Analytical formulation of the stiffness method for 2d reticular structures using green functions

Green functions (F.G.) are defined as the response of a medium to a unit point load and are widely used to solve boundary value problems. Unfortunately, in structural analysis, its use is limited and they are only used indirectly and with another name in the calculation of influence lines and in the...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5918
Acceso en línea:
http://hdl.handle.net/11407/5918
Palabra clave:
Finite element method
Green functions
Mixed finite elements
Stiffness method
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_b232fb5f53064da532a0354de07ac383
oai_identifier_str oai:repository.udem.edu.co:11407/5918
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Analytical formulation of the stiffness method for 2d reticular structures using green functions
title Analytical formulation of the stiffness method for 2d reticular structures using green functions
spellingShingle Analytical formulation of the stiffness method for 2d reticular structures using green functions
Finite element method
Green functions
Mixed finite elements
Stiffness method
title_short Analytical formulation of the stiffness method for 2d reticular structures using green functions
title_full Analytical formulation of the stiffness method for 2d reticular structures using green functions
title_fullStr Analytical formulation of the stiffness method for 2d reticular structures using green functions
title_full_unstemmed Analytical formulation of the stiffness method for 2d reticular structures using green functions
title_sort Analytical formulation of the stiffness method for 2d reticular structures using green functions
dc.subject.spa.fl_str_mv Finite element method
Green functions
Mixed finite elements
Stiffness method
topic Finite element method
Green functions
Mixed finite elements
Stiffness method
description Green functions (F.G.) are defined as the response of a medium to a unit point load and are widely used to solve boundary value problems. Unfortunately, in structural analysis, its use is limited and they are only used indirectly and with another name in the calculation of influence lines and in the formulation of the virtual work method. This article presents the Green functions stiffness method, which is a novel methodology to obtain the analytical or exact response of two dimensional frames, which mixes the stiffnes method and the Green functions, the latter used for the calculation of displacement fields. In particular, the formulation will be carried out for bar elements (subjected to axial force), beam elements (subjected to shear force and bending moment), beam over flexible foundation elements (subjected to shear force and bending moment) and two dimensional frames (subjected to axial force, cutting force and bending moment). This formulation has as its main property that it can be used to compute the analytic reponse for any external load distribution and minimizes the number of elements to be used in discretizations. In addition, the equivalence of this formulation with that obtained by an “exact” implementation of the finite element method is presented. © 2020, Scipedia S.L. All rights reserved.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:54Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:54Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 2131315
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5918
dc.identifier.doi.none.fl_str_mv 10.23967/J.RIMNI.2020.09.004
identifier_str_mv 2131315
10.23967/J.RIMNI.2020.09.004
url http://hdl.handle.net/11407/5918
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092524795&doi=10.23967%2fJ.RIMNI.2020.09.004&partnerID=40&md5=fce7c5d0549e50f1528aaaac2f4d3cf5
dc.relation.citationvolume.none.fl_str_mv 36
dc.relation.citationissue.none.fl_str_mv 3
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationendpage.none.fl_str_mv 52
dc.relation.references.none.fl_str_mv Challis, Lawrie, Sheard, Fred, The green of Green functions (2003) Physics Today, 56 (12), pp. 41-46
Duffy, Dean G., (2015) Green’s functions with applications, , Chapman and Hall/CRC
Banerjee, PK, Butterfield, R., (1981) Boundary Element Methods in Engineering Science, , McGraw-Hill, New York
Sánchez-Sesma, F. J., Ramos-Martínez, J., Campillo, M., An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves (1993) Earthquake engineering & structural dynamics, 22 (4), pp. 279-295
Fairweather, G., Karageorghis, A., Martin, P.A., The method of fundamental solutions for scattering and radiation problems (2003) Engineering Analysis with Boundary Elements, 27 (7), pp. 759-769
Thomson, William T., Transmission of elastic waves through a stratified solid medium (1950) Journal of applied Physics, 21 (2), pp. 89-93
Boussinesq, Joseph, (1885) Application des potentiels a l'étude de l'équilibre et du mouvement des solides élastiques, , Gauthier-Villars
Cerruti, Valentino, Ricerche intorno all'equilibrio de'corpi elastici isotropi: memoria (1882), Coi tipi del Salviucci
Mindlin, R.D., Force at a Point in the Interior of a Semi-Infinite Solid (1936) Physics, 7 (5), pp. 195-202
Stokes, George Gebriel, On dynamical theory of diffraction (1849) Transactions of the Cambridge Philosophical Society, 9, pp. 1-48
Lamb, H., On the propagation of tremors over the surface of an elastic solid (1904) Philosophical Transactions of the Royal Society of London, 203, pp. 1-42
Chao, C.C., Dynamical response of an elastic half-space to tangential surface loadings (1960) Journal of Applied Mechanics, 27, p. 559
Kausel, E., (2006) Fundamental solutions in elastodynamics: a compendium, , Cambridge University Press
Aki, K., Richards, P.G., (2002) Quantitative seismology, , Univ Science Books
Colunga, Arturo Tena, (2007) Análisis de estructuras con métodos matriciales, , Limusa
McCormac, Jack C., (2007) Structural Analysis: using classical and matrix methods, , Wiley Hoboken, NJ
Kassimali, Aslam, (2012) Matrix analysis of structures SI version, , Cengage Learning
Reddy, J.N., (2006) An introduction to the finite element method, , McGrawHill
Bathe, K.J., (2006) Finite element procedures, , McGrawHill
Hetényi, Miklós, (1971) Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering, , University of Michigan
Eisemberger, M., Yankelevsky, D.Z., Exact stiffness matrix for beams on elastic foundation (1985) Computer & Structures, 21 (6), pp. 1355-1359
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Scipedia S.L.
