Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study
Catheter ablation of critical electrical propagation sites is a promising tool for reducing the recurrence of atrial fibrillation (AF). The spatial identification of the arrhythmogenic mechanisms sustaining AF requires the evaluation of electrograms (EGMs) recorded over the atrial surface. This work...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6072
- Acceso en línea:
- http://hdl.handle.net/11407/6072
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_b3b7e6528a55670c774617aa29bb0f7f |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6072 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
spellingShingle |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title_short |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title_full |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title_fullStr |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title_full_unstemmed |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
title_sort |
Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study |
description |
Catheter ablation of critical electrical propagation sites is a promising tool for reducing the recurrence of atrial fibrillation (AF). The spatial identification of the arrhythmogenic mechanisms sustaining AF requires the evaluation of electrograms (EGMs) recorded over the atrial surface. This work aims to characterize functional reentries using measures of entropy to track and detect a reentry core. To this end, different AF episodes are simulated using a 2D model of atrial tissue. Modified Courtemanche human action potential and Fenton-Karma models are implemented. Action potential propagation is modeled by a fractional diffusion equation, and virtual unipolar EGM are calculated. Episodes with stable and meandering rotors, figure-of-eight reentry, and disorganized propagation with multiple reentries are generated. Shannon entropy (ShEn), approximate entropy (ApEn), and sample entropy (SampEn) are computed from the virtual EGM, and entropy maps are built. Phase singularity maps are implemented as references. The results show that ApEn and SampEn maps are able to detect and track the reentry core of rotors and figure-of-eight reentry, while the ShEn results are not satisfactory. Moreover, ApEn and SampEn consistently highlight a reentry core by high entropy values for all of the studied cases, while the ability of ShEn to characterize the reentry core depends on the propagation dynamics. Such features make the ApEn and SampEn maps attractive tools for the study of AF reentries that persist for a period of time that is similar to the length of the observation window, and reentries could be interpreted as AF-sustaining mechanisms. Further research is needed to determine and fully understand the relation of these entropy measures with fibrillation mechanisms other than reentries. © 2019 by the authors. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:07Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:07Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
10994300 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6072 |
dc.identifier.doi.none.fl_str_mv |
10.3390/e21020194 |
identifier_str_mv |
10994300 10.3390/e21020194 |
url |
http://hdl.handle.net/11407/6072 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061976167&doi=10.3390%2fe21020194&partnerID=40&md5=760fcf45b8c581b3d7c36bc996a9a214 |
dc.relation.citationvolume.none.fl_str_mv |
21 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.references.none.fl_str_mv |
Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Hendriks, J., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18, pp. 1609-1678 Björck, S., Palaszewski, B., Friberg, L., Bergfeldt, L., Atrial fibrillation, stroke risk, and warfarin therapy revisited: A population-based study (2013) Stroke, 44, pp. 3103-3108 Zaman, J.A.B., Harling, L., Ashrafian, H., Darzi, A., Gooderham, N., Athanasiou, T., Peters, N.S., Post-operative atrial fibrillation is associated with a pre-existing structural and electrical substrate in human right atrial myocardium (2016) Int. J. Cardiol, 220, pp. 580-588 Cantú, C., True Hills, M., Massaro, A., Goto, S., Hu, H.H., Quek, D.K., Sim, K.H., Benbow, A., Atrial Fibrillation-Related Stroke across Latin America: A Preventable Problem, , https://www.stopafib.org/downloads/News436-LatAm-Prevent.pdf, (accessed on 18 February 2019) Corradi, D., Atrial fibrillation from the pathologist's perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol, 23, pp. 71-84 Haïssaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Clémenty, J., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins (1998) N. Engl. J. Med, 339, pp. 659-666 Kallergis, E.M., Goudis, C.A., Vardas, P.E., Atrial