Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion
Computational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4258
- Acceso en línea:
- http://hdl.handle.net/11407/4258
- Palabra clave:
- Atrial fibrillation
Fractional diffusion
Nonlinear measures
Phase analysis
Rotors
Ablation
Biomedical engineering
Diffusion
Diseases
Rotors
Signal processing
Atrial fibrillation
Computational simulation
Fractional derivatives
Fractional diffusion
Fractional diffusion equation
Nonlinear measure
Phase analysis
Signal processing technique
Nonlinear analysis
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_b1bf911283d2b55fd3ebad94aea8ec3b |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4258 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
title |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
spellingShingle |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion Atrial fibrillation Fractional diffusion Nonlinear measures Phase analysis Rotors Ablation Biomedical engineering Diffusion Diseases Rotors Signal processing Atrial fibrillation Computational simulation Fractional derivatives Fractional diffusion Fractional diffusion equation Nonlinear measure Phase analysis Signal processing technique Nonlinear analysis |
title_short |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
title_full |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
title_fullStr |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
title_full_unstemmed |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
title_sort |
Nonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusion |
dc.contributor.affiliation.spa.fl_str_mv |
Ugarte, J.P., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia Duque, S.I., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia Duque, A.O., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia Tobón, C., Grupo de Investigación en Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia Bustamante, J., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia Andrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Atrial fibrillation Fractional diffusion Nonlinear measures Phase analysis Rotors Ablation Biomedical engineering Diffusion Diseases Rotors Signal processing Atrial fibrillation Computational simulation Fractional derivatives Fractional diffusion Fractional diffusion equation Nonlinear measure Phase analysis Signal processing technique Nonlinear analysis |
topic |
Atrial fibrillation Fractional diffusion Nonlinear measures Phase analysis Rotors Ablation Biomedical engineering Diffusion Diseases Rotors Signal processing Atrial fibrillation Computational simulation Fractional derivatives Fractional diffusion Fractional diffusion equation Nonlinear measure Phase analysis Signal processing technique Nonlinear analysis |
description |
Computational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the activation sequences. In this work we use the fractional diffusion equation to generate fibrillatory dynamics, including stable and meandering rotors, and multiple wavelets, by varying the order of the spatial fractional derivatives obtaining different complexity levels of propagation in a 2D domain. We applied nonlinear measures to characterize the propagation patterns from electrograms. Our results show that electroanatomical maps constructed using approximate entropy and multifractal analysis, are able to detect the tip of stable and meandering rotors, and to mark the occurrence of collisions and wave breaks. Application of these signal processing techniques to clinical practice is feasible and could improve atrial fibrillation ablation procedures. © Springer Nature Singapore Pte Ltd. 2017. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
9789811040856 |
dc.identifier.issn.none.fl_str_mv |
16800737 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4258 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-10-4086-3_136 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
9789811040856 16800737 10.1007/978-981-10-4086-3_136 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4258 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018383521&doi=10.1007%2f978-981-10-4086-3_136&partnerID=40&md5=6ca3f6c0bfc02238feb5e0952ffe2eff |
dc.relation.ispartofes.spa.fl_str_mv |
IFMBE Proceedings IFMBE Proceedings Volume 60, 2017, Pages 541-544 |
dc.relation.references.spa.fl_str_mv |
Alfonso, B. -., David, K., Vicente, G., Blanca, R., & Kevin, B. (2014). Fractional Diffusion Models of Cardiac Electrical Propagation: Role of Structural Heterogeneity in Dispersion of Repolarization Journal of the Royal Society Interface, 11. Andres, O. -., John, B., & German, C. -. (2016). Semi-Supervised Clustering of Fractionated Electrograms for Electroanatomical Atrial Mapping Biomedical Engineering Online, 15, 1-19. Berenfeld, O., & Jalife, J. (2016). Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency. Heart Failure Clinics, 12(2), 167-178. doi:10.1016/j.hfc.2015.08.014 Bray, M. -., Shien-Fong, L. I. N., Aliev, R. R., Roth, B. J., & Wikswo Jr., J. P. (2001). Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. Journal of Cardiovascular Electrophysiology, 12(6), 716-722. Clayton Richard, H., & Nash Martyn, P. (2015). Analysis of Cardiac Fibrillation using Phase Mapping Cardiac Electrophysiology Clinics, 7, 49-58. Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., . . . Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008 Fenton Flavio, H., Cherry Elizabeth, M., Hastings Harold, M., & Evans Steven, J. (2002). Multiple Mechanisms of Spiral Wave Breakup in a Model of Cardiac Electrical Activity Chaos, 12, 852-892. January Craig, T., Samuel, W. L., & Alpert, J. S. (2014). AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: Executive Summary Journal of the American College of Cardiology. Kantelhardt Jan, W., Zschiegner Stephan, A., Eva, K. -., Armin, B., Shlomo, H., & Eugene, S. H. (2002). Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series Physica A, 316, 87-101. Liu, F., Turner, I., Anh, V., Yang, Q., & Burrage, K. (2012). A numerical method for the fractional fitzhugh,nagumo monodomain model. ANZIAM Journal, 54(SUPPL), C608-C629. Mathias, B., Prashanthan, S., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation Proceeding of the IEEE, 104, 416-431. Mohammad, S., Gerhard, H., Martin, B., Breithardt, G., & Josephson Mark, E. (2013). Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W. -., & Miller, J. M. (2012). Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 Orozco-Duque, A., Novak, D., Kremen, V., & Bustamante, J. (2015). Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiological Measurement, 36(11), 2269-2284. doi:10.1088/0967-3334/36/11/2269 Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297-2301. Ugarte, J. P., Orozco-Duque, A., & Tobón, C. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model Plos One, 9. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159148374294528 |
spelling |
2017-12-19T19:36:42Z2017-12-19T19:36:42Z2017978981104085616800737http://hdl.handle.net/11407/425810.1007/978-981-10-4086-3_136reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínComputational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the activation sequences. In this work we use the fractional diffusion equation to generate fibrillatory dynamics, including stable and meandering rotors, and multiple wavelets, by varying the order of the spatial fractional derivatives obtaining different complexity levels of propagation in a 2D domain. We applied nonlinear measures to characterize the propagation patterns from electrograms. Our results show that electroanatomical maps constructed using approximate entropy and multifractal analysis, are able to detect the tip of stable and meandering rotors, and to mark the occurrence of collisions and wave breaks. Application of these signal processing techniques to clinical practice is feasible and could improve atrial fibrillation ablation procedures. © Springer Nature Singapore Pte Ltd. 2017.engSpringer VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018383521&doi=10.1007%2f978-981-10-4086-3_136&partnerID=40&md5=6ca3f6c0bfc02238feb5e0952ffe2effIFMBE ProceedingsIFMBE Proceedings Volume 60, 2017, Pages 541-544Alfonso, B. -., David, K., Vicente, G., Blanca, R., & Kevin, B. (2014). Fractional Diffusion Models of Cardiac Electrical Propagation: Role of Structural Heterogeneity in Dispersion of Repolarization Journal of the Royal Society Interface, 11.Andres, O. -., John, B., & German, C. -. (2016). Semi-Supervised Clustering of Fractionated Electrograms for Electroanatomical Atrial Mapping Biomedical Engineering Online, 15, 1-19.Berenfeld, O., & Jalife, J. (2016). Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency. Heart Failure Clinics, 12(2), 167-178. doi:10.1016/j.hfc.2015.08.014Bray, M. -., Shien-Fong, L. I. N., Aliev, R. R., Roth, B. J., & Wikswo Jr., J. P. (2001). Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue. Journal of Cardiovascular Electrophysiology, 12(6), 716-722.Clayton Richard, H., & Nash Martyn, P. (2015). Analysis of Cardiac Fibrillation using Phase Mapping Cardiac Electrophysiology Clinics, 7, 49-58.Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., . . . Zhang, H. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104(1-3), 22-48. doi:10.1016/j.pbiomolbio.2010.05.008Fenton Flavio, H., Cherry Elizabeth, M., Hastings Harold, M., & Evans Steven, J. (2002). Multiple Mechanisms of Spiral Wave Breakup in a Model of Cardiac Electrical Activity Chaos, 12, 852-892.January Craig, T., Samuel, W. L., & Alpert, J. S. (2014). AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: Executive Summary Journal of the American College of Cardiology.Kantelhardt Jan, W., Zschiegner Stephan, A., Eva, K. -., Armin, B., Shlomo, H., & Eugene, S. H. (2002). Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series Physica A, 316, 87-101.Liu, F., Turner, I., Anh, V., Yang, Q., & Burrage, K. (2012). A numerical method for the fractional fitzhugh,nagumo monodomain model. ANZIAM Journal, 54(SUPPL), C608-C629.Mathias, B., Prashanthan, S., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation Proceeding of the IEEE, 104, 416-431.Mohammad, S., Gerhard, H., Martin, B., Breithardt, G., & Josephson Mark, E. (2013).Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W. -., & Miller, J. M. (2012). Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022Orozco-Duque, A., Novak, D., Kremen, V., & Bustamante, J. (2015). Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiological Measurement, 36(11), 2269-2284. doi:10.1088/0967-3334/36/11/2269Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2297-2301.Ugarte, J. P., Orozco-Duque, A., & Tobón, C. (2014). Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model Plos One, 9.ScopusNonlinear measures characterize atrial fibrillatory dynamics generated using fractional diffusionConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fUgarte, J.P., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaDuque, S.I., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaDuque, A.O., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, ColombiaTobón, C., Grupo de Investigación en Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaBustamante, J., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaAndrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaUgarte J.P.Duque S.I.Duque A.O.Tobón C.Bustamante J.Andrade-Caicedo H.Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaGrupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, ColombiaGrupo de Investigación en Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, ColombiaAtrial fibrillationFractional diffusionNonlinear measuresPhase analysisRotorsAblationBiomedical engineeringDiffusionDiseasesRotorsSignal processingAtrial fibrillationComputational simulationFractional derivativesFractional diffusionFractional diffusion equationNonlinear measurePhase analysisSignal processing techniqueNonlinear analysisComputational simulations are used as tool to study atrial fibrillation and its maintaining mechanisms. Phase analysis has been used to elucidate the mechanisms by which a reentry is generated. However, clinical application of phase mapping requires a signal preprocessing stage that could affect the activation sequences. In this work we use the fractional diffusion equation to generate fibrillatory dynamics, including stable and meandering rotors, and multiple wavelets, by varying the order of the spatial fractional derivatives obtaining different complexity levels of propagation in a 2D domain. We applied nonlinear measures to characterize the propagation patterns from electrograms. Our results show that electroanatomical maps constructed using approximate entropy and multifractal analysis, are able to detect the tip of stable and meandering rotors, and to mark the occurrence of collisions and wave breaks. Application of these signal processing techniques to clinical practice is feasible and could improve atrial fibrillation ablation procedures. © Springer Nature Singapore Pte Ltd. 2017.http://purl.org/coar/access_right/c_16ec11407/4258oai:repository.udem.edu.co:11407/42582020-05-27 16:31:07.317Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |