Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake

The response of mid-rise reinforced concrete (RC) buildings in Mexico City after the 2017 Puebla Earthquake is assessed through combined field and computational investigation. The Mw 7.1 earthquake damaged more than 500 buildings where most of them are classified as mid-rise RC frames with infill wa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5686
Acceso en línea:
http://hdl.handle.net/11407/5686
Palabra clave:
Ductility
Earthquakes
Infill drilling
Walls (structural partitions)
Computational investigation
Ductility capacity
Framed structure
Inelastic modeling
Non-structural damage
Post-earthquake reconnaissances
Reinforced concrete frame buildings
Widespread damage
Reinforced concrete
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_b0040dd4fc24630356fb6d4f67eecfe0
oai_identifier_str oai:repository.udem.edu.co:11407/5686
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
title Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
spellingShingle Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
Ductility
Earthquakes
Infill drilling
Walls (structural partitions)
Computational investigation
Ductility capacity
Framed structure
Inelastic modeling
Non-structural damage
Post-earthquake reconnaissances
Reinforced concrete frame buildings
Widespread damage
Reinforced concrete
title_short Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
title_full Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
title_fullStr Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
title_full_unstemmed Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
title_sort Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake
dc.subject.none.fl_str_mv Ductility
Earthquakes
Infill drilling
Walls (structural partitions)
Computational investigation
Ductility capacity
Framed structure
Inelastic modeling
Non-structural damage
Post-earthquake reconnaissances
Reinforced concrete frame buildings
Widespread damage
Reinforced concrete
topic Ductility
Earthquakes
Infill drilling
Walls (structural partitions)
Computational investigation
Ductility capacity
Framed structure
Inelastic modeling
Non-structural damage
Post-earthquake reconnaissances
Reinforced concrete frame buildings
Widespread damage
Reinforced concrete
description The response of mid-rise reinforced concrete (RC) buildings in Mexico City after the 2017 Puebla Earthquake is assessed through combined field and computational investigation. The Mw 7.1 earthquake damaged more than 500 buildings where most of them are classified as mid-rise RC frames with infill walls. A multinational team from Colombia, Mexico, and the United States was rapidly deployed within a week of the occurrence of the event to investigate the structural and nonstructural damage levels of over 60 RC buildings with 2 12 stories. The results of the study confirmed that older mid-rise structures with limited ductility capacity may have been shaken past their capacity. To elucidate the widespread damage in mid-rise RC framed structures, the post-earthquake reconnaissance effort is complemented with inelastic modeling and simulation of several representative RC framing systems with and without masonry infill walls. It was confirmed that the addition of non-isolated masonry infills significantly impacts the ductility capacity and increases the potential for a soft-story mechanism formation in RC frames originally analyzed and designed to be bare systems. © 2019, Earthquake Engineering Research Institute
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:40Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Review
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 87552930
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5686
dc.identifier.doi.none.fl_str_mv 10.1193/061218EQS144M
identifier_str_mv 87552930
10.1193/061218EQS144M
url http://hdl.handle.net/11407/5686
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074544448&doi=10.1193%2f061218EQS144M&partnerID=40&md5=1180bd74aceb3374214606be8b02f09e
dc.relation.citationvolume.none.fl_str_mv 35
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 1763
dc.relation.citationendpage.none.fl_str_mv 1793
dc.relation.references.none.fl_str_mv Abrahamson, N.A., Gregor, N., Addo, K., BCHydro ground motion prediction equations for subduction earthquakes (2016) Earthquake Spectra, 32, pp. 23-44
Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.-J., Wooddell, K.E., Donahue, J.L., NGA-West2 database (2014) Earthquake Spectra, 30, pp. 989-1005
