Preparation of activated carbon from palm oil wastes and their application for methylene blue removal

The production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Re...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/4254
Acceso en línea:
http://hdl.handle.net/11407/4254
Palabra clave:
Activated carbon
Adsorption
Biomass
Chemical activation
Palm oil
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_abce4f0b22a30a72c9a88f422f842d07
oai_identifier_str oai:repository.udem.edu.co:11407/4254
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
Preparação de carvão ativado a partir da resíduos de palmeira de óleo e sua aplicação para a remoção de corantes
Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes
title Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
spellingShingle Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
Activated carbon
Adsorption
Biomass
Chemical activation
Palm oil
title_short Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
title_full Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
title_fullStr Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
title_full_unstemmed Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
title_sort Preparation of activated carbon from palm oil wastes and their application for methylene blue removal
dc.contributor.affiliation.spa.fl_str_mv Ramírez, A.P., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
Giraldo, S., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
Flórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
Acelas, N., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Activated carbon
Adsorption
Biomass
Chemical activation
Palm oil
topic Activated carbon
Adsorption
Biomass
Chemical activation
Palm oil
description The production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Results showed a good development of pore with surface areas of 835.3 m2/g for activated fiber (FA) and 575.1 m2/g for activated shell (CA). A good fit of the experimental data with the pseudo second order kinetic model and with Langmuir and Freundlich isotherms models was found. In addition, maximum adsorption capacities of 763.4 and 724.6 mg/g for FA and CA were found, respectively. © 2017, Universidad Nacional de Colombia. All rights reserved.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1202804
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4254
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1202804
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4254
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026876660&partnerID=40&md5=8b0bce6cb877b05420a3dc4fc9751667
dc.relation.ispartofes.spa.fl_str_mv Revista Colombiana de Quimica
Revista Colombiana de Quimica Volume 46, Issue 1, 1 January 2017, Pages 33-41
dc.relation.references.spa.fl_str_mv Aboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of macoré fruit. Journal of Environmental Management, 156, 10-14. doi:10.1016/j.jenvman.2015.03.006
Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., . . . Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-23. doi:10.1016/j.chemosphere.2013.10.071
Ahmed, M. J., & Dhedan, S. K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria, 317, 9-14. doi:10.1016/j.fluid.2011.12.026
Arami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 197-203. doi:10.1016/j.jaap.2010.08.006
Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chemical Engineering Journal, 286, 476-484. doi:10.1016/j.cej.2015.10.099
Caturia, F., Molina, F., Molina-Sabio, M., Rodriguez-Reinoso, F., & Esteban, A. (1995). Electroless plating of graphite with copper and nickel. Journal of the Electrochemical Society, 142(12), 4084-4090. doi:10.1149/1.2048468
Duman, G., Onal, Y., Okutucu, C., Onenc, S., & Yanik, J. (2009). Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties. Energy and Fuels, 23(4), 2197-2204. doi:10.1021/ef800510m
Ekrami, E., Dadashian, F., & Arami, M. (2016). Adsorption of methylene blue by waste cotton activated carbon: Equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57(15), 7098-7108. doi:10.1080/19443994.2015.1015173
Gañán-Gómez, J., Macías-García, A., Díaz-Díez, M. A., González-García, C., & Sabio-Rey, E. (2006). Preparation and characterization of activated carbons from impregnation pitch by ZnCl2. Applied Surface Science, 252(17), 5976-5979. doi:10.1016/j.apsusc.2005.11.011
Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., . . . Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries.Biomass and Bioenergy, 95, 310-329. doi:10.1016/j.biombioe.2016.05.020
Hameed, B. H., Ahmad, A. L., & Latiff, K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1), 143-149. doi:10.1016/j.dyepig.2006.05.039
Hamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J., & Zain, H. M. (2016). Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment, 57(17), 7999-8006. doi:10.1080/19443994.2015.1042068
Isah, U. A., Abdulraheem, G., Bala, S., Muhammad, S., & Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration and Biodegradation, 102, 265-273. doi:10.1016/j.ibiod.2015.04.006
Islam, M. A., Benhouria, A., Asif, M., & Hameed, B. H. (2015). Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. Journal of the Taiwan Institute of Chemical Engineers, 52, 57-64. doi:10.1016/j.jtice.2015.02.010
Karaçetin, G., Sivrikaya, S., & Imamoʇlu, M. (2014). Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. Journal of Analytical and Applied Pyrolysis, 110(1), 270-276. doi:10.1016/j.jaap.2014.09.006
Lua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290(2), 505-513. doi:10.1016/j.jcis.2005.04.063
Luna, D., Gonzalez, A., Gordon, M., & Martin, N. (2007). Obtenciôn de carbon activado a partir de la cascara de coco. Contactos, 64, 39-48.
Mahapatra, K., Ramteke, D. S., & Paliwal, L. J. (2012). Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. Journal of Analytical and Applied Pyrolysis, 95, 79-86. doi:10.1016/j.jaap.2012.01.009
Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628-636. doi:10.1016/j.biortech.2012.01.056
Mook, W. T., Aroua, M. K., & Szlachta, M. (2016). Palm shell-based activated carbon for removing reactive black 5 dye: Equilibrium and kinetics studies. BioResources, 11(1), 1432-1447. doi:10.15376/biores.11.1.1432-1447
Pezoti, O., Cazetta, A. L., Souza, I. P. A. F., Bedin, K. C., Martins, A. C., Silva, T. L., & Almeida, V. C. (2014). Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (mauritia flexuosa L.). Journal of Industrial and Engineering Chemistry, 20(6), 4401-4407. doi:10.1016/j.jiec.2014.02.007
Pirsaheb, M., Rezai, Z., Mansouri, A. M., Rastegar, A., Alahabadi, A., Sani, A. R., & Sharafi, K. (2016). Preparation of the activated carbon from india shrub wood and their application for methylene blue removal: Modeling and optimization. Desalination and Water Treatment, 57(13), 5888-5902. doi:10.1080/19443994.2015.1008581
Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162(1-2), 39-58. doi:10.1016/j.cis.2010.12.004
Vargas, A. M. M., Cazetta, A. L., Martins, A. C., Moraes, J. C. G., Garcia, E. E., Gauze, G. F., . . . Almeida, V. C. (2012). Kinetic and equilibrium studies: Adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods. Chemical Engineering Journal, 181-182, 243-250. doi:10.1016/j.cej.2011.11.073
Zhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., & Lei, L. (2015). A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. Journal of the Taiwan Institute of Chemical Engineers, 49, 206-211. doi:10.1016/j.jtice.2014.11.024
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481185892925440
spelling 2017-12-19T19:36:41Z2017-12-19T19:36:41Z20171202804http://hdl.handle.net/11407/4254reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Results showed a good development of pore with surface areas of 835.3 m2/g for activated fiber (FA) and 575.1 m2/g for activated shell (CA). A good fit of the experimental data with the pseudo second order kinetic model and with Langmuir and Freundlich isotherms models was found. In addition, maximum adsorption capacities of 763.4 and 724.6 mg/g for FA and CA were found, respectively. © 2017, Universidad Nacional de Colombia. All rights reserved.spaUniversidad Nacional de ColombiaFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026876660&partnerID=40&md5=8b0bce6cb877b05420a3dc4fc9751667Revista Colombiana de QuimicaRevista Colombiana de Quimica Volume 46, Issue 1, 1 January 2017, Pages 33-41Aboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of macoré fruit. Journal of Environmental Management, 156, 10-14. doi:10.1016/j.jenvman.2015.03.006Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., . . . Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-23. doi:10.1016/j.chemosphere.2013.10.071Ahmed, M. J., & Dhedan, S. K. (2012). Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria, 317, 9-14. doi:10.1016/j.fluid.2011.12.026Arami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 197-203. doi:10.1016/j.jaap.2010.08.006Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chemical Engineering Journal, 286, 476-484. doi:10.1016/j.cej.2015.10.099Caturia, F., Molina, F., Molina-Sabio, M., Rodriguez-Reinoso, F., & Esteban, A. (1995). Electroless plating of graphite with copper and nickel. Journal of the Electrochemical Society, 142(12), 4084-4090. doi:10.1149/1.2048468Duman, G., Onal, Y., Okutucu, C., Onenc, S., & Yanik, J. (2009). Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties. Energy and Fuels, 23(4), 2197-2204. doi:10.1021/ef800510mEkrami, E., Dadashian, F., & Arami, M. (2016). Adsorption of methylene blue by waste cotton activated carbon: Equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57(15), 7098-7108. doi:10.1080/19443994.2015.1015173Gañán-Gómez, J., Macías-García, A., Díaz-Díez, M. A., González-García, C., & Sabio-Rey, E. (2006). Preparation and characterization of activated carbons from impregnation pitch by ZnCl2. Applied Surface Science, 252(17), 5976-5979. doi:10.1016/j.apsusc.2005.11.011Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., . . . Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries.Biomass and Bioenergy, 95, 310-329. doi:10.1016/j.biombioe.2016.05.020Hameed, B. H., Ahmad, A. L., & Latiff, K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1), 143-149. doi:10.1016/j.dyepig.2006.05.039Hamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J., & Zain, H. M. (2016). Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment, 57(17), 7999-8006. doi:10.1080/19443994.2015.1042068Isah, U. A., Abdulraheem, G., Bala, S., Muhammad, S., & Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of C.I. reactive blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration and Biodegradation, 102, 265-273. doi:10.1016/j.ibiod.2015.04.006Islam, M. A., Benhouria, A., Asif, M., & Hameed, B. H. (2015). Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. Journal of the Taiwan Institute of Chemical Engineers, 52, 57-64. doi:10.1016/j.jtice.2015.02.010Karaçetin, G., Sivrikaya, S., & Imamoʇlu, M. (2014). Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. Journal of Analytical and Applied Pyrolysis, 110(1), 270-276. doi:10.1016/j.jaap.2014.09.006Lua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290(2), 505-513. doi:10.1016/j.jcis.2005.04.063Luna, D., Gonzalez, A., Gordon, M., & Martin, N. (2007). Obtenciôn de carbon activado a partir de la cascara de coco. Contactos, 64, 39-48.Mahapatra, K., Ramteke, D. S., & Paliwal, L. J. (2012). Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. Journal of Analytical and Applied Pyrolysis, 95, 79-86. doi:10.1016/j.jaap.2012.01.009Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628-636. doi:10.1016/j.biortech.2012.01.056Mook, W. T., Aroua, M. K., & Szlachta, M. (2016). Palm shell-based activated carbon for removing reactive black 5 dye: Equilibrium and kinetics studies. BioResources, 11(1), 1432-1447. doi:10.15376/biores.11.1.1432-1447Pezoti, O., Cazetta, A. L., Souza, I. P. A. F., Bedin, K. C., Martins, A. C., Silva, T. L., & Almeida, V. C. (2014). Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (mauritia flexuosa L.). Journal of Industrial and Engineering Chemistry, 20(6), 4401-4407. doi:10.1016/j.jiec.2014.02.007Pirsaheb, M., Rezai, Z., Mansouri, A. M., Rastegar, A., Alahabadi, A., Sani, A. R., & Sharafi, K. (2016). Preparation of the activated carbon from india shrub wood and their application for methylene blue removal: Modeling and optimization. Desalination and Water Treatment, 57(13), 5888-5902. doi:10.1080/19443994.2015.1008581Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162(1-2), 39-58. doi:10.1016/j.cis.2010.12.004Vargas, A. M. M., Cazetta, A. L., Martins, A. C., Moraes, J. C. G., Garcia, E. E., Gauze, G. F., . . . Almeida, V. C. (2012). Kinetic and equilibrium studies: Adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods. Chemical Engineering Journal, 181-182, 243-250. doi:10.1016/j.cej.2011.11.073Zhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., & Lei, L. (2015). A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. Journal of the Taiwan Institute of Chemical Engineers, 49, 206-211. doi:10.1016/j.jtice.2014.11.024ScopusPreparation of activated carbon from palm oil wastes and their application for methylene blue removalPreparação de carvão ativado a partir da resíduos de palmeira de óleo e sua aplicação para a remoção de corantesPreparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ramírez, A.P., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaGiraldo, S., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaFlórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaAcelas, N., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaRamírez A.P.Giraldo S.Flórez E.Acelas N.Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, ColombiaActivated carbonAdsorptionBiomassChemical activationPalm oilThe production of activated carbon from residual biomass generated in the production of oil palm, fiber (F) and shell (C) was studied. The chemical activation was done using ZnCl2 and the adsorption capacity of methylene blue (AM) at different concentrations (50, 100, and 150 mg/L) was evaluated. Results showed a good development of pore with surface areas of 835.3 m2/g for activated fiber (FA) and 575.1 m2/g for activated shell (CA). A good fit of the experimental data with the pseudo second order kinetic model and with Langmuir and Freundlich isotherms models was found. In addition, maximum adsorption capacities of 763.4 and 724.6 mg/g for FA and CA were found, respectively. © 2017, Universidad Nacional de Colombia. All rights reserved.http://purl.org/coar/access_right/c_16ec11407/4254oai:repository.udem.edu.co:11407/42542020-05-27 19:17:12.231Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co