fibrillation: A progressive atrial myopathy or a distinct disease? (2014) Int. J. Cardiol, 171, pp. 126-133 Martins, R.P., Kaur, K., Hwang, E., Ramirez, R.J., Willis, B.C., Filgueiras-Rama, D., Ennis, S.R., Zarzoso, M., Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation (2014) Circulation, 129, pp. 1472-1482 Li, X., Salinet, J.L., Almeida, T.P., Vanheusden, F.J., Chu, G.S., Ng, G.A., Schlindwein, F.S., An interactive platform to guide catheter ablation in human persistent atrial fibrillation using dominant frequency, organization and phase mapping (2017) Comput. Methods Progr. Biomed, 141, pp. 83-92 Sasaki, N., Watanabe, I., Okumura, Y., Nagashima, K., Kogawa, R., Sonoda, K., Iso, K., Watanabe, R., Complex fractionated atrial electrograms, high dominant frequency regions, and left atrial voltages during sinus rhythm and atrial fibrillation (2017) J. Arrhythmia, 33, pp. 185-191 Ng, J., Goldberger, J.J., Understanding and interpreting dominant frequency analysis of AF electrograms (2007) J. Cardiovasc. Electrophysiol, 18, pp. 680-685 Stiles, M.K., Brooks, A.G., Kuklik, P., John, B., Dimitri, H., Lau, D.H., Wilson, L., Mackenzie, L., The relationship between electrogram cycle length and dominant frequency in patients with persistent atrial fibrillation (2008) J. Cardiovasc. Electrophysiol, 20, pp. 1336-1342 Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., Khunnawat, C., Ngarmukos, T., A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate (2004) J. Am. Coll. Cardiol, 43, pp. 2044-2053 Ammar-Busch, S., Reents, T., Knecht, S., Rostock, T., Arentz, T., Duytschaever, M., Neumann, T., Hessling, G., Correlation between atrial fibrillation driver locations and complex fractionated atrial electrograms in patients with persistent atrial fibrillation (2018) PACE-Pacing Clin. Electrophysiol, 41, pp. 1279-1285 Martin, C.A., Curtain, J.P., Gajendragadkar, P.R., Begley, D.A., Fynn, S.P., Grace, A.A., Heck, P.M., Agarwal, S., Ablation of Complex Fractionated Electrograms Improves Outcome in Persistent Atrial Fibrillation of Over 2 Year's Duration (2018) J. Atr. Fibrillation, 10, p. 1607 Kochhäuser, S., Verma, A., Dalvi, R., Suszko, A., Alipour, P., Sanders, P., Champagne, J., Calkins, H., Spatial Relationships of Complex Fractionated Atrial Electrograms and Continuous Electrical Activity to Focal Electrical Sources: Implications for Substrate Ablation in Human Atrial Fibrillation (2017) JACC Clin. Electrophysiol, 3, pp. 1220-1228 Ammar-Busch, S., Bourier, F., Reents, T., Semmler, V., Telishevska, M., Kathan, S., Hofmann, M., Deisenhofer, I., Ablation of Complex Fractionated Electrograms With or Without ADditional LINEar Lesions for Persistent Atrial Fibrillation (The ADLINE Trial) (2017) J. Cardiovasc. Electrophysiol, 28, pp. 636-641 Seitz, J., Bars, C., Ferracci, A., Maluski, A., Penaranda, G., Theodore, G., Faure, J., Beurtheret, S., Electrogram Fractionation-Guided Ablation in the Left Atrium Decreases the Frequency of Activation in the Pulmonary Veins and Leads to Atrial Fibrillation Termination: Pulmonary Vein Modulation Rather Than Isolation (2016) JACC Clin. Electrophysiol, 2, pp. 732-742 Oketani, N., Seitz, J., Salazar, M., Pisapia, A., Kalifa, J., Smit, J.J., Nademanee, K., Ablation of complex fractionated electrograms is useful for catheter ablation of persistent atrial fibrillation: Protagonist point of view (2016) Heart Rhythm, 13, pp. 2098-2100 Verma, A., Jiang, C.Y., Betts, T., Ghen, J., Deisenhofer, I., Mantovan, R., Macle, L., Weerasooriya, R., Approaches to Catheter Ablation for Persistent Atrial Fibrillation Atul (2015) Int. J. Mech. Mechatron. Eng, 372, pp. 1812-1822 Chen, J., Lin, Y., Chen, L., Yu, J., Du, Z., Li, S., Yang, Z., Lu, Q., A decade of complex fractionated electrograms catheter-based ablation for atrial fibrillation: Literature analysis, meta-analysis and systematic review (2014) IJC Heart Vessels, 4, pp. 63-72 Dixit, S., Marchlinski, F.E., Lin, D., Callans, D.J., Bala, R., Riley, M.P., Garcia, F.C., Cooper, J.M., Randomized ablation strategies for the treatment of persistent atrial fibrillation RASTA study (2012) Circ. Arrhythmia Electrophysiol, 5, pp. 287-294 Berenfeld, O., Jalife, J., Complex Fractionated Atrail Electrograms Is this the Beast to Tame in AF (2011) Circ. Arrhythmia Electrophysiol, 4, pp. 426-428 Adragão, P., Carmo, P., Cavaco, D., Carmo, J., Ferreira, A., Moscoso Costa, F., Carvalho, M.S., Belo Morgado, F., Relationship between rotors and complex fractionated electrograms in atrial fibrillation using a novel computational analysis (2017) Revista Portuguesa de Cardiologia, 36, pp. 233-238 Almeida, T.P., Schlindwein, F.S., Salinet, J., Li, X., Chu, G.S., Tuan, J.H., Stafford, P.J., Soriano, D.C., Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis (2018) Chaos, p. 28 Cirugeda-Roldán, E., Molina Picó, A., Novák, D., Cuesta-Frau, D., Kremen, V., Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation (2018) Comput. Math. Methods Med, p. 2018 Navoret, N., Jacquir, S., Laurent, G., Binczak, S., Detection of complex fractionated atrial electrograms using recurrence quantification analysis (2013) IEEE Trans. Bio-Med. Eng, 60, pp. 1975-1982 Bonizzi, P., Zeemering, S., Karel, J.M., Di Marco, L.Y., Uldry, L., Van Zaen, J., Vesin, J.M., Schotten, U., Systematic comparison ofnon-invasive measures for the assessment ofatrial fibrillation complexity: A step forward towards standardization ofatrial fibrillation electrogram analysis (2015) Europace, 17, pp. 318-325 Orozco-Duque, A., Novak, D., Kremen, V., Bustamante, J., Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation (2015) Physiol. Meas, 36, pp. 2269-2284 Cirugeda-Roldán, E., Novak, D., Kremen, V., Cuesta-Frau, D., Keller, M., Luik, A., Srutova, M., Characterization of complex fractionated atrial electrograms by sample entropy: An international multi-center study (2015) Entropy, 17, pp. 7493-7509 Ugarte, J., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., Oesterlein, T., Bustamante, J., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS ONE, 9 Orozco-Duque, A., Tobón, C., Ugarte, J., Morillo, C., Bustamante, J., Electroanatomical mapping based on discrimination of electrograms clusters for localization of critical sites in atrial fibrillation (2018) Prog. Biophys. Mol. Biol Aronis, K.N., Ashikaga, H., Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization (2018) J. Electrocardiol, 51, pp. 82-91 Song, J.S., Wi, J., Lee, H.J., Hwang, M., Lim, B., Kim, T.H., Uhm, J.S., Seo, J.W., Role of atrial wall thickness in wave-dynamics of atrial fibrillation (2017) PLoS ONE, 12 Duque, S., Orozco-Duque, A., Kremen, V., Novak, D., Tobón, C., Bustamante, J., Feature subset selection and classification of intracardiac electrograms during atrial fibrillation (2017) Biomed. Signal Process. Control, 38, pp. 182-190 Hwang, M., Song, J.S., Lee, Y.S., Li, C., Shim, E.B., Pak, H.N., Electrophysiological rotor ablation in in-silico modeling of atrial fibrillation: Comparisons with dominant frequency, shannon entropy, and phase singularity (2016) PLoS ONE, p. 11 Orozco-Duque, A., Bustamante, J., Castellanos-Dominguez, G., Semi-supervised clustering of fractionated electrograms for electroanatomical atrial mapping (2016) BioMed. Eng. Online, p. 15 Ugarte, J.P., Tobón, C., Orozco-Duque, A., Becerra, M.A., Bustamante, J., Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: An in silico study (2015) Europace, 17, pp. ii97-ii104 Ganesan, A.N., Kuklik, P., Gharaviri, A., Brooks, A., Chapman, D., Lau, D.H., Roberts-Thomson, K.C., Sers, P., Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: Insights from computational simulation (2014) PLoS ONE, p. 9 Jalife, J., Rotors and spiral waves in atrial fibrillation (2003) J. Cardiovasc. Electrophysiol, 14, pp. 776-780 Allessie, M., de Groot, N., CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation (2014) J. Physiol, 592, pp. 3167-3170 Hansen, B.J., Zhao, J., Csepe, T.A., Moore, B.T., Li, N., Jayne, L.A., Kalyanasundaram, A., Powell, K.A., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts (2015) Eur. Heart J, 36, pp. 2390-2401 Zhao, J., Hansen, B.J., Csepe, T.A., Lim, P., Wang, Y., Williams, M., Mohler, P.J., Hummel, J.D., Integration of High-Resolution Optical Mapping and 3-Dimensional Micro-Computed Tomographic Imaging to Resolve the Structural Basis of Atrial Conduction in the Human Heart (2015) Circ. Arrhythmia Electrophysiol, 8, pp. 1514-1517 De Groot, N., Van Der Does, L., Yaksh, A., Lanters, E., Teuwen, C., Knops, P., Van DeWoestijne, P., Bogers, A., Direct Proof of Endo-Epicardial Asynchrony of the Atrial Wall During Atrial Fibrillation in Humans (2016) Circ. Arrhythmia Electrophysiol, 9, pp. 1-7 Zhao, J., Hansen, B.J., Wang, Y., Csepe, T.A., Sul, L.V., Tang, A., Yuan, Y., Powell, K.A., Three-dimensional integrated functional, structural, and computational mapping to define the structural "fingerprints" of heart-specific atrial fibrillation drivers in human heart ex vivo (2017) J. Am. Heart Assoc, p. 6 Biton, Y., Rabinovitch, A., Braunstein, D., Aviram, I., Campbell, K., Mironov, S., Herron, T., Berenfeld, O., Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation (2018) Chaos, p. 28 Cervigón, R., Castells, F., Gómez-Pulido, J.M., Pérez-Villacastín, J., Moreno, J., Granger causality and Jensen-Shannon divergence to determine dominant atrial area in Atrial fibrillation (2018) Entropy, 20, p. 57 Rodrigo, M., Climent, A.M., Liberos, A., Calvo, D., Fernández-Avilés, F., Berenfeld, O., Atienza, F., Guillem, M.S., Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis (2016) Ann. Biomed. Eng, 44, pp. 2364-2376 Miller, J.M., Kalra, V., Das, M.K., Jain, R., Garlie, J.B., Brewster, J.A., Dandamudi, G., Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation: The Indiana University FIRM Registry (2017) J. Am. Coll. Cardiol, 69, pp. 1247-1256 Narayan, S.M., Patel, J., Mulpuru, S., Krummen, D.E., Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm sith elimination on follow-up A video case study (2012) Heart Rhythm, 9, pp. 1436-1439 Narayan, S.M., Shivkumar, K., Krummen, D.E., Miller, J.M., Rappel, W.J., Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: Stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms (2013) Circ. Arrhythmia Electrophysiol, 6, pp. 58-67 Ganesan, A.N., Kuklik, P., Lau, D.H., Brooks, A.G., Baumert, M., Lim, W.W., Thanigaimani, S., Jonathan, M., Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation: Implications for Abaltion of Atrial Fibrillation (2013) Circ. Arrhythmia Electrophysiol, pp. 48-57 Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol, 275, pp. H301-H321 Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity (2002) Chaos, 12, pp. 852-892 Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties (2002) Circ. Res, 90, pp. 73e-87e Niwano, S., Wakisaka, Y., Kojima, J., Yumoto, Y., Inuo, K., Hara, H., Saito, J., Izumi, T., Monitoring the Progression of the Atrial Electrical Remodeling in PatientsWith Paroxysmal Atrial Fibrillation (2003) Circ. J, 67, pp. 133-138 Nattel, S., Burstein, B., Dobrev, D., Atrial Remodeling and Atrial Fibrillation (2008) Circ. Arrhythmia Electrophysiol, 1, pp. 62-73 Van Wagoner, D.R., Pond, A.L., McCarthy, P.M., Trimmer, J.S., Nerbonne, J.M., Outward K+ Current Densities and Kv1.5 Expression Are Reduced in Chronic Human Atrial Fibrillation (1997) Circ. Res, 80, pp. 772-781 Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res, 44, pp. 121-131 Dobrev, D., Graf, E., Wettwer, E., Himmel, H., Hála, O., Doerfel, C., Christ, T., Ravens, U., Molecular Basis of Downregulation of G-Protein-Coupled Inward Rectifying K+ Current (IK,ACh) in Chronic Human Atrial Fibrillation (2001) Circulation, 104, pp. 2551-2557 Workman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc. Res, 52, pp. 226-235 Ugarte, J.P., Tobón, C., Lopes, A.M., Tenreiro Machado, J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol, 9, pp. 1-14 Hansson, A., Holm, M., Blomström, P., Johansson, R., Lührs, C., Brandt, J., Olsson, S.B., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery (1998) Eur. Heart J, 19, pp. 293-300 Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numer. Math, 54, pp. 937-954 Pincus, S.M., Approximate entropy as a measure of system complexity (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 2297-2301 Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy Physiological time-series analysis using approximate entropy and sample entropy (2000) Am. J. Physiol. Heart Circ. Physiol, 278, pp. H2039-H2049 Kuklik, P., Zeemering, S., Maesen, B., Maessen, J., Crijns, H.J., Verheule, S., Ganesan, A.N., Schotten, U., Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and hilbert transform (2015) IEEE Trans. Biomed. Eng, 62, pp. 296-302 Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12, pp. 716-722 Baumert, M., Sanders, P., Ganesan, A., Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation (2016) Proc. IEEE, 104, pp. 416-431 Benharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., Mandapati, R., Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation (2015) Circ. Arrhythmia Electrophysiol, 8, pp. 554-561 Roney, C.H., Cantwell, C.D., Bayer, J.D., Qureshi, N.A., Lim, P.B., Tweedy, J.H., Kanagaratnam, P., Ng, F.S., Spatial resolution requirements for accurate identification of drivers of atrial fibrillation (2017) Circ. Arrhythmia Electrophysiol, 10 Clayton, R.H., Nash, M.P., Analysis of cardiac fibrillation using phase mapping (2015) Card. Electrophysiol. Clin, 7, pp. 49-58 Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., Mandapati, R., Shivkumar, K., Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience (2016) Heart Rhythm, 13, pp. 636-641 Arunachalam, S.P., Mulpuru, S.K., Friedman, P.A., Tolkacheva, E.G., Feasibility of visualizing higher regions of Shannon entropy in atrial fibrillation patients (2015) Conf. Proc. IEEE Eng. Med. Biol. Soc, 2015, pp. 4499-4502 Annoni, E.M., Arunachalam, S.P., Kapa, S., Mulpuru, S.K., Friedman, P.A., Tolkacheva, E.G., Novel quantitative analytical approaches for rotor identification and associated implications for mapping (2018) IEEE Trans. Biomed. Eng, 65, pp. 273-281 Arunachalam, S., Kapa, S., Mulpuru, S., Friedman, P., Tolkacheva, E., Rotor pivot point identification using recurrence period density entropy (2017) Proceedings of the 54th Annual Rocky Mountain Bioengineering Symposium, Denver, CO, USA, 31 March-1 April 2017 In Proceedings of the 54th International ISA Biomedical Sciences Instrumentation Symposium 2017, , Denver:CO, USA, 31 March-1 April |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
