Explosive Parameters for Coal Samples (Antioquia, Colombia)

Through proximate analysis (residual moisture, RM, ashes, As, volatile matter, VM, fixed carbon, FC, total Sulphur, TS and calorific value, CV), granulometric, minimum cloud ignition temperature tests (TMIn), lower explosion limit (LEL) and explosion severity (Kmáx); it is proposed to identify which...

Full description

Autores:
Fuentes Chica, Rafael
Molina Escobar, Jorge
Blandón Montes, Astrid
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5511
Acceso en línea:
http://hdl.handle.net/11407/5511
https://doi.org/10.22395/rium.v17n33a1
Palabra clave:
Coaldust
Explosiveness
Proximate analysis
Pó de carvão
Explosividade
Análises próximas
Polvo de carbón
Explosividad
Análisis próximos
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_b50662991f8ee1c8050e891a431595e2
oai_identifier_str oai:repository.udem.edu.co:11407/5511
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.eng.fl_str_mv Explosive Parameters for Coal Samples (Antioquia, Colombia)
dc.title.por.fl_str_mv Parâmetros explosivos para amostras de carvão (Antioquia, Colômbia)
dc.title.spa.fl_str_mv Parámetros explosivos para muestras de carbón (Antioquia – Colombia)
title Explosive Parameters for Coal Samples (Antioquia, Colombia)
spellingShingle Explosive Parameters for Coal Samples (Antioquia, Colombia)
Coaldust
Explosiveness
Proximate analysis
Pó de carvão
Explosividade
Análises próximas
Polvo de carbón
Explosividad
Análisis próximos
title_short Explosive Parameters for Coal Samples (Antioquia, Colombia)
title_full Explosive Parameters for Coal Samples (Antioquia, Colombia)
title_fullStr Explosive Parameters for Coal Samples (Antioquia, Colombia)
title_full_unstemmed Explosive Parameters for Coal Samples (Antioquia, Colombia)
title_sort Explosive Parameters for Coal Samples (Antioquia, Colombia)
dc.creator.fl_str_mv Fuentes Chica, Rafael
Molina Escobar, Jorge
Blandón Montes, Astrid
dc.contributor.author.none.fl_str_mv Fuentes Chica, Rafael
Molina Escobar, Jorge
Blandón Montes, Astrid
dc.subject.eng.fl_str_mv Coaldust
Explosiveness
Proximate analysis
topic Coaldust
Explosiveness
Proximate analysis
Pó de carvão
Explosividade
Análises próximas
Polvo de carbón
Explosividad
Análisis próximos
dc.subject.por.fl_str_mv Pó de carvão
Explosividade
Análises próximas
dc.subject.spa.fl_str_mv Polvo de carbón
Explosividad
Análisis próximos
description Through proximate analysis (residual moisture, RM, ashes, As, volatile matter, VM, fixed carbon, FC, total Sulphur, TS and calorific value, CV), granulometric, minimum cloud ignition temperature tests (TMIn), lower explosion limit (LEL) and explosion severity (Kmáx); it is proposed to identify which coal produces the most explosive dust. For most samples, the highest amount of coal particle volume is between 100 μm and 200 μm. For the Amagá sample, the volume of particles smaller than 10 μm is the largest, which agrees with the results of the TMIn, which is the lowest (400 °C), the lowest LEL (30 g/m3) and the highest Kmáx value (176 bar, m/s). On the contrary, the Angelópolis sample presents a very skewed curve towards sizes between 60 μm and 300 μm, therefore, its TMIn is the highest (480 °C) of the Eastern Zone of the Sinifaná basin and its LEL is under 60 g/m3, and it also presents the lowest value of Kmáx (106 bar, m/s), thus, it is observed that there is a direct relationship between the granulometry and the results of severity and sensitivity to the explosion. In general, there is a different behavior between the samples of the municipalities of Amagá and Titiribí, especially between the LIE and the results of the analyses of VM, FC and CV, with respect to the other samples, which is also in agreement with their greater susceptibility to inflammation and explosiveness.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-12-28
dc.date.accessioned.none.fl_str_mv 2019-11-07T15:03:02Z
dc.date.available.none.fl_str_mv 2019-11-07T15:03:02Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5511
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22395/rium.v17n33a1
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/5511
https://doi.org/10.22395/rium.v17n33a1
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv https://revistas.udem.edu.co/index.php/ingenierias/article/view/2058
dc.relation.citationvolume.none.fl_str_mv 17
dc.relation.citationissue.none.fl_str_mv 33
dc.relation.citationstartpage.none.fl_str_mv 19
dc.relation.citationendpage.none.fl_str_mv 38
dc.relation.references.spa.fl_str_mv [1] Universidad Nacional de Colombia, Determinación del grado de explosividad del polvo de carbón y cuantificación del contenido de gas metano en los mantos de carbón de la cuenca del Sinifaná, Medellín: Gobernación de Antioquia, 2014.
[2] T. Abbasi y S. A. Abbasi, “Dust explosions-cases, causes, consequences, and control,” J. Hazard. Mater, vol. 140, N.° 1, pp. 7-44, 2007.
[3] W. Cybulski, Coal dust explosions and their suppression, Bureau of Warsaw, Varsovia, Foreign, Special Science, Currency Program, Information, 1975.
[4] A. Jiménez, M. A. Alfonso, V. Aguirre, E. F. Morales, J. Martínez, R. Sguerra, J. M. J. Navarro y M. Alzate, “Informe preliminar de la investigación del accidente fatal de 73 trabajadores sucedido el miércoles 16 de junio de 2010 en la Mina San Joaquín titulo 11338 beneficiario Carbones San Fernando, Ubicada en el municipio de Amaga, (vereda Paso Nivel) Antioquia,” Ministerio de Minas, pp. 4-5, Bogotá, 2010.
[5] J. Molina y A. Blandón, “Evidencias del choque térmico en partículas de polvo después de una explosión en minería de carbón,” Revista Ingeniería y Competitividad, vol. 16, N.°2, pp. 23-33, 2014.
[6] Casas, A. Blandón y J. Molina, “Evaluación de los parámetros para determinar el grado de explosibilidad del polvo de carbón,” Boletín Ciencias de la Tierra, N.°36, pp. 42-54, 2014.
[7] Ministerio de Minas y Energía, “Política Nacional de Seguridad Minera,” Bogotá, Dirección de Minas, 2011, pp. 13-17.
[8] P. Amyotte, “Some myths and realities about dust explosions,” Process Safety and Environmental Protection, vol. 92, N.°4, pp. 292-299, 2014.
[9] J. D. McAteer, “Upper Big Branch The April 5, 2010, explosion: a failure of basic coal mine safety practices,” Report to the Governor, Governor’s Independent Investigation Panel, Virginia del Este, 2011.
[10] J. García-Torrent, N. Fernández-Anez, L. Medic-Pejic, A. Blandón-Montes y J. M. Molina-Escobar, “Ignition and explosion parameters of Colombian coals,” Journal of Loss Prevention in the Process Industries, vol. 43, pp. 706-713, 2016.
[11] K. L. Cashdollar, “Coal dust explosibility,” Loss Prevention in the Process Industries, vol. 9, N.º 1, pp. 65 - 76, 1996.
[12] J. Michelis, B. Margenburg, G. Müller y a. W. Kleine, “Investigations into the buildup and development conditions of coal dust explosions in a 700-m underground gallery,” de Industrial Dust Explosions, ASTM STP 958, Filadelfia, American Society for Testing and Materials, 1987, pp. 124 - 137.
[13] P. Amyotte y E. R., “Dust explosion causation, prevention and mitigation: An overview,” Journal of Chemical Health and Safety, vol. 17, N.° 1, pp. 15–28, 2010.
[14] A. GarcÍa, A. Di Benedetto, P. Russo, E. Salzano y R. Sanchirico, “Dust/gas mixtures explosion regimes,” Powder Technology, vol. 205, N.° 1–3, pp. 81-86, 2011.
[15] L. Qingming, B. Chunhua, L. Xiaodong, J. Li y D. Wenxi, “Coal dust/air explosions in a large-scale tube,” Fuel, vol. 89, N.° 2, pp. 329-335, 2010.
[16] BSI Group, British Standards Institution, EN 14034-3, 2006+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Lower Explosion Limit LEL of Dust Clouds, 2011.
[17] BSI Group, British Standards Institution, EN 50281-2-1, Electrical apparatus for use in the presence of combustible dust - Part 2-1: Test methods - Methods for determining the minimum ignition temperatures of dust, 1998.
[18] BSI Group, British Standards Institution, EN 14034 - 1, 2004+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Maximum Explosion Pressure Pmax of Dust Clouds, 2011.
[19] Directivas ATEX (atmósfera explosiva), Guía técnica para a seguridad y salud en atmósferas explosivas, Madrid, pp.41-108, 2003.
[20] K. Baquero, A. Blandón y J. Molina, “Analysis of the factors that affect in the explosibility of coal dust in underground mines,” Ing. y Compet., vol. 14, N.° 2, pp. 147-160, 2012.
[21] Laboratorio Oficial J.M. Madariaga, LOM, “Caracterización de parámetros explosivos para muestras de polvo de carbón (LOM 14SOLI8175),” Universidad Politécnica de Madrid, Madrid, 2014.
[22] ASTDM International, American Society for Testing and Materials, ASTM D3172 - 13, Standard Practice for Proximate Analysis of Coal and Coke, 2013.
[23] ASTDM International, American Society for Testing and Materials, ASTM D3302M - 15, Standard Test Method for Total Moisture in Coal, 2015.
[24] ASTDM International, American Society for Testing and Materials, ASTM D3173 - 11, Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 2011.
[25] ASTDM International, American Society for Testing and Materials, ASTM D3174 - 12, Standard Test Method for Ash in the Analysis Sample of Coal and Coke, 2012.
[26] ISO, International Organization for Standardization, ISO 562, Volatile matter in the analysis sample of coal and coke, 3.a ed., 2010.
[27] ASTM International, American Society for Testing and Materials, ASTM D5865 - 13, Standard Test Method for Gross Calorific Value of Coal and Coke, 2013.
[28] ASTM International, American Society for Testing and Materials, ASTM D4239 - 14,Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion, 2014.
[29] M. Frías, M . P. de Luxan, M. I. Sánchez de Rojas , “Espectrometría de difracción por rayos laser,» Materiales de construcción, vol. 38, N.° 212, pp. 37-52, 1988.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 19-38
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 19-38
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159188605009920
spelling Fuentes Chica, RafaelMolina Escobar, JorgeBlandón Montes, AstridFuentes Chica, Rafael; Universidad Nacional de ColombiaMolina Escobar, Jorge; Universidad Nacional de ColombiaBlandón Montes, Astrid; Universidad Nacional de Colombia2019-11-07T15:03:02Z2019-11-07T15:03:02Z2018-12-281692-3324http://hdl.handle.net/11407/5511https://doi.org/10.22395/rium.v17n33a12248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínThrough proximate analysis (residual moisture, RM, ashes, As, volatile matter, VM, fixed carbon, FC, total Sulphur, TS and calorific value, CV), granulometric, minimum cloud ignition temperature tests (TMIn), lower explosion limit (LEL) and explosion severity (Kmáx); it is proposed to identify which coal produces the most explosive dust. For most samples, the highest amount of coal particle volume is between 100 μm and 200 μm. For the Amagá sample, the volume of particles smaller than 10 μm is the largest, which agrees with the results of the TMIn, which is the lowest (400 °C), the lowest LEL (30 g/m3) and the highest Kmáx value (176 bar, m/s). On the contrary, the Angelópolis sample presents a very skewed curve towards sizes between 60 μm and 300 μm, therefore, its TMIn is the highest (480 °C) of the Eastern Zone of the Sinifaná basin and its LEL is under 60 g/m3, and it also presents the lowest value of Kmáx (106 bar, m/s), thus, it is observed that there is a direct relationship between the granulometry and the results of severity and sensitivity to the explosion. In general, there is a different behavior between the samples of the municipalities of Amagá and Titiribí, especially between the LIE and the results of the analyses of VM, FC and CV, with respect to the other samples, which is also in agreement with their greater susceptibility to inflammation and explosiveness.Por meio de análises próximas — umidade residual (UR), cinzas (Cz), matéria volátil (MV), carbono fixo (CF), enxofre total (ST) e poder calorífico (PC) —, granulométricas, testes de temperatura mínima de ignição na nuvem (MIT), limite inferior de explosividade (LIE) e severidade da explosão (Kmáx), propõe-se identificar qual carvão produz o pó mais explosivo. Para a maioria das amostras, a quantidade mais alta de volume de