Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands

Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic we...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6103
Acceso en línea:
http://hdl.handle.net/11407/6103
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_ae7dd9cae1eb8e6f1e7e9281cd09f468
oai_identifier_str oai:repository.udem.edu.co:11407/6103
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
spellingShingle Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title_short Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title_full Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title_fullStr Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title_full_unstemmed Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
title_sort Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands
description Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the GlobalWetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-"Improve water quality"; 2.4-"Sustainable food production"; and 12.2-"Sustainable management of resources". Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-"Efficient resource consumption"; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: "Basic human needs", "Sustainable tourism", "Environmental impact in urban wetlands", and "Improving and conserving environment". In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a "wise use" of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. © 2019 by the authors.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:39Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:39Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20734441
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6103
dc.identifier.doi.none.fl_str_mv 10.3390/w11030619
identifier_str_mv 20734441
10.3390/w11030619
url http://hdl.handle.net/11407/6103
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065022106&doi=10.3390%2fw11030619&partnerID=40&md5=a4275e7dece77a27d2e1b7eca07d720b
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.citationissue.none.fl_str_mv 3
dc.relation.references.none.fl_str_mv Allen, C., Metternicht, G., Wiedmann, T., Prioritising SDG targets: Assessing baselines, gaps and interlinkages (2018) Sustain. Sci, 14, pp. 421-438
Blanc, D.L., Towards Integration at Last? (2015) The Sustainable Development Goals as a Network of Targets. Sustain. Dev, 23, pp. 176-187
Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J.W., Manzoni, S., Basu, N.B., Chalov, S.R., Goldenberg, R., Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management (2017) Ecol. Eng, 108, pp. 489-497
McCartney, M.P., Rebelo, L.-M., Senaratna Sellamuttu, S., de Silva, S., (2010) Wetlands, Agriculture and Poverty Reduction, , International Water Management Institute (IWMI): Colombo, Sri Lanka
Mitsch, W.J., Bernal, B., Hernandez, M.E., Ecosystem services of wetlands (2015) Int. J. Biodivers. Sci. Ecosyst. Serv. Manag, 11, pp. 1-4
(2005) Ecosystems and Human Well-Being: Health Synthesis, , World Health Organization: Geneva, Switzerland
(2018) Scaling upWetland Conservation,Wise Use and Restoration to Achieve the Sustainable Developmenct Goals, , https://www.ramsar.org/sites/default/files/documents/library/wetlands_sdgs_e.pdf, (accessed on 1 February 2019)
Mitsch, W.J., Gosselink, J.G., The value of wetlands: Importance of scale and landscape setting (2000) Ecol. Econ, 35, pp. 25-33
Penning-Rowsell, E.C., Parker, D.J., Harding, D.M., (1986) Floods and Drainage: British Policies for Hazard. Reduction, Agricultural Improvement and Wetland Conservation, , Unwin Hyman: London, UK
Boston, MA, USA
Bullock, A., Acreman, M., The role of wetlands in the hydrological cycle (2003) Hydrol. Earth Syst. Sci, 7, pp. 358-389
Narayan, S., Beck, M.W., Wilson, P., Thomas, C.J., Guerrero, A., Shepard, C.C., Reguero, B.G., Trespalacios, D., The Value of CoastalWetlands for Flood Damage Reduction in the Northeastern USA (2017) Sci. Rep, 7, p. 9463
Westerberg, I.K., Baldassarre, G.D., Beven, K.J., Coxon, G., Krueger, T., Perceptual models of uncertainty for socio-hydrological systems: A flood risk change example (2017) Hydrol. Sci. J, 62, pp. 1705-1713
Pavelsky, T.M., Smith, L.C., Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada (2009) Water Resour. Res, 45
Kadlec, R.H., Wallace, S., (2008) Treatment Wetlands, 2nd ed, , CRC Press: Boca Raton, FL, USA
Picard, C.R., Fraser, L.H., Steer, D., The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms (2005) Bioresour. Technol, 96, pp. 1039-1047
Chalov, S., Thorslund, J., Kasimov, N., Aybullatov, D., Ilyicheva, E., Karthe, D., Kositsky, A., Pavlov, M., The Selenga River delta: A geochemical barrier protecting Lake Baikal waters (2017) Reg. Environ. Chang, 17, pp. 2039-2053
Quin, A., Jaramillo, F., Destouni, G., Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features (2015) AMBIO, 44, pp. 127-137
Blackwell, M.S.A., Pilgrim, E.S., Ecosystem services delivered by small-scale wetlands (2011) Hydrol. Sci. J, 56, pp. 1467-1484
Rebelo, L.-M., McCartney, M.P., Finlayson, C.M., Wetlands of Sub-Saharan Africa: Distribution and contribution of agriculture to livelihoods (2010) Wetl. Ecol. Manag, 18, pp. 557-572
Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E., Brix, H., Wetlands, carbon, and climate change (2013) Landsc. Ecol, 28, pp. 583-597
Fennessy, M.S., Wardrop, D.H., Moon, J.B., Wilson, S., Craft, C., Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion (2018) Ecol. Eng, 114, pp. 129-136
United NationsWorld Commission on Environment and Development (1987) Our Common Future, , Oxford University Press: Oxford, UK
Jaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J.A., Guittard, A., Hylin, A., Wdowinski, S., Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia (2018) Wetlands, 38, pp. 755-767
Vilardy, S.P., González, J.A., Martín-López, B., Montes, C., Relationships between hydrological regime and ecosystem services supply in a Caribbean coastal wetland: A social-ecological approach (2011) Hydrol. Sci. J, 56, pp. 1423-1435
Finlayson, B., Runoff Variability-A Global Perspective, , http://www.academia.edu/6203748/Runoff_variability_-_a_global_perspective, (accessed on 1 August 2014)
Maltby, E., Wetland management goals: Wise use and conservation (1991) Landsc. Urban. Plan, 20, pp. 9-18
https://www.wetlands.org/publications/act-now-on-wetlands-for-agenda-2030/, (accessed on 13 December 2018)
Liu, J., Hull, V., Godfray, H.C.J., Tilman, D., Gleick, P., Hoff, H., Pahl-Wostl, C., Sun, J., Nexus approaches to global sustainable development (2018) Nat. Sustain, 1, p. 466
Weitz, N., Nilsson, M., Davis, M., A Nexus Approach to the Post-2015 Agenda: Formulating IntegratedWater, Energy, and Food SDGs (2014) SAIS Rev. Int. Aff, 34, pp. 37-50
Bai, X., Surveyer, A., Elmqvist, T., Gatzweiler, F.W., Güneralp, B., Parnell, S., Prieur-Richard, A.-H., Stafford-Smith, M., Defining and advancing a systems approach for sustainable cities (2016) Curr. Opin. Environ. Sustain, 23, pp. 69-78
(2015) CBD Press Brief: Wetlands and the Sustainable Development Goals, , https://www.cbd.int/waters/doc/wwd2015/wwd-2015-pressbrief-sdg-en.pdf, (accessed on 1 February 2019)
Latapy, M., Magnien, C., Vecchio, N.D., Basic notions for the analysis of large two-mode networks (2008) Soc. Netw, 30, pp. 31-48
Wolfe, A.W., Social Network Analysis: Methods and Applications (1997) Am. Ethnol, 24, pp. 219-220
Nilsson, M., Griggs, D., Visbeck, M., Policy: Map the interactions between Sustainable Development Goals (2016) Nat. News, 534, p. 320
Weitz, N., Carlsen, H., Nilsson, M., Skånberg, K., Towards systemic and contextual priority setting for implementing the 2030 Agenda (2018) Sustain. Sci, 13, pp. 531-548
Csárdi, G., Nepusz, T., The igraph software package for complex network research (2006) InterJournal Complex Syst, 1695, pp. 1-9
Dormann, C.F., Fründ, J., Blüthgen, N., Gruber, B., Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks (2009) Open Ecol. J, 2, pp. 2590-2776
Clauset, A., Newman, M.E.J., Moore, C., Finding community structure in very large networks (2004) Phys. Rev. E, 70
Beckett, S.J., Improved community detection in weighted bipartite networks (2016) R. Soc. Open Sci, 3
(2016) Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqeuros durante la rehabilitación de la Ciénaga Grande de Santa Marta, 14. , Informe Técnico
INVEMAR: Santa Marta, Colombia
Gunderson, L.H., Light, S.S., Holling, C.S., Lessons from the Everglades Learning in a turbulent system (1995) BioScience, 45, pp. S66-S73
Childers, D.L., Gaiser, E., Ogden, L., (2019) The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the South Florida Landscape, , Oxford University Press: Oxford, UK
Davis, S.M., Ogden, J.C., (1994) Everglades: The Ecosystem and Its Restoration, 1st ed, , CRC Press: Delray Beach, FL, USA
Yoder, L., Roy Chowdhury, R., Tracing social capital: How stakeholder group interactions shape agricultural water quality restoration in the Florida Everglades (2018) Land Use Policy, 77, pp. 354-361
Reddy, K.R., DeLaune, R.D., DeBusk, W.F., Koch, M.S., Long-term nutrient accumulation rates in the Everglades (1993) Soil Sci. Soc. Am. J. USA, 57, pp. 1147-1155
Obeysekera, J., Barnes, J., Nungesser, M., Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change (2015) Environ. Manag, 55, pp. 749-762
Wdowinski, S., Bray, R., Kirtman, B.P., Wu, Z., Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida (2016) Ocean. Coast. Manag, 126, pp. 1-8
Wilson, B.J., Servais, S., Mazzei, V., Kominoski, J.S., Hu, M., Davis, S.E., Gaiser, E., Kelly, S., Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades (2018) Ecol. Appl, 28, pp. 2092-2108
Saha, A.K., Saha, S., Sadle, J., Jiang, J., Ross, M.S., Price, R.M., Sternberg, L.S.L.O., Wendelberger, K.S., Sea level rise and South Florida coastal forests (2011) Clim. Change, 107, pp. 81-108
Zedler, J.B., Kercher, S., WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability (2005) Annu. Rev. Environ. Resour, 30, pp. 39-74
Cheng, F.Y., Basu, N.B., Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing (2017) Water Resour. Res, 53, pp. 5038-5056
Roggeri, H., (2013) Tropical Freshwater Wetlands: A Guide to Current Knowledge and Sustainable Management, , Springer Science & Business Media: Beilin, Germany
Downing, A., van Nes, E., Balirwa, J., Beuving, J., Bwathondi, P.O.J., Chapman, L., Cornelissen, I., Hecky, R., Coupled human and natural system dynamics as key to the sustainability of Lake Victoria's ecosystem services (2014) Ecol. Soc, 19, p. 31
Mooij, W.M., van Wijk, D., Beusen, A.H., Brederveld, R.J., Chang, M., Cobben, M.M., DeAngelis, D.L., Gsell, A.S., Modeling water quality in the Anthropocene: Directions for the next-generation aquatic ecosystem models (2019) Curr. Opin. Environ. Sustain, 36, pp. 85-95
Turner, K., Economics and Wetland Management (1991) Ambio, 20, pp. 59-63
Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Massone, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C.C., Montoya-Jaramillo, L.J., Palomino-ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194
Ceddia, M.G., Gunter, U., Corriveau-Bourque, A., Land tenure and agricultural expansion in Latin America: The role of Indigenous Peoples' and local communities' forest rights (2015) Glob. Environ. Chang, 35, pp. 316-322
Euliss, N.H., Smith, L.M., Wilcox, D.A., Browne, B.A., Linking ecosystem processes with wetland management goals: Charting a course for a sustainable future (2008) Wetlands, 28, pp. 553-562
Parikh, J., Datye, H., (2003) Sustainable Management of Wetlands: Biodiversity and Beyond, , SAGE Publications Pvt. Ltd.: New Delhi, India
Thousand Oaks, CA, USA
Alcamo, J., Water quality and its interlinkages with the Sustainable Development Goals (2019) Curr. Opin. Environ. Sustain, 36, pp. 126-140
Bhaduri, A., Bogardi, J., Siddiqi, A., Voigt, H., Vörösmarty, C., Pahl-Wostl, C., Bunn, S.E., Foster, S., Achieving Sustainable Development Goals from a Water Perspective (2016) Front. Environ. Sci, 4, p. 64
Vörösmarty, C.J., Rodríguez Osuna, V., Cak, A.D., Bhaduri, A., Bunn, S.E., Corsi, F., Gastelumendi, J., Lawford, R., Ecosystem-based water security and the Sustainable Development Goals (SDGs) (2018) Ecohydrol. Hydrobiol, 18, pp. 317-333
González-Gaudiano, E., Education for Sustainable Development: Configuration and Meaning (2005) Policy Futur. Educ, 3, pp. 243-250
Farrell, B.H., Runyan, D., Ecology and tourism (1991) Ann. Tour. Res, 18, pp. 26-40
Gilliam, J.W., Riparian Wetlands and Water Quality (1994) J. Environ. Qual, 23, pp. 896-900
Novotny, V., (1994) Water Quality: Prevention, Identification andManagement of Diffuse Pollution, , Van Nostrand-Reinhold Publishers: New York, NY, USA
Verhoeven, J.T.A., Arheimer, B., Yin, C., Hefting, M.M., Regional and global concerns over wetlands and water quality (2006) Trends Ecol. Evol, 21, pp. 96-103
Finlayson, C.M., Davidson, N., Pritchard, D., Milton, G.R., MacKay, H., The Ramsar Convention and Ecosystem-Based Approaches to the Wise Use and Sustainable Development ofWetlands (2011) J. Int. Wildl. Law Policy, 14, pp. 176-198
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Water (Switzerland)
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159169330085888
spelling 20192021-02-05T14:59:39Z2021-02-05T14:59:39Z20734441http://hdl.handle.net/11407/610310.3390/w11030619Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the GlobalWetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-"Improve water quality"; 2.4-"Sustainable food production"; and 12.2-"Sustainable management of resources". Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-"Efficient resource consumption"; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: "Basic human needs", "Sustainable tourism", "Environmental impact in urban wetlands", and "Improving and conserving environment". In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a "wise use" of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. © 2019 by the authors.engMDPI AGIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065022106&doi=10.3390%2fw11030619&partnerID=40&md5=a4275e7dece77a27d2e1b7eca07d720b113Allen, C., Metternicht, G., Wiedmann, T., Prioritising SDG targets: Assessing baselines, gaps and interlinkages (2018) Sustain. Sci, 14, pp. 421-438Blanc, D.L., Towards Integration at Last? (2015) The Sustainable Development Goals as a Network of Targets. Sustain. Dev, 23, pp. 176-187Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J.W., Manzoni, S., Basu, N.B., Chalov, S.R., Goldenberg, R., Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management (2017) Ecol. Eng, 108, pp. 489-497McCartney, M.P., Rebelo, L.-M., Senaratna Sellamuttu, S., de Silva, S., (2010) Wetlands, Agriculture and Poverty Reduction, , International Water Management Institute (IWMI): Colombo, Sri LankaMitsch, W.J., Bernal, B., Hernandez, M.E., Ecosystem services of wetlands (2015) Int. J. Biodivers. Sci. Ecosyst. Serv. Manag, 11, pp. 1-4(2005) Ecosystems and Human Well-Being: Health Synthesis, , World Health Organization: Geneva, Switzerland(2018) Scaling upWetland Conservation,Wise Use and Restoration to Achieve the Sustainable Developmenct Goals, , https://www.ramsar.org/sites/default/files/documents/library/wetlands_sdgs_e.pdf, (accessed on 1 February 2019)Mitsch, W.J., Gosselink, J.G., The value of wetlands: Importance of scale and landscape setting (2000) Ecol. Econ, 35, pp. 25-33Penning-Rowsell, E.C., Parker, D.J., Harding, D.M., (1986) Floods and Drainage: British Policies for Hazard. Reduction, Agricultural Improvement and Wetland Conservation, , Unwin Hyman: London, UKBoston, MA, USABullock, A., Acreman, M., The role of wetlands in the hydrological cycle (2003) Hydrol. Earth Syst. Sci, 7, pp. 358-389Narayan, S., Beck, M.W., Wilson, P., Thomas, C.J., Guerrero, A., Shepard, C.C., Reguero, B.G., Trespalacios, D., The Value of CoastalWetlands for Flood Damage Reduction in the Northeastern USA (2017) Sci. Rep, 7, p. 9463Westerberg, I.K., Baldassarre, G.D., Beven, K.J., Coxon, G., Krueger, T., Perceptual models of uncertainty for socio-hydrological systems: A flood risk change example (2017) Hydrol. Sci. J, 62, pp. 1705-1713Pavelsky, T.M., Smith, L.C., Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada (2009) Water Resour. Res, 45Kadlec, R.H., Wallace, S., (2008) Treatment Wetlands, 2nd ed, , CRC Press: Boca Raton, FL, USAPicard, C.R., Fraser, L.H., Steer, D., The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms (2005) Bioresour. Technol, 96, pp. 1039-1047Chalov, S., Thorslund, J., Kasimov, N., Aybullatov, D., Ilyicheva, E., Karthe, D., Kositsky, A., Pavlov, M., The Selenga River delta: A geochemical barrier protecting Lake Baikal waters (2017) Reg. Environ. Chang, 17, pp. 2039-2053Quin, A., Jaramillo, F., Destouni, G., Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features (2015) AMBIO, 44, pp. 127-137Blackwell, M.S.A., Pilgrim, E.S., Ecosystem services delivered by small-scale wetlands (2011) Hydrol. Sci. J, 56, pp. 1467-1484Rebelo, L.-M., McCartney, M.P., Finlayson, C.M., Wetlands of Sub-Saharan Africa: Distribution and contribution of agriculture to livelihoods (2010) Wetl. Ecol. Manag, 18, pp. 557-572Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E., Brix, H., Wetlands, carbon, and climate change (2013) Landsc. Ecol, 28, pp. 583-597Fennessy, M.S., Wardrop, D.H., Moon, J.B., Wilson, S., Craft, C., Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion (2018) Ecol. Eng, 114, pp. 129-136United NationsWorld Commission on Environment and Development (1987) Our Common Future, , Oxford University Press: Oxford, UKJaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J.A., Guittard, A., Hylin, A., Wdowinski, S., Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia (2018) Wetlands, 38, pp. 755-767Vilardy, S.P., González, J.A., Martín-López, B., Montes, C., Relationships between hydrological regime and ecosystem services supply in a Caribbean coastal wetland: A social-ecological approach (2011) Hydrol. Sci. J, 56, pp. 1423-1435Finlayson, B., Runoff Variability-A Global Perspective, , http://www.academia.edu/6203748/Runoff_variability_-_a_global_perspective, (accessed on 1 August 2014)Maltby, E., Wetland management goals: Wise use and conservation (1991) Landsc. Urban. Plan, 20, pp. 9-18https://www.wetlands.org/publications/act-now-on-wetlands-for-agenda-2030/, (accessed on 13 December 2018)Liu, J., Hull, V., Godfray, H.C.J., Tilman, D., Gleick, P., Hoff, H., Pahl-Wostl, C., Sun, J., Nexus approaches to global sustainable development (2018) Nat. Sustain, 1, p. 466Weitz, N., Nilsson, M., Davis, M., A Nexus Approach to the Post-2015 Agenda: Formulating IntegratedWater, Energy, and Food SDGs (2014) SAIS Rev. Int. Aff, 34, pp. 37-50Bai, X., Surveyer, A., Elmqvist, T., Gatzweiler, F.W., Güneralp, B., Parnell, S., Prieur-Richard, A.-H., Stafford-Smith, M., Defining and advancing a systems approach for sustainable cities (2016) Curr. Opin. Environ. Sustain, 23, pp. 69-78(2015) CBD Press Brief: Wetlands and the Sustainable Development Goals, , https://www.cbd.int/waters/doc/wwd2015/wwd-2015-pressbrief-sdg-en.pdf, (accessed on 1 February 2019)Latapy, M., Magnien, C., Vecchio, N.D., Basic notions for the analysis of large two-mode networks (2008) Soc. Netw, 30, pp. 31-48Wolfe, A.W., Social Network Analysis: Methods and Applications (1997) Am. Ethnol, 24, pp. 219-220Nilsson, M., Griggs, D., Visbeck, M., Policy: Map the interactions between Sustainable Development Goals (2016) Nat. News, 534, p. 320Weitz, N., Carlsen, H., Nilsson, M., Skånberg, K., Towards systemic and contextual priority setting for implementing the 2030 Agenda (2018) Sustain. Sci, 13, pp. 531-548Csárdi, G., Nepusz, T., The igraph software package for complex network research (2006) InterJournal Complex Syst, 1695, pp. 1-9Dormann, C.F., Fründ, J., Blüthgen, N., Gruber, B., Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks (2009) Open Ecol. J, 2, pp. 2590-2776Clauset, A., Newman, M.E.J., Moore, C., Finding community structure in very large networks (2004) Phys. Rev. E, 70Beckett, S.J., Improved community detection in weighted bipartite networks (2016) R. Soc. Open Sci, 3(2016) Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqeuros durante la rehabilitación de la Ciénaga Grande de Santa Marta, 14. , Informe TécnicoINVEMAR: Santa Marta, ColombiaGunderson, L.H., Light, S.S., Holling, C.S., Lessons from the Everglades Learning in a turbulent system (1995) BioScience, 45, pp. S66-S73Childers, D.L., Gaiser, E., Ogden, L., (2019) The Coastal Everglades: The Dynamics of Social-Ecological Transformation in the South Florida Landscape, , Oxford University Press: Oxford, UKDavis, S.M., Ogden, J.C., (1994) Everglades: The Ecosystem and Its Restoration, 1st ed, , CRC Press: Delray Beach, FL, USAYoder, L., Roy Chowdhury, R., Tracing social capital: How stakeholder group interactions shape agricultural water quality restoration in the Florida Everglades (2018) Land Use Policy, 77, pp. 354-361Reddy, K.R., DeLaune, R.D., DeBusk, W.F., Koch, M.S., Long-term nutrient accumulation rates in the Everglades (1993) Soil Sci. Soc. Am. J. USA, 57, pp. 1147-1155Obeysekera, J., Barnes, J., Nungesser, M., Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change (2015) Environ. Manag, 55, pp. 749-762Wdowinski, S., Bray, R., Kirtman, B.P., Wu, Z., Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida (2016) Ocean. Coast. Manag, 126, pp. 1-8Wilson, B.J., Servais, S., Mazzei, V., Kominoski, J.S., Hu, M., Davis, S.E., Gaiser, E., Kelly, S., Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades (2018) Ecol. Appl, 28, pp. 2092-2108Saha, A.K., Saha, S., Sadle, J., Jiang, J., Ross, M.S., Price, R.M., Sternberg, L.S.L.O., Wendelberger, K.S., Sea level rise and South Florida coastal forests (2011) Clim. Change, 107, pp. 81-108Zedler, J.B., Kercher, S., WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability (2005) Annu. Rev. Environ. Resour, 30, pp. 39-74Cheng, F.Y., Basu, N.B., Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing (2017) Water Resour. Res, 53, pp. 5038-5056Roggeri, H., (2013) Tropical Freshwater Wetlands: A Guide to Current Knowledge and Sustainable Management, , Springer Science & Business Media: Beilin, GermanyDowning, A., van Nes, E., Balirwa, J., Beuving, J., Bwathondi, P.O.J., Chapman, L., Cornelissen, I., Hecky, R., Coupled human and natural system dynamics as key to the sustainability of Lake Victoria's ecosystem services (2014) Ecol. Soc, 19, p. 31Mooij, W.M., van Wijk, D., Beusen, A.H., Brederveld, R.J., Chang, M., Cobben, M.M., DeAngelis, D.L., Gsell, A.S., Modeling water quality in the Anthropocene: Directions for the next-generation aquatic ecosystem models (2019) Curr. Opin. Environ. Sustain, 36, pp. 85-95Turner, K., Economics and Wetland Management (1991) Ambio, 20, pp. 59-63Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Massone, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C.C., Montoya-Jaramillo, L.J., Palomino-ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194Ceddia, M.G., Gunter, U., Corriveau-Bourque, A., Land tenure and agricultural expansion in Latin America: The role of Indigenous Peoples' and local communities' forest rights (2015) Glob. Environ. Chang, 35, pp. 316-322Euliss, N.H., Smith, L.M., Wilcox, D.A., Browne, B.A., Linking ecosystem processes with wetland management goals: Charting a course for a sustainable future (2008) Wetlands, 28, pp. 553-562Parikh, J., Datye, H., (2003) Sustainable Management of Wetlands: Biodiversity and Beyond, , SAGE Publications Pvt. Ltd.: New Delhi, IndiaThousand Oaks, CA, USAAlcamo, J., Water quality and its interlinkages with the Sustainable Development Goals (2019) Curr. Opin. Environ. Sustain, 36, pp. 126-140Bhaduri, A., Bogardi, J., Siddiqi, A., Voigt, H., Vörösmarty, C., Pahl-Wostl, C., Bunn, S.E., Foster, S., Achieving Sustainable Development Goals from a Water Perspective (2016) Front. Environ. Sci, 4, p. 64Vörösmarty, C.J., Rodríguez Osuna, V., Cak, A.D., Bhaduri, A., Bunn, S.E., Corsi, F., Gastelumendi, J., Lawford, R., Ecosystem-based water security and the Sustainable Development Goals (SDGs) (2018) Ecohydrol. Hydrobiol, 18, pp. 317-333González-Gaudiano, E., Education for Sustainable Development: Configuration and Meaning (2005) Policy Futur. Educ, 3, pp. 243-250Farrell, B.H., Runyan, D., Ecology and tourism (1991) Ann. Tour. Res, 18, pp. 26-40Gilliam, J.W., Riparian Wetlands and Water Quality (1994) J. Environ. Qual, 23, pp. 896-900Novotny, V., (1994) Water Quality: Prevention, Identification andManagement of Diffuse Pollution, , Van Nostrand-Reinhold Publishers: New York, NY, USAVerhoeven, J.T.A., Arheimer, B., Yin, C., Hefting, M.M., Regional and global concerns over wetlands and water quality (2006) Trends Ecol. Evol, 21, pp. 96-103Finlayson, C.M., Davidson, N., Pritchard, D., Milton, G.R., MacKay, H., The Ramsar Convention and Ecosystem-Based Approaches to the Wise Use and Sustainable Development ofWetlands (2011) J. Int. Wildl. Law Policy, 14, pp. 176-198Water (Switzerland)Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlandsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jaramillo, F., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, Sweden, Stockholm Resilience Centre, Stockholm University, Stockholm, 10691, Sweden, Baltic Sea Centre, Stockholm University, Stockholm, SE-106 91, 10691, SwedenDesormeaux, A., Soil and Water Sciences Department, University of Florida, 2191, McCarty Hall, Gainesville, FL 32611, United StatesHedlund, J., Stockholm Resilience Centre, Stockholm University, Stockholm, 10691, SwedenJawitz, J.W., Soil and Water Sciences Department, University of Florida, 2191, McCarty Hall, Gainesville, FL 32611, United StatesClerici, N., Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Kr 26 No 63B-48, Bogotá D.C., 111221, ColombiaPiemontese, L., Stockholm Resilience Centre, Stockholm University, Stockholm, 10691, SwedenRodríguez-Rodriguez, J.A., Instituto de investigaciones marinas y costeras de Colombia, 'José Benito Vives de Andreis'-INVEMAR, Santa Marta, 470006, ColombiaAnaya, J.A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, ColombiaBlanco-Libreros, J.F., Instituto de Biología, Universidad de Antioquia, Medellín, 050010, ColombiaBorja, S., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenCeli, J., Grupo de Investigación de Recursos Hídricos y Acuáticos, Universidad Regional Amazónica IKIAM, Tena Kilómetro 7, vía Muyuna, Atacapi, 150150, EcuadorChalov, S., Faculty of Geography, Lomonosov Moscow State University, Moscow, 119571, Russian Federation, Institute of Geography, Kazimierz Wielki University, Bydgoszcz, 85-064, PolandChun, K.P., Department of Geography, Hong Kong Baptist University, Hong KongCresso, M., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenDestouni, G., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenDessu, S.B., Southeast Environmental Research Center, Florida International University, Miami, FL 33199, United StatesDi Baldassarre, G., Centre of Natural Hazards and Disaster Science, CNDS, Department of Earth Sciences, Uppsala University, Uppsala, 752 36, SwedenDowning, A., Stockholm Resilience Centre, Stockholm University, Stockholm, 10691, SwedenEspinosa, L., Instituto de investigaciones marinas y costeras de Colombia, 'José Benito Vives de Andreis'-INVEMAR, Santa Marta, 470006, ColombiaGhajarnia, N., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenGirard, P., Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso (UFMT) and Centro de Pesquisa do Pantanal, Cuiabá-MT, 78060-900, BrazilGutiérrez, A.G., Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, 8820808, ChileHansen, A., Civil, Environmental and Architectural Engineering Department, University of Kansas, Lawrence, KS 66045, United StatesHu, T., Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing, 210029, ChinaJarsjö, J., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenKalantary, Z., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenLabbaci, A., Faculty of Sciences, Ibn Zohr University, Agadir, 80000, MoroccoLicero-Villanueva, L., Instituto de investigaciones marinas y costeras de Colombia, 'José Benito Vives de Andreis'-INVEMAR, Santa Marta, 470006, ColombiaLivsey, J., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenMachotka, E., Department of Asian, Middle Eastern and Turkish Studies, Stockholm University, Stockholm, SE-106 91, SwedenMcCurley, K., Soil and Water Sciences Department, University of Florida, 2191, McCarty Hall, Gainesville, FL 32611, United StatesPalomino-ángel, S., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No 30-65, Medellín, 050026, ColombiaPietron, J., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenPrice, R., Southeast Environmental Research Center, Florida International University, Miami, FL 33199, United StatesRamchunder, S.J., Geography Department, National University of Singapore119077, SingaporeRicaurte-Villota, C., Instituto de investigaciones marinas y costeras de Colombia, 'José Benito Vives de Andreis'-INVEMAR, Santa Marta, 470006, ColombiaRicaurte, L.F., Independent consultant, Zurich, 8000, SwitzerlandDahir, L., Independent consultant, Stockholm, 111 22, SwedenRodríguez, E., Civil and Agricultural Department, Universidad Nacional de Colombia, Bogotá, 11001, ColombiaSalgado, J., Grupo de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, 111711, Colombia, Universidad Católica de Colombia, Bogotá, 111311, ColombiaSannel, A.B.K., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenSantos, A.C., Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, 111311, ColombiaSeifollahi-Aghmiuni, S., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenSjöberg, Y., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenSun, L., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, Sweden, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, ChinaThorslund, J., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenVigouroux, G., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, SwedenWang-Erlandsson, L., Stockholm Resilience Centre, Stockholm University, Stockholm, 10691, SwedenXu, D., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, Sweden, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, ChinaZamora, D., Civil and Agricultural Department, Universidad Nacional de Colombia, Bogotá, 11001, ColombiaZiegler, A.D., Geography Department, National University of Singapore119077, SingaporeÅhlén, I., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, 10691, Swedenhttp://purl.org/coar/access_right/c_16ecJaramillo F.Desormeaux A.Hedlund J.Jawitz J.W.Clerici N.Piemontese L.Rodríguez-Rodriguez J.A.Anaya J.A.Blanco-Libreros J.F.Borja S.Celi J.Chalov S.Chun K.P.Cresso M.Destouni G.Dessu S.B.Di Baldassarre G.Downing A.Espinosa L.Ghajarnia N.Girard P.Gutiérrez A.G.Hansen A.Hu T.Jarsjö J.Kalantary Z.Labbaci A.Licero-Villanueva L.Livsey J.Machotka E.McCurley K.Palomino-ángel S.Pietron J.Price R.Ramchunder S.J.Ricaurte-Villota C.Ricaurte L.F.Dahir L.Rodríguez E.Salgado J.Sannel A.B.K.Santos A.C.Seifollahi-Aghmiuni S.Sjöberg Y.Sun L.Thorslund J.Vigouroux G.Wang-Erlandsson L.Xu D.Zamora D.Ziegler A.D.Åhlén I.11407/6103oai:repository.udem.edu.co:11407/61032021-02-05 09:59:39.531Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co