MDPI AG |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
Entropy |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159239004815360 |
spelling |
20192021-02-05T14:59:07Z2021-02-05T14:59:07Z10994300http://hdl.handle.net/11407/607210.3390/e21020194Catheter ablation of critical electrical propagation sites is a promising tool for reducing the recurrence of atrial fibrillation (AF). The spatial identification of the arrhythmogenic mechanisms sustaining AF requires the evaluation of electrograms (EGMs) recorded over the atrial surface. This work aims to characterize functional reentries using measures of entropy to track and detect a reentry core. To this end, different AF episodes are simulated using a 2D model of atrial tissue. Modified Courtemanche human action potential and Fenton-Karma models are implemented. Action potential propagation is modeled by a fractional diffusion equation, and virtual unipolar EGM are calculated. Episodes with stable and meandering rotors, figure-of-eight reentry, and disorganized propagation with multiple reentries are generated. Shannon entropy (ShEn), approximate entropy (ApEn), and sample entropy (SampEn) are computed from the virtual EGM, and entropy maps are built. Phase singularity maps are implemented as references. The results show that ApEn and SampEn maps are able to detect and track the reentry core of rotors and figure-of-eight reentry, while the ShEn results are not satisfactory. Moreover, ApEn and SampEn consistently highlight a reentry core by high entropy values for all of the studied cases, while the ability of ShEn to characterize the reentry core depends on the propagation dynamics. Such features make the ApEn and SampEn maps attractive tools for the study of AF reentries that persist for a period of time that is similar to the length of the observation window, and reentries could be interpreted as AF-sustaining mechanisms. Further research is needed to determine and fully understand the relation of these entropy measures with fibrillation mechanisms other than reentries. © 2019 by the authors.engMDPI AGFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061976167&doi=10.3390%2fe21020194&partnerID=40&md5=760fcf45b8c581b3d7c36bc996a9a214212Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Hendriks, J., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18, pp. 1609-1678Björck, S., Palaszewski, B., Friberg, L., Bergfeldt, L., Atrial fibrillation, stroke risk, and warfarin therapy revisited: A population-based study (2013) Stroke, 44, pp. 3103-3108Zaman, J.A.B., Harling, L., Ashrafian, H., Darzi, A., Gooderham, N., Athanasiou, T., Peters, N.S., Post-operative atrial fibrillation is associated with a pre-existing structural and electrical substrate in human right atrial myocardium (2016) Int. J. Cardiol, 220, pp. 580-588Cantú, C., True Hills, M., Massaro, A., Goto, S., Hu, H.H., Quek, D.K., Sim, K.H., Benbow, A., Atrial Fibrillation-Related Stroke across Latin America: A Preventable Problem, , https://www.stopafib.org/downloads/News436-LatAm-Prevent.pdf, (accessed on 18 February 2019)Corradi, D., Atrial fibrillation from the pathologist's perspective (2014) Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol, 23, pp. 71-84Haïssaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Clémenty, J., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins (1998) N. Engl. J. Med, 339, pp. 659-666Kallergis, E.M., Goudis, C.A., Vardas, P.E., Atrial fibrillation: A progressive atrial myopathy or a distinct disease? (2014) Int. J. Cardiol, 171, pp. 126-133Martins, R.P., Kaur, K., Hwang, E., Ramirez, R.J., Willis, B.C., Filgueiras-Rama, D., Ennis, S.R., Zarzoso, M., Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation (2014) Circulation, 129, pp. 1472-1482Li, X., Salinet, J.L., Almeida, T.P., Vanheusden, F.J., Chu, G.S., Ng, G.A., Schlindwein, F.S., An interactive platform to guide catheter ablation in human persistent atrial fibrillation using dominant frequency, organization and phase mapping (2017) Comput. Methods Progr. Biomed, 141, pp. 83-92Sasaki, N., Watanabe, I., Okumura, Y., Nagashima, K., Kogawa, R., Sonoda, K., Iso, K., Watanabe, R., Complex fractionated atrial electrograms, high dominant frequency regions, and left atrial voltages during sinus rhythm and atrial fibrillation (2017) J. Arrhythmia, 33, pp. 185-191Ng, J., Goldberger, J.J., Understanding and interpreting dominant frequency analysis of AF electrograms (2007) J. Cardiovasc. Electrophysiol, 18, pp. 680-685Stiles, M.K., Brooks, A.G., Kuklik, P., John, B., Dimitri, H., Lau, D.H., Wilson, L., Mackenzie, L., The relationship between electrogram cycle length and dominant frequency in patients with persistent atrial fibrillation (2008) J. Cardiovasc. Electrophysiol, 20, pp. 1336-1342Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., Khunnawat, C., Ngarmukos, T., A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate (2004) J. Am. Coll. Cardiol, 43, pp. 2044-2053Ammar-Busch, S., Reents, T., Knecht, S., Rostock, T., Arentz, T., Duytschaever, M., Neumann, T., Hessling, G., Correlation between atrial fibrillation driver locations and complex fractionated atrial electrograms in patients with persistent atrial fibrillation (2018) PACE-Pacing Clin. Electrophysiol, 41, pp. 1279-1285Martin, C.A., Curtain, J.P., Gajendragadkar, P.R., Begley, D.A., Fynn, S.P., Grace, A.A., Heck, P.M., Agarwal, S., Ablation of Complex Fractionated Electrograms Improves Outcome in Persistent Atrial Fibrillation of Over 2 Year's Duration (2018) J. Atr. Fibrillation, 10, p. 1607Kochhäuser, S., Verma, A., Dalvi, R., Suszko, A., Alipour, P., Sanders, P., Champagne, J., Calkins, H., Spatial Relationships of Complex Fractionated Atrial Electrograms and Continuous Electrical Activity to Focal Electrical Sources: Implications for Substrate Ablation in Human Atrial Fibrillation (2017) JACC Clin. Electrophysiol, 3, pp. 1220-1228Ammar-Busch, S., Bourier, F., Reents, T., Semmler, V., Telishevska, M., Kathan, S., Hofmann, M., Deisenhofer, I., Ablation of Complex Fractionated Electrograms With or Without ADditional LINEar Lesions for Persistent Atrial Fibrillation (The ADLINE Trial) (2017) J. Cardiovasc. Electrophysiol, 28, pp. 636-641Seitz, J., Bars, C., Ferracci, A., Maluski, A., Penaranda, G., Theodore, G., Faure, J., Beurtheret, S., Electrogram Fractionation-Guided Ablation in the Left Atrium Decreases the Frequency of Activation in the Pulmonary Veins and Leads to Atrial Fibrillation Termination: Pulmonary Vein Modulation Rather Than Isolation (2016) JACC Clin. Electrophysiol, 2, pp. 732-742Oketani, N., Seitz, J., Salazar, M., Pisapia, A., Kalifa, J., Smit, J.J., Nademanee, K., Ablation of complex fractionated electrograms is useful for catheter ablation of persistent atrial fibrillation: Protagonist point of view (2016) Heart Rhythm, 13, pp. 2098-2100Verma, A., Jiang, C.Y., Betts, T., Ghen, J., Deisenhofer, I., Mantovan, R., Macle, L., Weerasooriya, R., Approaches to Catheter Ablation for Persistent Atrial Fibrillation Atul (2015) Int. J. Mech. Mechatron. Eng, 372, pp. 1812-1822Chen, J., Lin, Y., Chen, L., Yu, J., Du, Z., Li, S., Yang, Z., Lu, Q., A decade of complex fractionated electrograms catheter-based ablation for atrial fibrillation: Literature analysis, meta-analysis and systematic review (2014) IJC Heart Vessels, 4, pp. 63-72Dixit, S., Marchlinski, F.E., Lin, D., Callans, D.J., Bala, R., Riley, M.P., Garcia, F.C., Cooper, J.M., Randomized ablation strategies for the treatment of persistent atrial fibrillation RASTA study (2012) Circ. Arrhythmia Electrophysiol, 5, pp. 287-294Berenfeld, O., Jalife, J., Complex Fractionated Atrail Electrograms Is this the Beast to Tame in AF (2011) Circ. Arrhythmia Electrophysiol, 4, pp. 426-428Adragão, P., Carmo, P., Cavaco, D., Carmo, J., Ferreira, A., Moscoso Costa, F., Carvalho, M.S., Belo Morgado, F., Relationship between rotors and complex fractionated electrograms in atrial fibrillation using a novel computational analysis (2017) Revista Portuguesa de Cardiologia, 36, pp. 233-238Almeida, T.P., Schlindwein, F.S., Salinet, J., Li, X., Chu, G.S., Tuan, J.H., Stafford, P.J., Soriano, D.C., Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis (2018) Chaos, p. 28Cirugeda-Roldán, E., Molina Picó, A., Novák, D., Cuesta-Frau, D., Kremen, V., Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation (2018) Comput. Math. Methods Med, p. 2018Navoret, N., Jacquir, S., Laurent, G., Binczak, S., Detection of complex fractionated atrial electrograms using recurrence quantification analysis (2013) IEEE Trans. Bio-Med. Eng, 60, pp. 1975-1982Bonizzi, P., Zeemering, S., Karel, J.M., Di Marco, L.Y., Uldry, L., Van Zaen, J., Vesin, J.M., Schotten, U., Systematic comparison ofnon-invasive measures for the assessment ofatrial fibrillation complexity: A step forward towards standardization ofatrial fibrillation electrogram analysis (2015) Europace, 17, pp. 318-325Orozco-Duque, A., Novak, D., Kremen, V., Bustamante, J., Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation (2015) Physiol. Meas, 36, pp. 2269-2284Cirugeda-Roldán, E., Novak, D., Kremen, V., Cuesta-Frau, D., Keller, M., Luik, A., Srutova, M., Characterization of complex fractionated atrial electrograms by sample entropy: An international multi-center study (2015) Entropy, 17, pp. 7493-7509Ugarte, J., Orozco-Duque, A., Tobón, C., Kremen, V., Novak, D., Saiz, J., Oesterlein, T., Bustamante, J., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS ONE, 9Orozco-Duque, A., Tobón, C., Ugarte, J., Morillo, C., Bustamante, J., Electroanatomical mapping based on discrimination of electrograms clusters for localization of critical sites in atrial fibrillation (2018) Prog. Biophys. Mol. BiolAronis, K.N., Ashikaga, H., Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization (2018) J. Electrocardiol, 51, pp. 82-91Song, J.S., Wi, J., Lee, H.J., Hwang, M., Lim, B., Kim, T.H., Uhm, J.S., Seo, J.W., Role of atrial wall thickness in wave-dynamics of atrial fibrillation (2017) PLoS ONE, 12Duque, S., Orozco-Duque, A., Kremen, V., Novak, D., Tobón, C., Bustamante, J., Feature subset selection and classification of intracardiac electrograms during atrial fibrillation (2017) Biomed. Signal Process. Control, 38, pp. 182-190Hwang, M., Song, J.S., Lee, Y.S., Li, C., Shim, E.B., Pak, H.N., Electrophysiological rotor ablation in in-silico modeling of atrial fibrillation: Comparisons with dominant frequency, shannon entropy, and phase singularity (2016) PLoS ONE, p. 11Orozco-Duque, A., Bustamante, J., Castellanos-Dominguez, G., Semi-supervised clustering of fractionated electrograms for electroanatomical atrial mapping (2016) BioMed. Eng. Online, p. 15Ugarte, J.P., Tobón, C., Orozco-Duque, A., Becerra, M.A., Bustamante, J., Effect of the electrograms density in detecting and ablating the tip of the rotor during chronic atrial fibrillation: An in silico study (2015) Europace, 17, pp. ii97-ii104Ganesan, A.N., Kuklik, P., Gharaviri, A., Brooks, A., Chapman, D., Lau, D.H., Roberts-Thomson, K.C., Sers, P., Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: Insights from computational simulation (2014) PLoS ONE, p. 9Jalife, J., Rotors and spiral waves in atrial fibrillation (2003) J. Cardiovasc. Electrophysiol, 14, pp. 776-780Allessie, M., de Groot, N., CrossTalk opposing view: Rotors have not been demonstrated to be the drivers of atrial fibrillation (2014) J. Physiol, 592, pp. 3167-3170Hansen, B.J., Zhao, J., Csepe, T.A., Moore, B.T., Li, N., Jayne, L.A., Kalyanasundaram, A., Powell, K.A., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts (2015) Eur. Heart J, 36, pp. 2390-2401Zhao, J., Hansen, B.J., Csepe, T.A., Lim, P., Wang, Y., Williams, M., Mohler, P.J., Hummel, J.D., Integration of High-Resolution Optical Mapping and 3-Dimensional Micro-Computed Tomographic Imaging to Resolve the Structural Basis of Atrial Conduction in the Human Heart (2015) Circ. Arrhythmia Electrophysiol, 8, pp. 1514-1517De Groot, N., Van Der Does, L., Yaksh, A., Lanters, E., Teuwen, C., Knops, P., Van DeWoestijne, P., Bogers, A., Direct Proof of Endo-Epicardial Asynchrony of the Atrial Wall During Atrial Fibrillation in Humans (2016) Circ. Arrhythmia Electrophysiol, 9, pp. 1-7Zhao, J., Hansen, B.J., Wang, Y., Csepe, T.A., Sul, L.V., Tang, A., Yuan, Y., Powell, K.A., Three-dimensional integrated functional, structural, and computational mapping to define the structural "fingerprints" of heart-specific atrial fibrillation drivers in human heart ex vivo (2017) J. Am. Heart Assoc, p. 6Biton, Y., Rabinovitch, A., Braunstein, D., Aviram, I., Campbell, K., Mironov, S., Herron, T., Berenfeld, O., Causality analysis of leading singular value decomposition modes identifies rotor as the dominant driving normal mode in fibrillation (2018) Chaos, p. 28Cervigón, R., Castells, F., Gómez-Pulido, J.M., Pérez-Villacastín, J., Moreno, J., Granger causality and Jensen-Shannon divergence to determine dominant atrial area in Atrial fibrillation (2018) Entropy, 20, p. 57Rodrigo, M., Climent, A.M., Liberos, A., Calvo, D., Fernández-Avilés, F., Berenfeld, O., Atienza, F., Guillem, M.S., Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis (2016) Ann. Biomed. Eng, 44, pp. 2364-2376Miller, J.M., Kalra, V., Das, M.K., Jain, R., Garlie, J.B., Brewster, J.A., Dandamudi, G., Clinical Benefit of Ablating Localized Sources for Human Atrial Fibrillation: The Indiana University FIRM Registry (2017) J. Am. Coll. Cardiol, 69, pp. 1247-1256Narayan, S.M., Patel, J., Mulpuru, S., Krummen, D.E., Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm sith elimination on follow-up A video case study (2012) Heart Rhythm, 9, pp. 1436-1439Narayan, S.M., Shivkumar, K., Krummen, D.E., Miller, J.M., Rappel, W.J., Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: Stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms (2013) Circ. Arrhythmia Electrophysiol, 6, pp. 58-67Ganesan, A.N., Kuklik, P., Lau, D.H., Brooks, A.G., Baumert, M., Lim, W.W., Thanigaimani, S., Jonathan, M., Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation: Implications for Abaltion of Atrial Fibrillation (2013) Circ. Arrhythmia Electrophysiol, pp. 48-57Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol, 275, pp. H301-H321Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity (2002) Chaos, 12, pp. 852-892Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties (2002) Circ. Res, 90, pp. 73e-87eNiwano, S., Wakisaka, Y., Kojima, J., Yumoto, Y., Inuo, K., Hara, H., Saito, J., Izumi, T., Monitoring the Progression of the Atrial Electrical Remodeling in PatientsWith Paroxysmal Atrial Fibrillation (2003) Circ. J, 67, pp. 133-138Nattel, S., Burstein, B., Dobrev, D., Atrial Remodeling and Atrial Fibrillation (2008) Circ. Arrhythmia Electrophysiol, 1, pp. 62-73Van Wagoner, D.R., Pond, A.L., McCarthy, P.M., Trimmer, J.S., Nerbonne, J.M., Outward K+ Current Densities and Kv1.5 Expression Are Reduced in Chronic Human Atrial Fibrillation (1997) Circ. Res, 80, pp. 772-781Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res, 44, pp. 121-131Dobrev, D., Graf, E., Wettwer, E., Himmel, H., Hála, O., Doerfel, C., Christ, T., Ravens, U., Molecular Basis of Downregulation of G-Protein-Coupled Inward Rectifying K+ Current (IK,ACh) in Chronic Human Atrial Fibrillation (2001) Circulation, 104, pp. 2551-2557Workman, A.J., Kane, K.A., Rankin, A.C., The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation (2001) Cardiovasc. Res, 52, pp. 226-235Ugarte, J.P., Tobón, C., Lopes, A.M., Tenreiro Machado, J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Front. Physiol, 9, pp. 1-14Hansson, A., Holm, M., Blomström, P., Johansson, R., Lührs, C., Brandt, J., Olsson, S.B., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery (1998) Eur. Heart J, 19, pp. 293-300Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numer. Math, 54, pp. 937-954Pincus, S.M., Approximate entropy as a measure of system complexity (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 2297-2301Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy Physiological time-series analysis using approximate entropy and sample entropy (2000) Am. J. Physiol. Heart Circ. Physiol, 278, pp. H2039-H2049Kuklik, P., Zeemering, S., Maesen, B., Maessen, J., Crijns, H.J., Verheule, S., Ganesan, A.N., Schotten, U., Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and hilbert transform (2015) IEEE Trans. Biomed. Eng, 62, pp. 296-302Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12, pp. 716-722Baumert, M., Sanders, P., Ganesan, A., Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation (2016) Proc. IEEE, 104, pp. 416-431Benharash, P., Buch, E., Frank, P., Share, M., Tung, R., Shivkumar, K., Mandapati, R., Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation (2015) Circ. Arrhythmia Electrophysiol, 8, pp. 554-561Roney, C.H., Cantwell, C.D., Bayer, J.D., Qureshi, N.A., Lim, P.B., Tweedy, J.H., Kanagaratnam, P., Ng, F.S., Spatial resolution requirements for accurate identification of drivers of atrial fibrillation (2017) Circ. Arrhythmia Electrophysiol, 10Clayton, R.H., Nash, M.P., Analysis of cardiac fibrillation using phase mapping (2015) Card. Electrophysiol. Clin, 7, pp. 49-58Buch, E., Share, M., Tung, R., Benharash, P., Sharma, P., Koneru, J., Mandapati, R., Shivkumar, K., Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: A multicenter experience (2016) Heart Rhythm, 13, pp. 636-641Arunachalam, S.P., Mulpuru, S.K., Friedman, P.A., Tolkacheva, E.G., Feasibility of visualizing higher regions of Shannon entropy in atrial fibrillation patients (2015) Conf. Proc. IEEE Eng. Med. Biol. Soc, 2015, pp. 4499-4502Annoni, E.M., Arunachalam, S.P., Kapa, S., Mulpuru, S.K., Friedman, P.A., Tolkacheva, E.G., Novel quantitative analytical approaches for rotor identification and associated implications for mapping (2018) IEEE Trans. Biomed. Eng, 65, pp. 273-281Arunachalam, S., Kapa, S., Mulpuru, S., Friedman, P., Tolkacheva, E., Rotor pivot point identification using recurrence period density entropy (2017) Proceedings of the 54th Annual Rocky Mountain Bioengineering Symposium, Denver, CO, USA, 31 March-1 April 2017 In Proceedings of the 54th International ISA Biomedical Sciences Instrumentation Symposium 2017, , Denver:CO, USA, 31 March-1 AprilEntropyEntropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ugarte, J.P., Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín, 050010, ColombiaTobón, C., Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, 050026, ColombiaOrozco-Duque, A., Grupo de Investigación e Innovación Biomédica (GI2B), Instituto Tecnológico Metropolitano, Medellín, 050034, Colombiahttp://purl.org/coar/access_right/c_16ecUgarte J.P.Tobón C.Orozco-Duque A.11407/6072oai:repository.udem.edu.co:11407/60722021-02-05 09:59:07.955Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |