Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]

The article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/4289
Acceso en línea:
http://hdl.handle.net/11407/4289
Palabra clave:
Absorption capacities
Measurement of absorption capacities
Potential absorption capacities
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_aa6a7006f433ed05e932a8b6a6fddeb8
oai_identifier_str oai:repository.udem.edu.co:11407/4289
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
title Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
spellingShingle Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
Absorption capacities
Measurement of absorption capacities
Potential absorption capacities
title_short Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
title_full Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
title_fullStr Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
title_full_unstemmed Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
title_sort Measurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]
dc.contributor.affiliation.spa.fl_str_mv Pérez Sánchez, E.O
Facultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, Colombia
Toro Jaramillo, I.D
Facultad de Teología, Universidad Pontificia Bolivariana, Medellín, Colombia
Hernandez Sánchez, B.Y
Facultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv Absorption capacities
Measurement of absorption capacities
Potential absorption capacities
topic Absorption capacities
Measurement of absorption capacities
Potential absorption capacities
description The article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of a positive linear correlation between the acquisition and the assimilation of external knowledge in the organizations under study. © 2017. revistaESPACIOS.com.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:45Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:45Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 7981015
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4289
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 7981015
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4289
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020234094&partnerID=40&md5=22b485ba3dc7e4a2f49c2752b88bd930
dc.relation.ispartofes.spa.fl_str_mv Espacios
dc.relation.references.spa.fl_str_mv Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/BF00533485
Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for K to au including the outermost core orbitale. The Journal of Chemical Physics, 82(1), 299-310.
Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc to hg. The Journal of Chemical Physics, 82(1), 270-283.
Hehre, W. J., Ditchfield, K., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5), 2257-2261.
Jean-Louis Hérisson, P., & Chauvin, Y. (1970). Die Makromol.Chem., 141, 161-176.
Jia, H. -., Gouré, E., Solans-Monfort, X., Llop Castelbou, J., Chow, C., Taoufik, M., . . . Quadrelli, E. A. (2015). Hydrazine N-N bond cleavage over silica-supported tantalum-hydrides. Inorganic Chemistry, 54(24), 11648-11659. doi:10.1021/acs.inorgchem.5b01541
Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.
Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/PhysRevB.47.558
Kresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/PhysRevB.49.14251
Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital |methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.
Le Roux, E., Chabanas, M., Baudouin, A., De Mallmann, A., Copéret, C., Quadrelli, E. A., . . . Sunley, G. J. (2004). Detailed structural investigation of the grafting of [ta(=CHtBu)(CH 2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 °C and the activity of the grafted complexes toward alkane metathesis. Journal of the American Chemical Society, 126(41), 13391-13399. doi:10.1021/ja046486r
Le Roux, E., Taoufik, M., Baudouin, A., Copéret, C., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2007). Silica-alumina-supported, tungsten-based heterogeneous alkane metathesis catalyst: Is it closer to a silica- or an alumina-supported system? Advanced Synthesis and Catalysis, 349(1-2), 231-237. doi:10.1002/adsc.200600436
Le Roux, E., Taoufik, M., Copéret, C., De Mallmann, A., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2005). Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. Angewandte Chemie - International Edition, 44(41), 6755-6758. doi:10.1002/anie.200501382
Leduc, A. -., Salameh, A., Soulivong, D., Chabanas, M., Basset, J. -., Copéret, C., . . . Röper, M. (2008). β-H transfer from the metallacyclobutane: A key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst. Journal of the American Chemical Society, 130(19), 6288-6297. doi:10.1021/ja800189a
Lin, Z. (2007). Current understanding of the σ-bond metathesis reactions of LnMR + R′-H → LnMR′ + R-H. Coordination Chemistry Reviews, 251(17-20), 2280-2291. doi:10.1016/j.ccr.2006.11.006
Maury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (1999). Metathesis of alkanes: Evidence for degenerate metathesis of ethane over a silica-supported tantalum hydride prepared by surface organometallic chemistry. Angewandte Chemie - International Edition, 38(13-14), 1952-1955.
Maury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (2010). Revisiting the metathesis of 13C-monolabeled ethane. Organometallics, 29(23), 6612-6614. doi:10.1021/om100542k
Mazar, M. N., Al-Hashimi, S., Bhan, A., & Cococcioni, M. (2011). Alkane metathesis by tantalum metal hydride on ferrierite: A computational study. Journal of Physical Chemistry C, 115(20), 10087-10096. doi:10.1021/jp200756e
Mikhailov, M. N., Bagatur'yants, A. A., & Kustov, L. M. (2003). Activation of ethane in the metathesis reaction on silica-supported tantalum hydride: A quantum-chemical study. Russian Chemical Bulletin, 52(1), 30-35. doi:10.1023/A:1022419625670
Mikhailov, M. N., & Kustov, L. M. (2005). Alkane activation by silica supported group VB metal hydrides. A quantum-chemical study. Russian Chemical Bulletin, 54(2), 300-311. doi:10.1007/s11172-005-0252-1
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., & Sodupe, M. (2011). Mechanistic insights into ring-closing enyne metathesis with the second-generation grubbs-hoveyda catalyst: A DFT study. Chemistry - A European Journal, 17(27), 7506-7520. doi:10.1002/chem.201003410
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2012). Differences in the activation processes of phosphine-containing and grubbs-hoveyda-type alkene metathesis catalysts.Organometallics, 31(11), 4203-4215. doi:10.1021/om300150d
Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2013). Exo/endo selectivity of the ring-closing enyne methathesis catalyzed by second generation ru-based catalysts. influence of reactant substituents. ACS Catalysis, 3(2), 206-218. doi:10.1021/cs300580g
Pasha, F. A., Cavallo, L., & Basset, J. M. (2014). Mechanism of n-butane hydrogenolysis promoted by ta-hydrides supported on silica. ACS Catalysis, 4(6), 1868-1874. doi:10.1021/cs5001703
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/PhysRevB.45.13244
Poater, A., Solans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2007). Understanding d0-olefin metathesis catalysts: Which metal, which ligands? Journal of the American Chemical Society, 129(26), 8207-8216. doi:10.1021/ja070625y
Polshettiwar, V., Pasha, F. A., De Mallmann, A., Norsic, S., Thivolle-Cazat, J., & Basset, J. -. (2012). Efficient hydrogenolysis of alkanes at low temperature and pressure using tantalum hydride on MCM-41, and a quantum chemical study. ChemCatChem, 4(3), 363-369. doi:10.1002/cctc.201100130
Rascón, F., & Copéret, C. (2011). Alkylidene and alkylidyne surface complexes: Precursors and intermediates in alkane conversion processes on supported single-site catalysts. Journal of Organometallic Chemistry, 696(25), 4121-4131. doi:10.1016/j.jorganchem.2011.07.015
Riache, N., Callens, E., Espinas, J., Dery, A., Samantaray, M. K., Dey, R., & Basset, J. M. (2015). Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride. Catalysis Science and Technology, 5(1), 280-285. doi:10.1039/c4cy00663a
Roux, E. L., Taoufik, M., Chabanas, M., Alcor, D., Baudouin, A., Copéret, C., . . . Emsley, L. (2005). Well-defined surface tungstenocarbyne complexes through the reaction of [W(≡CtBu)(CH2tBu)3] with silica.Organometallics, 24(17), 4274-4279. doi:10.1021/om050086a
Saggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2010). Poisoning experiments aimed at discriminating active and less-active sites of silica-supported tantalum hydride for alkane metathesis.ChemCatChem, 2(12), 1594-1598. doi:10.1002/cctc.201000199
Samantaray, M. K., Callens, E., Abou-Hamad, E., Rossini, A. J., Widdifield, C. M., Dey, R., . . . Basset, J. -. (2014). WMe6 tamed by silica: Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species. Journal of the American Chemical Society, 136(3), 1054-1061. doi:10.1021/ja410747g
Schinzel, S., Chermette, H., Copéret, C., & Basset, J. -. (2008). Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study. Journal of the American Chemical Society, 130(25), 7984-7987. doi:10.1021/ja800474h
Soignier, S., Saggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2014). Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes. Catalysis Science and Technology, 4(1), 233-244. doi:10.1039/c3cy00545c
Soignier, S., Taoufik, M., Le Roux, E., Saggio, G., Dablemont, C., Baudouin, A., . . . Maunders, B. M. (2006). Tantalum hydrides supported on MCM-41 mesoporous silica: Activation of methane and thermal evolution of the tantalum-methyl species. Organometallics, 25(7), 1569-1577. doi:10.1021/om050609e
Solans-Monfort, X., Chow, C., Gouré, E., Kaya, Y., Basset, J. -., Taoufik, M., . . . Eisenstein, O. (2012). Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism. Inorganic Chemistry, 51(13), 7237-7249. doi:10.1021/ic300498b
Solans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2005). d0 re-based olefin metathesis catalysts, re(≡CR)(=CHR)(X) (Y): The key role of X and Y ligands for efficient active sites. Journal of the American Chemical Society, 127(40), 14015-14025. doi:10.1021/ja053528i
Solans-Monfort, X., Copéret, C., & Eisenstein, O. (2015). Metallacyclobutanes from schrock-type d0 metal alkylidene catalysts: Structural preferences and consequences in alkene metathesis. Organometallics, 34(9), 1668-1680. doi:10.1021/acs.organomet.5b00147
Solans-Monfort, X., Copéret, C., & Eisenstein, O. (2010). Shutting down secondary reaction pathways: The essential role of the pyrrolyl ligand in improving silica supported d0-ML4 alkene metathesis catalysts from DFT calculations. Journal of the American Chemical Society, 132(22), 7750-7757. doi:10.1021/ja101597s
Solans-Monfort, X., Filhol, J. -., Copéret, C., & Eisenstein, O. (2006). Structure, spectroscopic and electronic properties of a well defined silica supported olefin metathesis catalyst, [(≡SiO)re(≡CR)(=CHR)(CH 2R)], through DFT periodic calculations: Silica is just a large siloxy ligand. New Journal of Chemistry, 30(6), 842-850. doi:10.1039/b603426h
Soulivong, D., Copéret, C., Thivolle-Cazat, J., Basset, J. -., Maunders, B. M., Pardy, R. B. A., & Sunley, G. J. (2004). Cross-metathesis of propane and methane: A catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angewandte Chemie - International Edition, 43(40), 5366-5369. doi:10.1002/anie.200460982
Szeto, K. C., Hardou, L., Merle, N., Basset, J. -., Thivolle-Cazat, J., Papaioannou, C., & Taoufik, M. (2012). Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts. Catalysis Science and Technology, 2(7), 1336-1339. doi:10.1039/c2cy20150j
Taoufik, M., Le Roux, E., Thivolle-Cazat, J., Copéret, C., Basset, J. -., Maunders, B., & Sunley, G. J. (2006). Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis. Topics in Catalysis, 40(1-4), 65-70. doi:10.1007/s11244-006-0108-4
Ugliengo, P., Sodupe, M., Musso, F., Bush, I. J., Orlando, R., & Dovesi, R. (2008). Realistic models of hydroxylated amorphous silica surfaces and MCM- 41 mesoporous material simulated by large-scale periodic B3LYP calculations. Advanced Materials, 20(23), 4579-4583. doi:10.1002/adma.200801489
Vidal, V., Théolier, A., Thivolle-Cazat, J., & Basset, J. -. (1997). Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science, 276(5309), 99-102. doi:10.1126/science.276.5309.99
Vidal, V., Théolier, A., Thivolle-Cazat, J., Basset, J. -., & Corker, J. (1996). Synthesis, characterization, and reactivity, in the C-H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (≡SiO)2TaII-H. Journal of the American Chemical Society, 118(19), 4595-4602.
Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a
Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Revista Espacios
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Económicas y Administrativas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159123943522304
spelling 2017-12-19T19:36:45Z2017-12-19T19:36:45Z20177981015http://hdl.handle.net/11407/4289reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of a positive linear correlation between the acquisition and the assimilation of external knowledge in the organizations under study. © 2017. revistaESPACIOS.com.spaRevista EspaciosFacultad de Ciencias Económicas y Administrativashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85020234094&partnerID=40&md5=22b485ba3dc7e4a2f49c2752b88bd930EspaciosHariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/BF00533485Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for K to au including the outermost core orbitale. The Journal of Chemical Physics, 82(1), 299-310.Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc to hg. The Journal of Chemical Physics, 82(1), 270-283.Hehre, W. J., Ditchfield, K., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5), 2257-2261.Jean-Louis Hérisson, P., & Chauvin, Y. (1970). Die Makromol.Chem., 141, 161-176.Jia, H. -., Gouré, E., Solans-Monfort, X., Llop Castelbou, J., Chow, C., Taoufik, M., . . . Quadrelli, E. A. (2015). Hydrazine N-N bond cleavage over silica-supported tantalum-hydrides. Inorganic Chemistry, 54(24), 11648-11659. doi:10.1021/acs.inorgchem.5b01541Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B - Condensed Matter and Materials Physics, 54(16), 11169-11186.Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/PhysRevB.47.558Kresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/PhysRevB.49.14251Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital |methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.Le Roux, E., Chabanas, M., Baudouin, A., De Mallmann, A., Copéret, C., Quadrelli, E. A., . . . Sunley, G. J. (2004). Detailed structural investigation of the grafting of [ta(=CHtBu)(CH 2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 °C and the activity of the grafted complexes toward alkane metathesis. Journal of the American Chemical Society, 126(41), 13391-13399. doi:10.1021/ja046486rLe Roux, E., Taoufik, M., Baudouin, A., Copéret, C., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2007). Silica-alumina-supported, tungsten-based heterogeneous alkane metathesis catalyst: Is it closer to a silica- or an alumina-supported system? Advanced Synthesis and Catalysis, 349(1-2), 231-237. doi:10.1002/adsc.200600436Le Roux, E., Taoufik, M., Copéret, C., De Mallmann, A., Thivolle-Cazat, J., Basset, J. -., . . . Sunley, G. J. (2005). Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. Angewandte Chemie - International Edition, 44(41), 6755-6758. doi:10.1002/anie.200501382Leduc, A. -., Salameh, A., Soulivong, D., Chabanas, M., Basset, J. -., Copéret, C., . . . Röper, M. (2008). β-H transfer from the metallacyclobutane: A key step in the deactivation and byproduct formation for the well-defined silica-supported rhenium alkylidene alkene metathesis catalyst. Journal of the American Chemical Society, 130(19), 6288-6297. doi:10.1021/ja800189aLin, Z. (2007). Current understanding of the σ-bond metathesis reactions of LnMR + R′-H → LnMR′ + R-H. Coordination Chemistry Reviews, 251(17-20), 2280-2291. doi:10.1016/j.ccr.2006.11.006Maury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (1999). Metathesis of alkanes: Evidence for degenerate metathesis of ethane over a silica-supported tantalum hydride prepared by surface organometallic chemistry. Angewandte Chemie - International Edition, 38(13-14), 1952-1955.Maury, O., Lefort, L., Vidal, V., Thivolle-Cazat, J., & Basset, J. -. (2010). Revisiting the metathesis of 13C-monolabeled ethane. Organometallics, 29(23), 6612-6614. doi:10.1021/om100542kMazar, M. N., Al-Hashimi, S., Bhan, A., & Cococcioni, M. (2011). Alkane metathesis by tantalum metal hydride on ferrierite: A computational study. Journal of Physical Chemistry C, 115(20), 10087-10096. doi:10.1021/jp200756eMikhailov, M. N., Bagatur'yants, A. A., & Kustov, L. M. (2003). Activation of ethane in the metathesis reaction on silica-supported tantalum hydride: A quantum-chemical study. Russian Chemical Bulletin, 52(1), 30-35. doi:10.1023/A:1022419625670Mikhailov, M. N., & Kustov, L. M. (2005). Alkane activation by silica supported group VB metal hydrides. A quantum-chemical study. Russian Chemical Bulletin, 54(2), 300-311. doi:10.1007/s11172-005-0252-1Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., & Sodupe, M. (2011). Mechanistic insights into ring-closing enyne metathesis with the second-generation grubbs-hoveyda catalyst: A DFT study. Chemistry - A European Journal, 17(27), 7506-7520. doi:10.1002/chem.201003410Nuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2012). Differences in the activation processes of phosphine-containing and grubbs-hoveyda-type alkene metathesis catalysts.Organometallics, 31(11), 4203-4215. doi:10.1021/om300150dNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., & Sodupe, M. (2013). Exo/endo selectivity of the ring-closing enyne methathesis catalyzed by second generation ru-based catalysts. influence of reactant substituents. ACS Catalysis, 3(2), 206-218. doi:10.1021/cs300580gPasha, F. A., Cavallo, L., & Basset, J. M. (2014). Mechanism of n-butane hydrogenolysis promoted by ta-hydrides supported on silica. ACS Catalysis, 4(6), 1868-1874. doi:10.1021/cs5001703Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/PhysRevB.45.13244Poater, A., Solans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2007). Understanding d0-olefin metathesis catalysts: Which metal, which ligands? Journal of the American Chemical Society, 129(26), 8207-8216. doi:10.1021/ja070625yPolshettiwar, V., Pasha, F. A., De Mallmann, A., Norsic, S., Thivolle-Cazat, J., & Basset, J. -. (2012). Efficient hydrogenolysis of alkanes at low temperature and pressure using tantalum hydride on MCM-41, and a quantum chemical study. ChemCatChem, 4(3), 363-369. doi:10.1002/cctc.201100130Rascón, F., & Copéret, C. (2011). Alkylidene and alkylidyne surface complexes: Precursors and intermediates in alkane conversion processes on supported single-site catalysts. Journal of Organometallic Chemistry, 696(25), 4121-4131. doi:10.1016/j.jorganchem.2011.07.015Riache, N., Callens, E., Espinas, J., Dery, A., Samantaray, M. K., Dey, R., & Basset, J. M. (2015). Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride. Catalysis Science and Technology, 5(1), 280-285. doi:10.1039/c4cy00663aRoux, E. L., Taoufik, M., Chabanas, M., Alcor, D., Baudouin, A., Copéret, C., . . . Emsley, L. (2005). Well-defined surface tungstenocarbyne complexes through the reaction of [W(≡CtBu)(CH2tBu)3] with silica.Organometallics, 24(17), 4274-4279. doi:10.1021/om050086aSaggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2010). Poisoning experiments aimed at discriminating active and less-active sites of silica-supported tantalum hydride for alkane metathesis.ChemCatChem, 2(12), 1594-1598. doi:10.1002/cctc.201000199Samantaray, M. K., Callens, E., Abou-Hamad, E., Rossini, A. J., Widdifield, C. M., Dey, R., . . . Basset, J. -. (2014). WMe6 tamed by silica: Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species. Journal of the American Chemical Society, 136(3), 1054-1061. doi:10.1021/ja410747gSchinzel, S., Chermette, H., Copéret, C., & Basset, J. -. (2008). Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study. Journal of the American Chemical Society, 130(25), 7984-7987. doi:10.1021/ja800474hSoignier, S., Saggio, G., Taoufik, M., Basset, J. -., & Thivolle-Cazat, J. (2014). Dynamic behaviour of tantalum hydride supported on silica or MCM-41 in the metathesis of alkanes. Catalysis Science and Technology, 4(1), 233-244. doi:10.1039/c3cy00545cSoignier, S., Taoufik, M., Le Roux, E., Saggio, G., Dablemont, C., Baudouin, A., . . . Maunders, B. M. (2006). Tantalum hydrides supported on MCM-41 mesoporous silica: Activation of methane and thermal evolution of the tantalum-methyl species. Organometallics, 25(7), 1569-1577. doi:10.1021/om050609eSolans-Monfort, X., Chow, C., Gouré, E., Kaya, Y., Basset, J. -., Taoufik, M., . . . Eisenstein, O. (2012). Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism. Inorganic Chemistry, 51(13), 7237-7249. doi:10.1021/ic300498bSolans-Monfort, X., Clot, E., Copéret, C., & Eisenstein, O. (2005). d0 re-based olefin metathesis catalysts, re(≡CR)(=CHR)(X) (Y): The key role of X and Y ligands for efficient active sites. Journal of the American Chemical Society, 127(40), 14015-14025. doi:10.1021/ja053528iSolans-Monfort, X., Copéret, C., & Eisenstein, O. (2015). Metallacyclobutanes from schrock-type d0 metal alkylidene catalysts: Structural preferences and consequences in alkene metathesis. Organometallics, 34(9), 1668-1680. doi:10.1021/acs.organomet.5b00147Solans-Monfort, X., Copéret, C., & Eisenstein, O. (2010). Shutting down secondary reaction pathways: The essential role of the pyrrolyl ligand in improving silica supported d0-ML4 alkene metathesis catalysts from DFT calculations. Journal of the American Chemical Society, 132(22), 7750-7757. doi:10.1021/ja101597sSolans-Monfort, X., Filhol, J. -., Copéret, C., & Eisenstein, O. (2006). Structure, spectroscopic and electronic properties of a well defined silica supported olefin metathesis catalyst, [(≡SiO)re(≡CR)(=CHR)(CH 2R)], through DFT periodic calculations: Silica is just a large siloxy ligand. New Journal of Chemistry, 30(6), 842-850. doi:10.1039/b603426hSoulivong, D., Copéret, C., Thivolle-Cazat, J., Basset, J. -., Maunders, B. M., Pardy, R. B. A., & Sunley, G. J. (2004). Cross-metathesis of propane and methane: A catalytic reaction of C-C bond cleavage of a higher alkane by methane. Angewandte Chemie - International Edition, 43(40), 5366-5369. doi:10.1002/anie.200460982Szeto, K. C., Hardou, L., Merle, N., Basset, J. -., Thivolle-Cazat, J., Papaioannou, C., & Taoufik, M. (2012). Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts. Catalysis Science and Technology, 2(7), 1336-1339. doi:10.1039/c2cy20150jTaoufik, M., Le Roux, E., Thivolle-Cazat, J., Copéret, C., Basset, J. -., Maunders, B., & Sunley, G. J. (2006). Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis. Topics in Catalysis, 40(1-4), 65-70. doi:10.1007/s11244-006-0108-4Ugliengo, P., Sodupe, M., Musso, F., Bush, I. J., Orlando, R., & Dovesi, R. (2008). Realistic models of hydroxylated amorphous silica surfaces and MCM- 41 mesoporous material simulated by large-scale periodic B3LYP calculations. Advanced Materials, 20(23), 4579-4583. doi:10.1002/adma.200801489Vidal, V., Théolier, A., Thivolle-Cazat, J., & Basset, J. -. (1997). Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science, 276(5309), 99-102. doi:10.1126/science.276.5309.99Vidal, V., Théolier, A., Thivolle-Cazat, J., Basset, J. -., & Corker, J. (1996). Synthesis, characterization, and reactivity, in the C-H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (≡SiO)2TaII-H. Journal of the American Chemical Society, 118(19), 4595-4602.Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111aZhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xScopusMeasurement of potential absorption capacity in Colombia's innovative companies [Medición de la capacidad de absorción potencial en las empresas innovadoras de Colombia]Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Pérez Sánchez, E.OFacultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, ColombiaToro Jaramillo, I.DFacultad de Teología, Universidad Pontificia Bolivariana, Medellín, ColombiaHernandez Sánchez, B.YFacultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, ColombiaPérez Sánchez E.OToro Jaramillo I.DHernandez Sánchez B.Y.Facultad de Ciencias económicas y Administrativas, Universidad de Medellín, Medellín, ColombiaFacultad de Teología, Universidad Pontificia Bolivariana, Medellín, ColombiaAbsorption capacitiesMeasurement of absorption capacitiesPotential absorption capacitiesThe article aims to evaluate the level of development of absorption capacity (RACAP) in Colombian SMEs. It is part of a sample of 363 Colombian SMEs (Dane, 2012), a literature review with the support of the content analysis and a linear regression model is used, which allow to show the existence of a positive linear correlation between the acquisition and the assimilation of external knowledge in the organizations under study. © 2017. revistaESPACIOS.com.http://purl.org/coar/access_right/c_16ec11407/4289oai:repository.udem.edu.co:11407/42892021-02-02 14:20:21.654Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co