partículas de carvão se encontra entre 100 μm e 200 μm. Para a amostra de Amagá, o volume de partículas menores que 10 μm é maior, o que está de acordo com os resultados da MIT, que é a mais baixa (400 ºC), o menor LIE (30 g/m3) e o maior valor Kmáx (176 bar, m/s). Por outro lado, a amostra de Angelópolis apresenta uma curva muito inclinada para tamanhos entre 60 μm e 300 μm, portanto sua MIT é a mais alta (480 ºC) da zona oriental da bacia do Sinifaná e seu LIE é baixo (60 g/m3) e, igualmente, apresenta o menor valor de Kmáx (106 bar, m/s). Assim, observa-se que existe uma relação direta entre a granulometria e os resultados de severidade e sensibilidade à explosão. Em geral, nota-se um comportamento diferente entre as amostras dos munícipios de Amagá e Titiribí — especialmente entre o LIE e os resultados das análises de MV, CF e PC — com respeito às demais amostras, o que também está de acordo com uma maior suscetibilidade à inflamação e à explosividade.Mediante análisis próximos (humedad residual, HR, cenizas, Cz, materia volátil, MV, carbono fijo, CF, azufre total, ST y poder calorífico, PC), granulométricos, pruebas de temperatura mínima de ignición en nube (TMIn), límite inferior de explosividad (LIE) y severidad de la explosión (Kmáx); se propone identificar cuál carbón produce el polvo más explosivo. Para la mayoría de las muestras, la más alta cantidad de volumen de partículas de carbón se encuentra entre los 100 μm y los 200 μm. Para la muestra de Amagá, el volumen de partículas menores de 10 μm es el mayor, lo cual está de acuerdo con los resultados de la TMIn, que es la más baja (400 °C), el menor LIE (30 g/m3) y el mayor valor Kmáx (176 bar, m/s). Por el contrario, la muestra de Angelópolis presenta una curva muy sesgada hacia tamaños entre los 60 μm y 300 μm, por tanto, su TMIn es la más alta (480 °C) de la zona oriental de la cuenca del Sinifaná y su LIE es bajo 60 g/m3, e igualmente presenta el menor valor de Kmáx (106 bar, m/s), así, se observa, que existe una relación directa entre la granulometría y los resultados de severidad y sensibilidad a la explosión. En general se ve un comportamiento diferente entre las muestras de los municipios de Amagá y Titiribí, especialmente entre el LIE y los resultados de los análisis de MV, CF y PC, con respecto a las demás muestras, lo cual también está de acuerdo con su mayor susceptibilidad a la inflamación y a la explosividad.p. 19-38Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/205817331938[1] Universidad Nacional de Colombia, Determinación del grado de explosividad del polvo de carbón y cuantificación del contenido de gas metano en los mantos de carbón de la cuenca del Sinifaná, Medellín: Gobernación de Antioquia, 2014.[2] T. Abbasi y S. A. Abbasi, “Dust explosions-cases, causes, consequences, and control,” J. Hazard. Mater, vol. 140, N.° 1, pp. 7-44, 2007.[3] W. Cybulski, Coal dust explosions and their suppression, Bureau of Warsaw, Varsovia, Foreign, Special Science, Currency Program, Information, 1975.[4] A. Jiménez, M. A. Alfonso, V. Aguirre, E. F. Morales, J. Martínez, R. Sguerra, J. M. J. Navarro y M. Alzate, “Informe preliminar de la investigación del accidente fatal de 73 trabajadores sucedido el miércoles 16 de junio de 2010 en la Mina San Joaquín titulo 11338 beneficiario Carbones San Fernando, Ubicada en el municipio de Amaga, (vereda Paso Nivel) Antioquia,” Ministerio de Minas, pp. 4-5, Bogotá, 2010.[5] J. Molina y A. Blandón, “Evidencias del choque térmico en partículas de polvo después de una explosión en minería de carbón,” Revista Ingeniería y Competitividad, vol. 16, N.°2, pp. 23-33, 2014.[6] Casas, A. Blandón y J. Molina, “Evaluación de los parámetros para determinar el grado de explosibilidad del polvo de carbón,” Boletín Ciencias de la Tierra, N.°36, pp. 42-54, 2014.[7] Ministerio de Minas y Energía, “Política Nacional de Seguridad Minera,” Bogotá, Dirección de Minas, 2011, pp. 13-17.[8] P. Amyotte, “Some myths and realities about dust explosions,” Process Safety and Environmental Protection, vol. 92, N.°4, pp. 292-299, 2014.[9] J. D. McAteer, “Upper Big Branch The April 5, 2010, explosion: a failure of basic coal mine safety practices,” Report to the Governor, Governor’s Independent Investigation Panel, Virginia del Este, 2011.[10] J. García-Torrent, N. Fernández-Anez, L. Medic-Pejic, A. Blandón-Montes y J. M. Molina-Escobar, “Ignition and explosion parameters of Colombian coals,” Journal of Loss Prevention in the Process Industries, vol. 43, pp. 706-713, 2016.[11] K. L. Cashdollar, “Coal dust explosibility,” Loss Prevention in the Process Industries, vol. 9, N.º 1, pp. 65 - 76, 1996.[12] J. Michelis, B. Margenburg, G. Müller y a. W. Kleine, “Investigations into the buildup and development conditions of coal dust explosions in a 700-m underground gallery,” de Industrial Dust Explosions, ASTM STP 958, Filadelfia, American Society for Testing and Materials, 1987, pp. 124 - 137.[13] P. Amyotte y E. R., “Dust explosion causation, prevention and mitigation: An overview,” Journal of Chemical Health and Safety, vol. 17, N.° 1, pp. 15–28, 2010.[14] A. GarcÍa, A. Di Benedetto, P. Russo, E. Salzano y R. Sanchirico, “Dust/gas mixtures explosion regimes,” Powder Technology, vol. 205, N.° 1–3, pp. 81-86, 2011.[15] L. Qingming, B. Chunhua, L. Xiaodong, J. Li y D. Wenxi, “Coal dust/air explosions in a large-scale tube,” Fuel, vol. 89, N.° 2, pp. 329-335, 2010.[16] BSI Group, British Standards Institution, EN 14034-3, 2006+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Lower Explosion Limit LEL of Dust Clouds, 2011.[17] BSI Group, British Standards Institution, EN 50281-2-1, Electrical apparatus for use in the presence of combustible dust - Part 2-1: Test methods - Methods for determining the minimum ignition temperatures of dust, 1998.[18] BSI Group, British Standards Institution, EN 14034 - 1, 2004+A1, Determination of Explosion Characteristics of Dust Clouds. Determination of the Maximum Explosion Pressure Pmax of Dust Clouds, 2011.[19] Directivas ATEX (atmósfera explosiva), Guía técnica para a seguridad y salud en atmósferas explosivas, Madrid, pp.41-108, 2003.[20] K. Baquero, A. Blandón y J. Molina, “Analysis of the factors that affect in the explosibility of coal dust in underground mines,” Ing. y Compet., vol. 14, N.° 2, pp. 147-160, 2012.[21] Laboratorio Oficial J.M. Madariaga, LOM, “Caracterización de parámetros explosivos para muestras de polvo de carbón (LOM 14SOLI8175),” Universidad Politécnica de Madrid, Madrid, 2014.[22] ASTDM International, American Society for Testing and Materials, ASTM D3172 - 13, Standard Practice for Proximate Analysis of Coal and Coke, 2013.[23] ASTDM International, American Society for Testing and Materials, ASTM D3302M - 15, Standard Test Method for Total Moisture in Coal, 2015.[24] ASTDM International, American Society for Testing and Materials, ASTM D3173 - 11, Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 2011.[25] ASTDM International, American Society for Testing and Materials, ASTM D3174 - 12, Standard Test Method for Ash in the Analysis Sample of Coal and Coke, 2012.[26] ISO, International Organization for Standardization, ISO 562, Volatile matter in the analysis sample of coal and coke, 3.a ed., 2010.[27] ASTM International, American Society for Testing and Materials, ASTM D5865 - 13, Standard Test Method for Gross Calorific Value of Coal and Coke, 2013.[28] ASTM International, American Society for Testing and Materials, ASTM D4239 - 14,Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion, 2014.[29] M. Frías, M . P. de Luxan, M. I. Sánchez de Rojas , “Espectrometría de difracción por rayos laser,» Materiales de construcción, vol. 38, N.° 212, pp. 37-52, 1988.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 17 Núm. 33 (2018): Julio-Diciembre; 19-38CoaldustExplosivenessProximate analysisPó de carvãoExplosividadeAnálises próximasPolvo de carbónExplosividadAnálisis próximosExplosive Parameters for Coal Samples (Antioquia, Colombia)Parâmetros explosivos para amostras de carvão (Antioquia, Colômbia)Parámetros explosivos para muestras de carbón (Antioquia – Colombia)Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees11407/5511oai:repository.udem.edu.co:11407/55112021-05-14 14:29:45.198Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co