J.H.Restrepo-Parra E.11407/5693oai:repository.udem.edu.co:11407/56932020-05-27 17:51:46.109Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |