Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]

"There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a ""bottom up"" approach. This study evalua...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/4844
Acceso en línea:
http://hdl.handle.net/11407/4844
Palabra clave:
Burned area
Cloud computing
Fires
GEE
NBR
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_aa770c035223a6d80ab1c88cc17d599e
oai_identifier_str oai:repository.udem.edu.co:11407/4844
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
title Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
spellingShingle Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
Burned area
Cloud computing
Fires
GEE
NBR
title_short Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
title_full Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
title_fullStr Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
title_full_unstemmed Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
title_sort Burned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]
dc.contributor.affiliation.spa.fl_str_mv Anaya, J.A., Universidad de Medellín;Sione, W.F., Universidad Autónoma de Entre Ríos;Rodríguez-Montellano, A.M., Fundación Amigos de la Naturaleza; Universidad Autónoma Gabriel René Moreno
dc.subject.spa.fl_str_mv Burned area
Cloud computing
Fires
GEE
NBR
topic Burned area
Cloud computing
Fires
GEE
NBR
description "There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a ""bottom up"" approach. This study evaluates temporal methods to improve burned area detection using Landsat 5-TM and 8-OLI. In this process, the normalized burn ratio (NBR) was used to highlight burned areas and thresholds to classify burned and non-burned areas. In order to maximize the burned area detection two alternatives to the temporal dNBR method were evaluated: the relative form of the temporal difference RdNBR and the use of time series metrics. The processing, algorithm development and access to Landsat data was made on the Google Earth Engine GEE platform. Three regions of Latin America with large fire occurrence were selected: The Amazon Forest in Colombia, the transition from Chiquitano to Amazon Forest in Bolivia, and El Chaco Region in Argentina. The accuracy assessment of these new products was based on burned area protocols. The best model classified 85% of burned areas in the Chiquitano Forests of Bolivia, 63% of the burned areas of the Amazon Forests of Colombia and 69% of burned areas in El Chaco of Argentina. © 2018, Universitat Politecnica de Valencia. All rights reserved."
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:09:07Z
dc.date.available.none.fl_str_mv 2018-10-31T13:09:07Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 11330953
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4844
dc.identifier.doi.none.fl_str_mv 10.4995/raet.2018.8618
identifier_str_mv 11330953
10.4995/raet.2018.8618
url http://hdl.handle.net/11407/4844
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050281405&doi=10.4995%2fraet.2018.8618&partnerID=40&md5=f204a2cef210b2f82386251edbe0be7b
dc.relation.citationvolume.spa.fl_str_mv 2018
dc.relation.citationissue.spa.fl_str_mv 51
dc.relation.citationstartpage.spa.fl_str_mv 61
dc.relation.citationendpage.spa.fl_str_mv 73
dc.relation.ispartofes.spa.fl_str_mv Revista de Teledeteccion
dc.relation.references.spa.fl_str_mv Alonso-Canas, I., Chuvieco, E., Global burned area mapping from ENVISAT-MERIS and MODIS active fire data (2015) Remote Sensing of Environment, 163, pp. 140-152. , https://doi.org/10.1016/j.rse.2015.03.011;Anaya, J.A., Chuvieco, E., (2010) Caracterización De La Eficiencia Del Quemado a Partir Del análisis De Series De Tiempo Del índice De vegetación EVI, , Paper presented at the XVI Simposio internacional SELPER, Guanajuato, México;Anaya, J.A., Chuvieco, E., Accuracy assessment of burned area products in the Orinoco basin (2012) Photogrammetric Engineering and Remote Sensing, 78 (1), pp. 53-60. , https://doi.org/10.14358/PERS.78.1.53;Armenteras, D., Gibbes, C., Anaya, J.A., Dávalos, L.M., Integrating remotely sensed fires for predicting deforestation for REDD+ (2017) Ecological Applications, 27 (4), pp. 1294-1304. , https://doi.org/10.1002/eap.1522;Bastarrika, A., Chuvieco, E., Martín, M.P., Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors (2011) Remote Sensing of Environment, 115 (4), pp. 1003-1012. , https://doi.org/10.1016/j.rse.2010.12.005;Congalton, R.G., Green, K., (2009) Assessing the Accuracy of Remotely Sensed Data, , 2nd ed.). Boca Raton, FL, USA: CRC Press;Chander, G., Markham, B.L., Helder, D.L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors (2009) Remote Sensing of Environment, 113 (5), pp. 893-903. , https://doi.org/10.1016/j.rse.2009.01.007;Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Giri, C., A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform (2017) ISPRS Journal of Photogrammetry and Remote Sensing, 131, pp. 104-120. , https://doi.org/10.1016/j.isprsjprs.2017.07.011;Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional Climate Projections (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change, , In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Ed.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA;Chuvieco, E., Martin, M.P., Palacios, A., Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination (2002) International Journal of Remote Sensing, 23, pp. 5103-5110. , https://doi.org/10.1080/01431160210153129;Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J.M., Tansey, K., A new global burned area product for climate assessment of fire impacts (2016) Global Ecology and Biogeography, 25 (5), pp. 619-629. , https://doi.org/10.1111/geb.12440;Devisscher, T., Malhi, Y., Rojas Landívar, D., Oliveras, I., Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia (2015) Forest Ecology and Management, 360, pp. 273-286. , https://doi.org/10.1016/j.foreco.2015.10.033;Giglio, L., Loboda, T., Roy, D.P., Quayle, B., Justice, C.O., An active-fire based burned area mapping algorithm for the MODIS sensor (2009) Remote Sensing of Environment, 113 (2), pp. 408-420. , https://doi.org/10.1016/j.rse.2008.10.006;Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sensing of Environment, 202, pp. 18-27. , https://doi.org/10.1016/j.rse.2017.06.031;Key, C., Benson, N., Landscape Assessment (LA) Sampling and Analysis Method (2006) RMRS-GTR-164-CD, p. 51. , In U. F. S. G. T. Rep. (Ed.);Key, C.H., Remote sensing sensitivity to fire severity and fire recovery (2005) International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, , Universidad de Zaragoza, Spain;Libonati, R., Dacamara, C.C., Pereira, J.M.C., Peres, L.F., Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS (2010) Remote Sensing of Environment, 114 (4), pp. 831-843. , https://doi.org/10.1016/j.rse.2009.11.018;Liss, B., Howland, M.D., Levy, T.E., Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan (2017) Journal of Archaeological Science: Reports, 15, pp. 299-304. , https://doi.org/10.1016/j.jasrep.2017.08.013;Melchiori, A.E., Candido, P.D.A., Libonati, R., Morelli, F., Setzer, A., De Jesús, S.C., Garcia-Fonseca, L.M., Korting, T.S., Spectral indices and multi-temporal change image detection algorithms for burned area extraction in the Brazilian Cerrado (2015) Anais XVII Simpsio Brasileiro De Sensoramiento Remoto, , Joao Pessoa-PB, Brasil;Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., Sherlock, J.W., Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA (2009) Remote Sensing of Environment, 113 (3), pp. 645-656. , https://doi.org/10.1016/j.rse.2008.11.009;Miller, J.D., Thode, A.E., Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (DNBR) (2007) Remote Sensing of Environment, 109 (1), pp. 66-80. , https://doi.org/10.1016/j.rse.2006.12.006;Padilla, M., Stehman, S.V., Chuvieco, E., Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling (2014) Remote Sensing of Environment, 144, pp. 187-196. , https://doi.org/10.1016/j.rse.2014.01.008;Padilla, M., Stehman, S.V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Chuvieco, E., Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation (2015) Remote Sensing of Environment, 160, pp. 114-121. , https://doi.org/10.1016/j.rse.2015.01.005;Pereira, J.M.C., Remote sensing of burned areas in tropical savannas (2003) International Journal of Wildland Fire, 12 (4), pp. 259-270. , https://doi.org/10.1071/WF03028;Potter, C., Tan, P.-N., Steinbach, M., Klooster, S., Kumar, V., Myneni, R., Genovese, V., Major disturbance events in terrestrial ecosystems detected using global satellite data sets (2003) Global Change Biology, 9 (7), pp. 1005-1021. , https://doi.org/10.1046/j.1365-2486.2003.00648.x;Rodríguez-Montellano, A., Libonatti, R., Melchiori, A.E., Sensibilidad en la detección de áreas quemadas en tres ecosistemas vegetales de Bolivia, utilizando tres productos regionales (2015) Simpósio Brasileiro De Sensoramiento Remoto, João Pessoa, Brasil, , 25 a 29 de abril de 2015;Roy, D., Boschetti, L., O'Neal, K., (2006) MODIS Collection 5 Burned Area Product MCD45 User's Guide, p. 12. , USGS, University of Maryland;Roy, D.P., Boschetti, L., Southern Africa Validation of the MODIS, L3JRC and GlobCarbon Burned-Area Products (2009) IEEE Transactions on Geoscience and Remote Sensing, 47 (4), pp. 1-13. , https://doi.org/10.1109/TGRS.2008.2009000;Roy, D.P., Jin, Y., Lewis, P.E., Justice, C.O., Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data (2005) Remote Sensing of Environment, 97 (2), pp. 137-162. , https://doi.org/10.1016/j.rse.2005.04.007;Schroeder, W., Oliva, P., Giglio, L., Csiszar, I.A., The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment (2014) Remote Sensing of Environment, 143, pp. 85-96. , https://doi.org/10.1016/j.rse.2013.12.008;Sofía, M., Grau, H.R., Néstor Ignacio, G., Tobias, K., Matthias, B., Differences in production, carbon stocks and biodiversity outcomes of land tenure regimes in the Argentine Dry Chaco (2017) Environmental Research Letters, 12 (4). , https://doi.org/10.1088/1748-9326/aa625c;Tansey, K., Grégoire, J.-M., Pereira, J.M.C., Defourny, P., Leigh, R., Pekel, J.-F., Barros, A., Bontemps, S., 11-14 September 2007. L3JRC-A global, multi-year (2000-2007) burnt area product (1 km resolution and daily time steps) (2007) Remote Sensing and Photogrammetry Society Annual Conference 2007, , Newcastle upon Tyne, UK;Valencia, G.M., Anaya, J.A., Caro-Lopera, F.J., Implementation and evaluation of the landsat ecosystem disturbance adaptive processing systems (LEDAPS) model: A case study in the Colombian andes (2016) Revista De Teledeteccion, 46, pp. 83-101. , https://doi.org/10.4995/raet.2016.3582;Vermote, E.F., El Saleous, N.Z., Justice, C.O., Atmospheric correction of MODIS data in the visible to middle infrared: First results (2002) Remote Sensing of Environment, 83 (1-2), pp. 97-111. , https://doi.org/10.1016/S0034-4257(02)00089-5;Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sensing of Environment, 118, pp. 83-94. , https://doi.org/10.1016/j.rse.2011.10.028;Zhu, Z., Woodcock, C.E., Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change (2014) Remote Sensing of Environment, 152, pp. 217-234. , https://doi.org/10.1016/j.rse.2014.06.012
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Universitat Politecnica de Valencia
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4844/1/portada.JPG
bitstream.checksum.fl_str_mv 942a571afceb37cf936d0146b896cdbb
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159243472797696
spelling 2018-10-31T13:09:07Z2018-10-31T13:09:07Z201811330953http://hdl.handle.net/11407/484410.4995/raet.2018.8618"There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a ""bottom up"" approach. This study evaluates temporal methods to improve burned area detection using Landsat 5-TM and 8-OLI. In this process, the normalized burn ratio (NBR) was used to highlight burned areas and thresholds to classify burned and non-burned areas. In order to maximize the burned area detection two alternatives to the temporal dNBR method were evaluated: the relative form of the temporal difference RdNBR and the use of time series metrics. The processing, algorithm development and access to Landsat data was made on the Google Earth Engine GEE platform. Three regions of Latin America with large fire occurrence were selected: The Amazon Forest in Colombia, the transition from Chiquitano to Amazon Forest in Bolivia, and El Chaco Region in Argentina. The accuracy assessment of these new products was based on burned area protocols. The best model classified 85% of burned areas in the Chiquitano Forests of Bolivia, 63% of the burned areas of the Amazon Forests of Colombia and 69% of burned areas in El Chaco of Argentina. © 2018, Universitat Politecnica de Valencia. All rights reserved."spaUniversitat Politecnica de ValenciaIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050281405&doi=10.4995%2fraet.2018.8618&partnerID=40&md5=f204a2cef210b2f82386251edbe0be7b2018516173Revista de TeledeteccionAlonso-Canas, I., Chuvieco, E., Global burned area mapping from ENVISAT-MERIS and MODIS active fire data (2015) Remote Sensing of Environment, 163, pp. 140-152. , https://doi.org/10.1016/j.rse.2015.03.011;Anaya, J.A., Chuvieco, E., (2010) Caracterización De La Eficiencia Del Quemado a Partir Del análisis De Series De Tiempo Del índice De vegetación EVI, , Paper presented at the XVI Simposio internacional SELPER, Guanajuato, México;Anaya, J.A., Chuvieco, E., Accuracy assessment of burned area products in the Orinoco basin (2012) Photogrammetric Engineering and Remote Sensing, 78 (1), pp. 53-60. , https://doi.org/10.14358/PERS.78.1.53;Armenteras, D., Gibbes, C., Anaya, J.A., Dávalos, L.M., Integrating remotely sensed fires for predicting deforestation for REDD+ (2017) Ecological Applications, 27 (4), pp. 1294-1304. , https://doi.org/10.1002/eap.1522;Bastarrika, A., Chuvieco, E., Martín, M.P., Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors (2011) Remote Sensing of Environment, 115 (4), pp. 1003-1012. , https://doi.org/10.1016/j.rse.2010.12.005;Congalton, R.G., Green, K., (2009) Assessing the Accuracy of Remotely Sensed Data, , 2nd ed.). Boca Raton, FL, USA: CRC Press;Chander, G., Markham, B.L., Helder, D.L., Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors (2009) Remote Sensing of Environment, 113 (5), pp. 893-903. , https://doi.org/10.1016/j.rse.2009.01.007;Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Giri, C., A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform (2017) ISPRS Journal of Photogrammetry and Remote Sensing, 131, pp. 104-120. , https://doi.org/10.1016/j.isprsjprs.2017.07.011;Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional Climate Projections (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change, , In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Ed.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA;Chuvieco, E., Martin, M.P., Palacios, A., Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination (2002) International Journal of Remote Sensing, 23, pp. 5103-5110. , https://doi.org/10.1080/01431160210153129;Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J.M., Tansey, K., A new global burned area product for climate assessment of fire impacts (2016) Global Ecology and Biogeography, 25 (5), pp. 619-629. , https://doi.org/10.1111/geb.12440;Devisscher, T., Malhi, Y., Rojas Landívar, D., Oliveras, I., Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia (2015) Forest Ecology and Management, 360, pp. 273-286. , https://doi.org/10.1016/j.foreco.2015.10.033;Giglio, L., Loboda, T., Roy, D.P., Quayle, B., Justice, C.O., An active-fire based burned area mapping algorithm for the MODIS sensor (2009) Remote Sensing of Environment, 113 (2), pp. 408-420. , https://doi.org/10.1016/j.rse.2008.10.006;Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sensing of Environment, 202, pp. 18-27. , https://doi.org/10.1016/j.rse.2017.06.031;Key, C., Benson, N., Landscape Assessment (LA) Sampling and Analysis Method (2006) RMRS-GTR-164-CD, p. 51. , In U. F. S. G. T. Rep. (Ed.);Key, C.H., Remote sensing sensitivity to fire severity and fire recovery (2005) International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, , Universidad de Zaragoza, Spain;Libonati, R., Dacamara, C.C., Pereira, J.M.C., Peres, L.F., Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS (2010) Remote Sensing of Environment, 114 (4), pp. 831-843. , https://doi.org/10.1016/j.rse.2009.11.018;Liss, B., Howland, M.D., Levy, T.E., Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: A case study from Faynan, Jordan (2017) Journal of Archaeological Science: Reports, 15, pp. 299-304. , https://doi.org/10.1016/j.jasrep.2017.08.013;Melchiori, A.E., Candido, P.D.A., Libonati, R., Morelli, F., Setzer, A., De Jesús, S.C., Garcia-Fonseca, L.M., Korting, T.S., Spectral indices and multi-temporal change image detection algorithms for burned area extraction in the Brazilian Cerrado (2015) Anais XVII Simpsio Brasileiro De Sensoramiento Remoto, , Joao Pessoa-PB, Brasil;Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., Sherlock, J.W., Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA (2009) Remote Sensing of Environment, 113 (3), pp. 645-656. , https://doi.org/10.1016/j.rse.2008.11.009;Miller, J.D., Thode, A.E., Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (DNBR) (2007) Remote Sensing of Environment, 109 (1), pp. 66-80. , https://doi.org/10.1016/j.rse.2006.12.006;Padilla, M., Stehman, S.V., Chuvieco, E., Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling (2014) Remote Sensing of Environment, 144, pp. 187-196. , https://doi.org/10.1016/j.rse.2014.01.008;Padilla, M., Stehman, S.V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas, I., Chuvieco, E., Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation (2015) Remote Sensing of Environment, 160, pp. 114-121. , https://doi.org/10.1016/j.rse.2015.01.005;Pereira, J.M.C., Remote sensing of burned areas in tropical savannas (2003) International Journal of Wildland Fire, 12 (4), pp. 259-270. , https://doi.org/10.1071/WF03028;Potter, C., Tan, P.-N., Steinbach, M., Klooster, S., Kumar, V., Myneni, R., Genovese, V., Major disturbance events in terrestrial ecosystems detected using global satellite data sets (2003) Global Change Biology, 9 (7), pp. 1005-1021. , https://doi.org/10.1046/j.1365-2486.2003.00648.x;Rodríguez-Montellano, A., Libonatti, R., Melchiori, A.E., Sensibilidad en la detección de áreas quemadas en tres ecosistemas vegetales de Bolivia, utilizando tres productos regionales (2015) Simpósio Brasileiro De Sensoramiento Remoto, João Pessoa, Brasil, , 25 a 29 de abril de 2015;Roy, D., Boschetti, L., O'Neal, K., (2006) MODIS Collection 5 Burned Area Product MCD45 User's Guide, p. 12. , USGS, University of Maryland;Roy, D.P., Boschetti, L., Southern Africa Validation of the MODIS, L3JRC and GlobCarbon Burned-Area Products (2009) IEEE Transactions on Geoscience and Remote Sensing, 47 (4), pp. 1-13. , https://doi.org/10.1109/TGRS.2008.2009000;Roy, D.P., Jin, Y., Lewis, P.E., Justice, C.O., Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data (2005) Remote Sensing of Environment, 97 (2), pp. 137-162. , https://doi.org/10.1016/j.rse.2005.04.007;Schroeder, W., Oliva, P., Giglio, L., Csiszar, I.A., The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment (2014) Remote Sensing of Environment, 143, pp. 85-96. , https://doi.org/10.1016/j.rse.2013.12.008;Sofía, M., Grau, H.R., Néstor Ignacio, G., Tobias, K., Matthias, B., Differences in production, carbon stocks and biodiversity outcomes of land tenure regimes in the Argentine Dry Chaco (2017) Environmental Research Letters, 12 (4). , https://doi.org/10.1088/1748-9326/aa625c;Tansey, K., Grégoire, J.-M., Pereira, J.M.C., Defourny, P., Leigh, R., Pekel, J.-F., Barros, A., Bontemps, S., 11-14 September 2007. L3JRC-A global, multi-year (2000-2007) burnt area product (1 km resolution and daily time steps) (2007) Remote Sensing and Photogrammetry Society Annual Conference 2007, , Newcastle upon Tyne, UK;Valencia, G.M., Anaya, J.A., Caro-Lopera, F.J., Implementation and evaluation of the landsat ecosystem disturbance adaptive processing systems (LEDAPS) model: A case study in the Colombian andes (2016) Revista De Teledeteccion, 46, pp. 83-101. , https://doi.org/10.4995/raet.2016.3582;Vermote, E.F., El Saleous, N.Z., Justice, C.O., Atmospheric correction of MODIS data in the visible to middle infrared: First results (2002) Remote Sensing of Environment, 83 (1-2), pp. 97-111. , https://doi.org/10.1016/S0034-4257(02)00089-5;Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sensing of Environment, 118, pp. 83-94. , https://doi.org/10.1016/j.rse.2011.10.028;Zhu, Z., Woodcock, C.E., Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change (2014) Remote Sensing of Environment, 152, pp. 217-234. , https://doi.org/10.1016/j.rse.2014.06.012ScopusBurned areaCloud computingFiresGEENBRBurned area detection based on time-series analysis in a cloud computing environment [Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Anaya, J.A., Universidad de Medellín;Sione, W.F., Universidad Autónoma de Entre Ríos;Rodríguez-Montellano, A.M., Fundación Amigos de la Naturaleza; Universidad Autónoma Gabriel René MorenoAnaya J.A.Sione W.F.Rodríguez-Montellano A.M.http://purl.org/coar/access_right/c_16ecTHUMBNAILportada.JPGportada.JPGimage/jpeg15011http://repository.udem.edu.co/bitstream/11407/4844/1/portada.JPG942a571afceb37cf936d0146b896cdbbMD5111407/4844oai:repository.udem.edu.co:11407/48442020-05-27 19:05:54.995Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co