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Scipedia S.L.
dc.source.none.fl_str_mv Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159210477256704
spelling 20202021-02-05T14:57:54Z2021-02-05T14:57:54Z2131315http://hdl.handle.net/11407/591810.23967/J.RIMNI.2020.09.004Green functions (F.G.) are defined as the response of a medium to a unit point load and are widely used to solve boundary value problems. Unfortunately, in structural analysis, its use is limited and they are only used indirectly and with another name in the calculation of influence lines and in the formulation of the virtual work method. This article presents the Green functions stiffness method, which is a novel methodology to obtain the analytical or exact response of two dimensional frames, which mixes the stiffnes method and the Green functions, the latter used for the calculation of displacement fields. In particular, the formulation will be carried out for bar elements (subjected to axial force), beam elements (subjected to shear force and bending moment), beam over flexible foundation elements (subjected to shear force and bending moment) and two dimensional frames (subjected to axial force, cutting force and bending moment). This formulation has as its main property that it can be used to compute the analytic reponse for any external load distribution and minimizes the number of elements to be used in discretizations. In addition, the equivalence of this formulation with that obtained by an “exact” implementation of the finite element method is presented. © 2020, Scipedia S.L. All rights reserved.spaScipedia S.L.Ingeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092524795&doi=10.23967%2fJ.RIMNI.2020.09.004&partnerID=40&md5=fce7c5d0549e50f1528aaaac2f4d3cf5363152Challis, Lawrie, Sheard, Fred, The green of Green functions (2003) Physics Today, 56 (12), pp. 41-46Duffy, Dean G., (2015) Green’s functions with applications, , Chapman and Hall/CRCBanerjee, PK, Butterfield, R., (1981) Boundary Element Methods in Engineering Science, , McGraw-Hill, New YorkSánchez-Sesma, F. J., Ramos-Martínez, J., Campillo, M., An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves (1993) Earthquake engineering & structural dynamics, 22 (4), pp. 279-295Fairweather, G., Karageorghis, A., Martin, P.A., The method of fundamental solutions for scattering and radiation problems (2003) Engineering Analysis with Boundary Elements, 27 (7), pp. 759-769Thomson, William T., Transmission of elastic waves through a stratified solid medium (1950) Journal of applied Physics, 21 (2), pp. 89-93Boussinesq, Joseph, (1885) Application des potentiels a l'étude de l'équilibre et du mouvement des solides élastiques, , Gauthier-VillarsCerruti, Valentino, Ricerche intorno all'equilibrio de'corpi elastici isotropi: memoria (1882), Coi tipi del SalviucciMindlin, R.D., Force at a Point in the Interior of a Semi-Infinite Solid (1936) Physics, 7 (5), pp. 195-202Stokes, George Gebriel, On dynamical theory of diffraction (1849) Transactions of the Cambridge Philosophical Society, 9, pp. 1-48Lamb, H., On the propagation of tremors over the surface of an elastic solid (1904) Philosophical Transactions of the Royal Society of London, 203, pp. 1-42Chao, C.C., Dynamical response of an elastic half-space to tangential surface loadings (1960) Journal of Applied Mechanics, 27, p. 559Kausel, E., (2006) Fundamental solutions in elastodynamics: a compendium, , Cambridge University PressAki, K., Richards, P.G., (2002) Quantitative seismology, , Univ Science BooksColunga, Arturo Tena, (2007) Análisis de estructuras con métodos matriciales, , LimusaMcCormac, Jack C., (2007) Structural Analysis: using classical and matrix methods, , Wiley Hoboken, NJKassimali, Aslam, (2012) Matrix analysis of structures SI version, , Cengage LearningReddy, J.N., (2006) An introduction to the finite element method, , McGrawHillBathe, K.J., (2006) Finite element procedures, , McGrawHillHetényi, Miklós, (1971) Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering, , University of MichiganEisemberger, M., Yankelevsky, D.Z., Exact stiffness matrix for beams on elastic foundation (1985) Computer & Structures, 21 (6), pp. 1355-1359Revista Internacional de Metodos Numericos para Calculo y Diseno en IngenieriaFinite element methodGreen functionsMixed finite elementsStiffness methodAnalytical formulation of the stiffness method for 2d reticular structures using green functionsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Molina-Villegas, J.C., Universidad de Medellín, Universidad Nacional de Colombia, ColombiaGiraldo, H.N.D., Departamento de Ingeniería Civil, Universidad Nacional de Colombia, Facultad de Minas, ColombiaOchoa, A.F.A., Departamento de Ingeniería Civil, Universidad Nacional de Colombia, Facultad de Minas, Colombiahttp://purl.org/coar/access_right/c_16ecMolina-Villegas J.C.Giraldo H.N.D.Ochoa A.F.A.11407/5918oai:repository.udem.edu.co:11407/59182021-02-05 09:57:54.361Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co