Arteta, C.A., (2015) Seismic Response Assessment of Thin Boundary Elements of Special Concrete Shear Walls, , Ph.D Thesis, University of California, Berkeley, CA
(2016) Minimum Design Loads for Buildings and Other Structures, , American Society of Civil Engineers ASCE, ASCE/SEI 7-16, Reston, VA
Bommer, J.J., Akkar, S., Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA (2012) Earthquake Spectra, 28, pp. 1-15
Carrillo, J., Hernández-Barrios, H., Rubiano-Fonseca, A., Analysis of the earthquake-resistant design approach for buildings in Mexico, (2014) Ingeniería, Investigación Y Tecnología, 15, pp. 151-162
Coleman, J., Spacone, E., Localization issues in force-based frame elements (2001) Journal of Structural Engineering, 127, pp. 1257-1265
Crisafulli, F.J., (1997) Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills, , Ph.D Thesis, University of Canterbury, Christchurch
Crisafulli, F.J., Carr, A.J., Park, R., Experimental response of framed masonry structures designed with new reinforcing details (2005) Bulletin of the New Zealand Society for Earthquake Engineering, 38, pp. 19-32
Chávez-García, F.J., Bard, P.-Y., Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes (1994) Soil Dynamics and Earthquake Engineering, 13, pp. 229-247
Chopra, A.K., Goel, R.K., A modal pushover analysis procedure for estimating seismic demands for buildings (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 561-582
Chrysostomou, C.Z., Gergely, P., Abel, J.F., A six-strut model for nonlinear dynamic analysis of steel infilled frames (2002) International Journal of Structural Stability and Dynamics, 2, pp. 335-353
(1998) European Macroseismic Scale 1998, , European Seismological Commission ESC, Luxembourg
(2009) Quantification of Building Seismic Performance Factors, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P695, Washington, DC
(2015) NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P1050-1, Washington, DC
Garcia, D., Singh, S., Herráiz, M., Ordaz, M.G., Pacheco, J., Inslab earthquakes of Central Mexico: Peak ground-motion parameters and response spectra (2005) Bulletin of the Seismological Society of America, 95, pp. 2272-2282
(2014) Report on the SARA Exposure and Vulnerability Workshop in Medellin Colombia, , Global Earthquake Model GEM, GEM Foundation, Pavia, Italy
(2016) How Exposed Is South America to Earthquakes?, , Global Earthquake Model GEM, Pavia, Italy
Gulkan, P., Sozen, M.A., Procedure for determining seismic vulnerability of building structures (1999) Structural Journal, 96
Han-Seon, L., Sung-Woo, W., Effect of masonry infills on seismic performance of a 3-storey R/C frame with non-seismic detailing (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 353-378
Hashemi, A., Mosalam, K.M., Shake-table experiment on reinforced concrete structure containing masonry infill wall (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 1827-1852
Jansen, D.C., Shah, S.P., Effect of length on compressive strain softening of concrete (1997) Journal of Engineering Mechanics, 123, pp. 25-35
Kramer, S.L., (1996) Geotechnical Earthquake Engineering, , Pearson, Upper Saddle River, NJ
Mayoral, J.M., Hutchinson, T.C., Franke, K.W., (2017) Geotechnical Engineering Reconnaissance of the 19 September 2017 Mw 7.1 Puebla-Mexico City Earthquake, , Version 2.0, Tech. Rep. GEER-055A, Geotechnical Extreme Events Reconnaissance Association
Mazzoni, S., McKenna, F., Fenves, G.L., Steel02 & hysteretic Material behavior (2007) OpenSees Comparison of Modelling Tools, , Pacific Earthquake Engineering Research Center, Berkeley, CA
McKenna, F., Fenves, G.L., Scott, M.H., Jeremic, B., (2000) Open System for Earthquake Engineering Simulation (OpenSees), Version 2.4.3.,, , http://opensees.berkeley.edu/, software
Mehrabi, A.B., Benson Shing, P., Schuller, M.P., Noland, J.L., Experimental evaluation of masonry-infilled RC frames (1996) Journal of Structural Engineering, 122, pp. 228-237
Meli, R., (1994) Structural Design of Masonry Buildings: The Mexican Practice, 147, pp. 239-262. , American Concrete Institute, ACI Special Publication
(2017) Resumen Preliminar De Daños De Los Inmuebles Inspeccionados Por Las Brigadas Del CICM Del Sismo Del 19/09/2017, , Mexican School of Civil Engineers CICM, Mexico City, Mexico
Mosalam, K.M., Günay, S., Progressive collapse analysis of reinforced concrete frames with unreinforced masonry infill walls considering in-plane/out-of-plane interaction (2015) Earthquake Spectra, 31, pp. 921-943
Muriá, D., González, R., Dynamic properties of building in Mexico City (1995) Ingeniería Sísmica, 351, pp. 24-45
(2017) Parámetros Del Movimiento Del Suelo Sismo De Puebla-Morelos (Mw 7.1), , National Autonomous University of Mexico UNAM, de septiembre de 2017, Mexico City, Mexico
(1976) Normas Tecnicas Complementarias para Diseño Y Construcción De Estructuras De Concreto, , NTC-C, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
(1976) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
(2004) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico
(2012) Industria De La Construcción - Mampostería - Bloques, Tabiques O Ladrillos Y Tabicones para Uso Estructural Especificaciones Y Métodos De Ensayo, , ONNCE, NMX-C-404ONNCCE-2012, Mexico City, Mexico
Ordaz, M., Miranda, E., Avilés, J., Propuesta de espectros de diseño por sismo para el DF (2003) Revista Internacional De Ingeniería De Estructuras, 8, pp. 189-207
Reinoso, E., Jaimes, M.A., Torres, M.A., Evaluation of building code compliance in Mexico City: Mid-rise dwellings AU Reinoso, Eduardo (2016) Building Research & Information, 44, pp. 202-213
Ruiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of existing structures (2003) Earthquake Engineering & Structural Dynamics, 32, pp. 1237-1258
Ruiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of structures built on soft soil sites (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 679-694
Sahakian, V.J., Melgar, D., Quintanar, L., Ramírez-Guzmán, L., Pérez-Campos, X., Baltay, A., Ground motions from the 7 and 19 September 2017 Tehuantepec and Puebla-Morelos, Mexico, Earthquakes (2018) Bulletin of the Seismological Society of America, 108, pp. 3300-3312
Saiidi, M., Sozen, M.A., Simple nonlinear seismic analysis of R/C structures (1981) Journal of the Structural Division, 107, pp. 937-953
Scott, M., Filippou, F.C., (2016) Hysteretic Material, , http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material, last accessed 16 November 2018
Spacone, E., Filippou, F.C., Taucer, F.F., Fibre beam-column model for non-linear analysis of R/C frame: Part I. Formulation (1996) Earthquake Engineering and Structural Dynamics, 25, pp. 711-725
Takeda, T., Sozen, M.A., Nielsen, N.N., Reinforced concrete response to simulated earthquakes (1970) Journal of the Structural Division, 96, pp. 2557-2573
(2017) Updated Finite Fault Results for the Sep 19, 2017 Mw 7.1 Earthquake, , https://earthquake.usgs.gov/archive/product/finite-fault/us2000ar20/us/1506135689560/2000ar20.html, version 2), last accessed 12 April 2018
Wittmann, F., Rokugo, K., Brühwiler, E., Mihashi, H., Simonin, P., Fracture energy and strain softening of concrete as determined by means of compact tension specimens (1988) Materials and Structures, 21, pp. 21-32
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Earthquake Engineering Research Institute
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Earthquake Engineering Research Institute
dc.source.none.fl_str_mv Earthquake Spectra
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159252535640064
spelling 20192020-04-29T14:53:40Z2020-04-29T14:53:40Z87552930http://hdl.handle.net/11407/568610.1193/061218EQS144MThe response of mid-rise reinforced concrete (RC) buildings in Mexico City after the 2017 Puebla Earthquake is assessed through combined field and computational investigation. The Mw 7.1 earthquake damaged more than 500 buildings where most of them are classified as mid-rise RC frames with infill walls. A multinational team from Colombia, Mexico, and the United States was rapidly deployed within a week of the occurrence of the event to investigate the structural and nonstructural damage levels of over 60 RC buildings with 2 12 stories. The results of the study confirmed that older mid-rise structures with limited ductility capacity may have been shaken past their capacity. To elucidate the widespread damage in mid-rise RC framed structures, the post-earthquake reconnaissance effort is complemented with inelastic modeling and simulation of several representative RC framing systems with and without masonry infill walls. It was confirmed that the addition of non-isolated masonry infills significantly impacts the ductility capacity and increases the potential for a soft-story mechanism formation in RC frames originally analyzed and designed to be bare systems. © 2019, Earthquake Engineering Research InstituteengEarthquake Engineering Research InstituteIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074544448&doi=10.1193%2f061218EQS144M&partnerID=40&md5=1180bd74aceb3374214606be8b02f09e35417631793Abrahamson, N.A., Gregor, N., Addo, K., BCHydro ground motion prediction equations for subduction earthquakes (2016) Earthquake Spectra, 32, pp. 23-44Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.-J., Wooddell, K.E., Donahue, J.L., NGA-West2 database (2014) Earthquake Spectra, 30, pp. 989-1005Arteta, C.A., (2015) Seismic Response Assessment of Thin Boundary Elements of Special Concrete Shear Walls, , Ph.D Thesis, University of California, Berkeley, CA(2016) Minimum Design Loads for Buildings and Other Structures, , American Society of Civil Engineers ASCE, ASCE/SEI 7-16, Reston, VABommer, J.J., Akkar, S., Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA (2012) Earthquake Spectra, 28, pp. 1-15Carrillo, J., Hernández-Barrios, H., Rubiano-Fonseca, A., Analysis of the earthquake-resistant design approach for buildings in Mexico, (2014) Ingeniería, Investigación Y Tecnología, 15, pp. 151-162Coleman, J., Spacone, E., Localization issues in force-based frame elements (2001) Journal of Structural Engineering, 127, pp. 1257-1265Crisafulli, F.J., (1997) Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills, , Ph.D Thesis, University of Canterbury, ChristchurchCrisafulli, F.J., Carr, A.J., Park, R., Experimental response of framed masonry structures designed with new reinforcing details (2005) Bulletin of the New Zealand Society for Earthquake Engineering, 38, pp. 19-32Chávez-García, F.J., Bard, P.-Y., Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes (1994) Soil Dynamics and Earthquake Engineering, 13, pp. 229-247Chopra, A.K., Goel, R.K., A modal pushover analysis procedure for estimating seismic demands for buildings (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 561-582Chrysostomou, C.Z., Gergely, P., Abel, J.F., A six-strut model for nonlinear dynamic analysis of steel infilled frames (2002) International Journal of Structural Stability and Dynamics, 2, pp. 335-353(1998) European Macroseismic Scale 1998, , European Seismological Commission ESC, Luxembourg(2009) Quantification of Building Seismic Performance Factors, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P695, Washington, DC(2015) NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, , Federal Emergency Management Agency FEMA, Tech. Rep. FEMA-P1050-1, Washington, DCGarcia, D., Singh, S., Herráiz, M., Ordaz, M.G., Pacheco, J., Inslab earthquakes of Central Mexico: Peak ground-motion parameters and response spectra (2005) Bulletin of the Seismological Society of America, 95, pp. 2272-2282(2014) Report on the SARA Exposure and Vulnerability Workshop in Medellin Colombia, , Global Earthquake Model GEM, GEM Foundation, Pavia, Italy(2016) How Exposed Is South America to Earthquakes?, , Global Earthquake Model GEM, Pavia, ItalyGulkan, P., Sozen, M.A., Procedure for determining seismic vulnerability of building structures (1999) Structural Journal, 96Han-Seon, L., Sung-Woo, W., Effect of masonry infills on seismic performance of a 3-storey R/C frame with non-seismic detailing (2002) Earthquake Engineering & Structural Dynamics, 31, pp. 353-378Hashemi, A., Mosalam, K.M., Shake-table experiment on reinforced concrete structure containing masonry infill wall (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 1827-1852Jansen, D.C., Shah, S.P., Effect of length on compressive strain softening of concrete (1997) Journal of Engineering Mechanics, 123, pp. 25-35Kramer, S.L., (1996) Geotechnical Earthquake Engineering, , Pearson, Upper Saddle River, NJMayoral, J.M., Hutchinson, T.C., Franke, K.W., (2017) Geotechnical Engineering Reconnaissance of the 19 September 2017 Mw 7.1 Puebla-Mexico City Earthquake, , Version 2.0, Tech. Rep. GEER-055A, Geotechnical Extreme Events Reconnaissance AssociationMazzoni, S., McKenna, F., Fenves, G.L., Steel02 & hysteretic Material behavior (2007) OpenSees Comparison of Modelling Tools, , Pacific Earthquake Engineering Research Center, Berkeley, CAMcKenna, F., Fenves, G.L., Scott, M.H., Jeremic, B., (2000) Open System for Earthquake Engineering Simulation (OpenSees), Version 2.4.3.,, , http://opensees.berkeley.edu/, softwareMehrabi, A.B., Benson Shing, P., Schuller, M.P., Noland, J.L., Experimental evaluation of masonry-infilled RC frames (1996) Journal of Structural Engineering, 122, pp. 228-237Meli, R., (1994) Structural Design of Masonry Buildings: The Mexican Practice, 147, pp. 239-262. , American Concrete Institute, ACI Special Publication(2017) Resumen Preliminar De Daños De Los Inmuebles Inspeccionados Por Las Brigadas Del CICM Del Sismo Del 19/09/2017, , Mexican School of Civil Engineers CICM, Mexico City, MexicoMosalam, K.M., Günay, S., Progressive collapse analysis of reinforced concrete frames with unreinforced masonry infill walls considering in-plane/out-of-plane interaction (2015) Earthquake Spectra, 31, pp. 921-943Muriá, D., González, R., Dynamic properties of building in Mexico City (1995) Ingeniería Sísmica, 351, pp. 24-45(2017) Parámetros Del Movimiento Del Suelo Sismo De Puebla-Morelos (Mw 7.1), , National Autonomous University of Mexico UNAM, de septiembre de 2017, Mexico City, Mexico(1976) Normas Tecnicas Complementarias para Diseño Y Construcción De Estructuras De Concreto, , NTC-C, Gaceta Oficial del Distrito Federal, Mexico City, Mexico(1976) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico(2004) Normas Tecnicas Complementarias para Diseño Por Sismo, , NTC-S, Gaceta Oficial del Distrito Federal, Mexico City, Mexico(2012) Industria De La Construcción - Mampostería - Bloques, Tabiques O Ladrillos Y Tabicones para Uso Estructural Especificaciones Y Métodos De Ensayo, , ONNCE, NMX-C-404ONNCCE-2012, Mexico City, MexicoOrdaz, M., Miranda, E., Avilés, J., Propuesta de espectros de diseño por sismo para el DF (2003) Revista Internacional De Ingeniería De Estructuras, 8, pp. 189-207Reinoso, E., Jaimes, M.A., Torres, M.A., Evaluation of building code compliance in Mexico City: Mid-rise dwellings AU Reinoso, Eduardo (2016) Building Research & Information, 44, pp. 202-213Ruiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of existing structures (2003) Earthquake Engineering & Structural Dynamics, 32, pp. 1237-1258Ruiz-García, J., Miranda, E., Inelastic displacement ratios for evaluation of structures built on soft soil sites (2006) Earthquake Engineering & Structural Dynamics, 35, pp. 679-694Sahakian, V.J., Melgar, D., Quintanar, L., Ramírez-Guzmán, L., Pérez-Campos, X., Baltay, A., Ground motions from the 7 and 19 September 2017 Tehuantepec and Puebla-Morelos, Mexico, Earthquakes (2018) Bulletin of the Seismological Society of America, 108, pp. 3300-3312Saiidi, M., Sozen, M.A., Simple nonlinear seismic analysis of R/C structures (1981) Journal of the Structural Division, 107, pp. 937-953Scott, M., Filippou, F.C., (2016) Hysteretic Material, , http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material, last accessed 16 November 2018Spacone, E., Filippou, F.C., Taucer, F.F., Fibre beam-column model for non-linear analysis of R/C frame: Part I. Formulation (1996) Earthquake Engineering and Structural Dynamics, 25, pp. 711-725Takeda, T., Sozen, M.A., Nielsen, N.N., Reinforced concrete response to simulated earthquakes (1970) Journal of the Structural Division, 96, pp. 2557-2573(2017) Updated Finite Fault Results for the Sep 19, 2017 Mw 7.1 Earthquake, , https://earthquake.usgs.gov/archive/product/finite-fault/us2000ar20/us/1506135689560/2000ar20.html, version 2), last accessed 12 April 2018Wittmann, F., Rokugo, K., Brühwiler, E., Mihashi, H., Simonin, P., Fracture energy and strain softening of concrete as determined by means of compact tension specimens (1988) Materials and Structures, 21, pp. 21-32Earthquake SpectraDuctilityEarthquakesInfill drillingWalls (structural partitions)Computational investigationDuctility capacityFramed structureInelastic modelingNon-structural damagePost-earthquake reconnaissancesReinforced concrete frame buildingsWidespread damageReinforced concreteResponse of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquakeReviewinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Arteta, C.A., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Carrillo, J., Department of Civil Engineering, Universidad Militar Nueva Granada, Bogotá, Colombia; Archbold, J., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States; Gaspar, D., Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States; Pajaro, C., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Araujo, G., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Torregroza, A., Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia; Bonett, R., Department of Civil and Environmental Engineering, Universidad de Medellín, Medellín, Colombia; Blandon, C., Department of Civil and Environmental Engineering, Escuela de Ingeniería de Antioquia, Medellín, Colombia; Fernandez-Sola, L.R., Department of Materials, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City, Mexico; Correal, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia; Mosalam, K.M., Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, United States, Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, CA 94720-1710, United Stateshttp://purl.org/coar/access_right/c_16ecArteta C.A.Carrillo J.Archbold J.Gaspar D.Pajaro C.Araujo G.Torregroza A.Bonett R.Blandon C.Fernandez-Sola L.R.Correal J.F.Mosalam K.M.11407/5686oai:repository.udem.edu.co:11407/56862020-05-27 19:09:40.461Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co