The non isotropic noncentral elliptical shape distributions via pseudo-Wishart distribution are founded. This way, the classical shape theory is extended to non isotropic case and the normality assumption is replaced by assuming a elliptical distribution. In several cases, the new shape distribution...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3449
Acceso en línea:
http://hdl.handle.net/11407/3449
Palabra clave:
Shape theory
Maximum likelihood estimators
Zonal polynomials
Pseudo-Wishart distribution
Singular matrix multivariate distribution
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_b47309945be540c68e497e321b69361a
oai_identifier_str oai:repository.udem.edu.co:11407/3449
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.english.eng.fl_str_mv Generalised Shape Theory Via Pseudo-Wishart Distribution
dc.subject.spa.fl_str_mv Shape theory
Maximum likelihood estimators
Zonal polynomials
Pseudo-Wishart distribution
Singular matrix multivariate distribution
topic Shape theory
Maximum likelihood estimators
Zonal polynomials
Pseudo-Wishart distribution
Singular matrix multivariate distribution
spellingShingle Shape theory
Maximum likelihood estimators
Zonal polynomials
Pseudo-Wishart distribution
Singular matrix multivariate distribution
description The non isotropic noncentral elliptical shape distributions via pseudo-Wishart distribution are founded. This way, the classical shape theory is extended to non isotropic case and the normality assumption is replaced by assuming a elliptical distribution. In several cases, the new shape distributions are easily computable and then the inference procedure can be studied under exact densities. An application in Biology is studied under the classical gaussian approach and two non gaussian models.
publishDate 2013
dc.date.created.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2017-06-15T22:05:22Z
dc.date.available.none.fl_str_mv 2017-06-15T22:05:22Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Díaz-García, J. A. & Caro-Lopera, F. J. (2008) Sankhyā: The Indian Journal of Statistics, Series A Vol. 75, No. 2 (August 2013), pp. 253-276
dc.identifier.issn.none.fl_str_mv 0976836X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3449
dc.identifier.doi.none.fl_str_mv DOI: 10.1007/s13171-013-0024-1
dc.identifier.eissn.none.fl_str_mv 09768378
identifier_str_mv Díaz-García, J. A. & Caro-Lopera, F. J. (2008) Sankhyā: The Indian Journal of Statistics, Series A Vol. 75, No. 2 (August 2013), pp. 253-276
0976836X
DOI: 10.1007/s13171-013-0024-1
09768378
url http://hdl.handle.net/11407/3449
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://link.springer.com/article/10.1007/s13171-013-0024-1
dc.relation.ispartofes.spa.fl_str_mv Sankhyā: The Indian Journal of Statistics. 2013, Volume 75-A, Part 2, pp. 253-276
dc.relation.references.spa.fl_str_mv bhattacharya, a. (2008). Statistical analysis on manifolds: A non-parametric approach for inference on shape spaces. Sankhya, Ser. A, Part 2, 70, 223–266.
billingsley, p. (1986). Probability and Measure. John Wiley & Sons, New York.
caro-lopera, f.j., d´ıaz-garc´ıa, j.a. and gonza´lez-far´ıas, g. (2009). Noncentral elliptical configuration density. J. Multivariate Anal., 101, 32–43.
davis, a.w. (1980). Invariant polynomials with two matrix arguments, extending the zonal polynomials. In Multivariate Analysis V, (P. R. Krishnaiah, ed.). North- Holland.
d´ıaz-garc´ıa, j.a. and gonza´lez-far´ıas, g. (2005). Singular random matrix decompo- sitions: Distributions. J. Multivariate Anal., 194, 109–122.
d´ıaz-garc´ıa, j.a. and gutie´rrez-ja´imez, r. (1997). Proof of the conjectures of H. Uhlig on the singular multivariate beta and the jacobian of a certain matrix trans- formation. Ann. Statist., 25, 2018–2023.
d´ıaz-garc´ıa, j.a. and gutie´rrez-ja´imez, r. (2006). Wishart and Pseudo-Wishart distributions under elliptical laws and related distributions in the shape theory context. J. Statist. Plann. Inference, 136, 4176–4193.
d´ıaz-garc´ıa, j.a., gutie´rrez-ja´imez, r. and mardia, k.v. (1997). Wishart and Pseudo-Wishart distributions and some applications to shape theory. J. Multivari- ate Anal., 63, 73–87.
dryden, i.l. and mardia, k.v. (1989.) Statistical shape analysis. John Wiley and Sons, Chichester.
fang, k.t. and zhang, y.t. (1990). Generalized Multivariate Analysis. Science Press, Springer-Verlag, Beijing.
goodall, c.g. (1991). Procustes methods in the statistical analysis of shape (with discussion). J. Roy. Statist. Soc. Ser. B, 53, 285–339.
goodall, c.g. and mardia, k.v. (1993). Multivariate Aspects of Shape Theory. Ann.Statist., 21, 848–866.
gupta, a.k. and varga, t. (1993). Elliptically Contoured Models in Statistics. Kluwer Academic Publishers, Dordrecht.
james, a.t. (1964). Distributions of matrix variate and latent roots derived from normal samples. Ann. Math. Statist., 35, 475–501.
kass, r.e. and raftery, a.e. (1995). Bayes factor. J. Amer. Statist. Soc., 90, 773–795.
khatri, c.g. (1968). Some results for the singular normal multivariate regression models.
Sankhy¯a A, 30, 267–280.
koev, p. and edelman, a. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp., 75, 833–846.
le, h.l. and kendall, d.g. (1993). The Riemannian structure of Euclidean spaces: a novel environment for statistics. Ann. Statist., 21, 1225–1271.
mardia, k.v. and dryden, i.l. (1989). The Statistical Analysis of Shape Data.
Biometrika, 76, 271–281
muirhead, r.j. (1982). Aspects of multivariate statistical theory. Wiley Series in Prob- ability and Mathematical Statistics. John Wiley & Sons, Inc.
raftery, a.e. (1995). Bayesian model selection in social research. Sociological Method- ology, 25, 111–163.
rao, c.r. (1973). Linear statistical inference and its applications (2nd ed.). John Wiley & Sons, New York.
rissanen, j. (1978). Modelling by shortest data description. Automatica, 14, 465–471.
uhlig, h. (1994). On singular Wishart and singular multivariate Beta distributions.
Ann. Statist., 22, 395–405.
yang, ch.ch. and yang, ch.ch. (2007). Separating latent classes by information criteria. J. Classification, 24, 183–203.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv  Springer on behalf of the Indian Statistical Institute
dc.publisher.program.spa.fl_str_mv Tronco común Ingenierías
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Sankhyā: The Indian Journal of Statistics
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3449/2/portada.png
http://repository.udem.edu.co/bitstream/11407/3449/1/Articulo.html
bitstream.checksum.fl_str_mv cd9e3e58a49b27c70363a569473c89e2
dc058b2f667f3d8d988434b10fafb486
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159163791507456
spelling 2017-06-15T22:05:22Z2017-06-15T22:05:22Z2013Díaz-García, J. A. & Caro-Lopera, F. J. (2008) Sankhyā: The Indian Journal of Statistics, Series A Vol. 75, No. 2 (August 2013), pp. 253-2760976836Xhttp://hdl.handle.net/11407/3449DOI: 10.1007/s13171-013-0024-109768378The non isotropic noncentral elliptical shape distributions via pseudo-Wishart distribution are founded. This way, the classical shape theory is extended to non isotropic case and the normality assumption is replaced by assuming a elliptical distribution. In several cases, the new shape distributions are easily computable and then the inference procedure can be studied under exact densities. An application in Biology is studied under the classical gaussian approach and two non gaussian models.eng Springer on behalf of the Indian Statistical InstituteTronco común IngenieríasFacultad de Ciencias Básicashttps://link.springer.com/article/10.1007/s13171-013-0024-1Sankhyā: The Indian Journal of Statistics. 2013, Volume 75-A, Part 2, pp. 253-276bhattacharya, a. (2008). Statistical analysis on manifolds: A non-parametric approach for inference on shape spaces. Sankhya, Ser. A, Part 2, 70, 223–266.billingsley, p. (1986). Probability and Measure. John Wiley & Sons, New York.caro-lopera, f.j., d´ıaz-garc´ıa, j.a. and gonza´lez-far´ıas, g. (2009). Noncentral elliptical configuration density. J. Multivariate Anal., 101, 32–43.davis, a.w. (1980). Invariant polynomials with two matrix arguments, extending the zonal polynomials. In Multivariate Analysis V, (P. R. Krishnaiah, ed.). North- Holland.d´ıaz-garc´ıa, j.a. and gonza´lez-far´ıas, g. (2005). Singular random matrix decompo- sitions: Distributions. J. Multivariate Anal., 194, 109–122.d´ıaz-garc´ıa, j.a. and gutie´rrez-ja´imez, r. (1997). Proof of the conjectures of H. Uhlig on the singular multivariate beta and the jacobian of a certain matrix trans- formation. Ann. Statist., 25, 2018–2023.d´ıaz-garc´ıa, j.a. and gutie´rrez-ja´imez, r. (2006). Wishart and Pseudo-Wishart distributions under elliptical laws and related distributions in the shape theory context. J. Statist. Plann. Inference, 136, 4176–4193.d´ıaz-garc´ıa, j.a., gutie´rrez-ja´imez, r. and mardia, k.v. (1997). Wishart and Pseudo-Wishart distributions and some applications to shape theory. J. Multivari- ate Anal., 63, 73–87.dryden, i.l. and mardia, k.v. (1989.) Statistical shape analysis. John Wiley and Sons, Chichester.fang, k.t. and zhang, y.t. (1990). Generalized Multivariate Analysis. Science Press, Springer-Verlag, Beijing.goodall, c.g. (1991). Procustes methods in the statistical analysis of shape (with discussion). J. Roy. Statist. Soc. Ser. B, 53, 285–339.goodall, c.g. and mardia, k.v. (1993). Multivariate Aspects of Shape Theory. Ann.Statist., 21, 848–866.gupta, a.k. and varga, t. (1993). Elliptically Contoured Models in Statistics. Kluwer Academic Publishers, Dordrecht.james, a.t. (1964). Distributions of matrix variate and latent roots derived from normal samples. Ann. Math. Statist., 35, 475–501.kass, r.e. and raftery, a.e. (1995). Bayes factor. J. Amer. Statist. Soc., 90, 773–795.khatri, c.g. (1968). Some results for the singular normal multivariate regression models.Sankhy¯a A, 30, 267–280.koev, p. and edelman, a. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp., 75, 833–846.le, h.l. and kendall, d.g. (1993). The Riemannian structure of Euclidean spaces: a novel environment for statistics. Ann. Statist., 21, 1225–1271.mardia, k.v. and dryden, i.l. (1989). The Statistical Analysis of Shape Data.Biometrika, 76, 271–281muirhead, r.j. (1982). Aspects of multivariate statistical theory. Wiley Series in Prob- ability and Mathematical Statistics. John Wiley & Sons, Inc.raftery, a.e. (1995). Bayesian model selection in social research. Sociological Method- ology, 25, 111–163.rao, c.r. (1973). Linear statistical inference and its applications (2nd ed.). John Wiley & Sons, New York.rissanen, j. (1978). Modelling by shortest data description. Automatica, 14, 465–471.uhlig, h. (1994). On singular Wishart and singular multivariate Beta distributions.Ann. Statist., 22, 395–405.yang, ch.ch. and yang, ch.ch. (2007). Separating latent classes by information criteria. J. Classification, 24, 183–203.Sankhyā: The Indian Journal of StatisticsShape theoryMaximum likelihood estimatorsZonal polynomialsPseudo-Wishart distributionSingular matrix multivariate distributionArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecGeneralised Shape Theory Via Pseudo-Wishart DistributionDíaz-García, José A.Caro-Lopera, Francisco J.Díaz-García, José A.; Universidad Autónoma AgrariaCaro-Lopera, Francisco J.; Universidad de MedellínTHUMBNAILportada.pngportada.pngimage/png17634http://repository.udem.edu.co/bitstream/11407/3449/2/portada.pngcd9e3e58a49b27c70363a569473c89e2MD52ORIGINALArticulo.htmlVer PDF en página del publicadortext/html481http://repository.udem.edu.co/bitstream/11407/3449/1/Articulo.htmldc058b2f667f3d8d988434b10fafb486MD5111407/3449oai:repository.udem.edu.co:11407/34492020-05-27 16:38:04.577Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co