Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))

Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui f...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3460
Acceso en línea:
http://hdl.handle.net/11407/3460
Palabra clave:
Atoms in molecules
DFT
The Fukui function
Topological analysis
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_a6012b2f7ff3c432b928dc29cf000a0a
oai_identifier_str oai:repository.udem.edu.co:11407/3460
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
title Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
spellingShingle Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
Atoms in molecules
DFT
The Fukui function
Topological analysis
title_short Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
title_full Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
title_fullStr Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
title_full_unstemmed Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
title_sort Topological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))
dc.subject.spa.fl_str_mv Atoms in molecules
DFT
The Fukui function
Topological analysis
topic Atoms in molecules
DFT
The Fukui function
Topological analysis
description Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P.
publishDate 2013
dc.date.created.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2017-06-15T22:05:22Z
dc.date.available.none.fl_str_mv 2017-06-15T22:05:22Z
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.citation.spa.fl_str_mv Acelas, N. Y., López, D., Mondragón, F., Tiznado, W., & Flórez, E. (2013). Topological analysis of tetraphosphorus oxides (P4O6+ n (n= 0–4)). Journal of molecular modeling, 19(5), 2057-2067.
dc.identifier.issn.none.fl_str_mv 16102940
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3460
dc.identifier.doi.none.fl_str_mv DOI: 10.1007/s00894-012-1633-7
dc.identifier.eissn.none.fl_str_mv 09485023
identifier_str_mv Acelas, N. Y., López, D., Mondragón, F., Tiznado, W., & Flórez, E. (2013). Topological analysis of tetraphosphorus oxides (P4O6+ n (n= 0–4)). Journal of molecular modeling, 19(5), 2057-2067.
16102940
DOI: 10.1007/s00894-012-1633-7
09485023
url http://hdl.handle.net/11407/3460
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://link.springer.com/article/10.1007/s00894-012-1633-7
dc.relation.ispartofes.spa.fl_str_mv Journal of Molecular Modeling. May 2013, Volume 19, Issue 5, pp 2057–2067
dc.relation.references.spa.fl_str_mv Salvadó MA, Pertierra P (2008) Theoretical study of P2O5 polymorphs at high pressure: hexacoordinated phosphorus. Inorg Chem 47(11):4884–4890
Engels B, Soares Valentim AR, Peyerimhoff SD (2001) About the chemistry of phosphorus suboxides. Angew Chem Int Ed 40(2):378–381
Dimitrov A, Ziemer B, Hunnius W-D, Meisel M (2003) The first ozonide of a phosphorus oxide—preparation, characterization, and structure of P4O18. Angew Chem Int Ed 42(22):2484–2486
Klapötke TM (2003) P4O18—the first binary phosphorus oxide ozonide. Angew Chem Int Ed 42(30):3461–3462
Carbonnière P, Pouchan C (2008) Vibrational spectra for P4O6 and P4O10 systems: theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem Phys Lett 462(4–6):169–172
Mielke Z, Andrews L (1989) Infrared spectra of phosphorus oxides (P4O6, P4O7, P4O8, P4O9 and P4O10) in solid argon. J Phys Chem 93(8):2971–2976
Jansen M, Moebs M (1984) Structural investigations on solid tetraphosphorus hexaoxide. Inorg Chem 23(26):4486–4488
Beattie IR, Ogden JS, Price DD (1978) The characterization of molecular vanadium oxide (V4O10), an analog of phosphorus oxide (P4O10). Inorg Chem 17(11):3296–3297
Sharma BD (1987) Phosphorus(V) oxides. Inorg Chem 26(3):454–455
Valentim ARS, Engels B, Peyerimhoff SD, Clade J, Jansen M (1998) A comparative study of the bonding character in the P4On (n = 6–10) series by means of a vibrational analysis. J Phys Chem A 102(21):3690–3696
Mowrey RC, Williams BA, Douglass CH (1997) Vibrational analysis of P4O6 and P4O10. J Phys Chem A 101(32):5748–5752
Lohr LL (1990) An ab initio characterization of the gaseous diphosphorus oxides P2Ox (x = 1–5). J Phys Chem 94(5):1807–1811
Moussaoui Y, Ouamerali O, De Maré GR (2003) Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data. Int Rev Phys Chem 22(4):641–675
Butler JE, Kawaguchi K, Hirota E (1983) Infrared diode laser spectroscopy of the PO radical. J Mol Spectrosc 101(1):161–166
Kanata H, Yamamoto S, Saito S (1988) The dipole moment of the PO radical determined by microwave spectroscopy. J Mol Spectrosc 131(1):89–95
Dyke JM, Morris A, Ridha A (1982) Study of the ground state of PO + using photoelectron spectroscopy. J Chem Soc, Faraday Trans 78(12):2077–2082
Zittel PF, Lineberger WC (1976) Laser photoelectron spectrometry of PO-, PH-, and PH2-. J Chem Phys 65(4):1236–1243
Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod Package
Flkiger P, Lthi HP, Portmann S, Weber J (2008) MOLEKEL 5.3. Molekel homepage. http://www.cscs.ch/molekel (accessed 20 April 2010)
Bader R (1990) Atoms in molecules. Oxford University Press, New York, A Quantum
Popelier PLA (1996) MORPHY, a program for an automated "atoms in molecules" analysis. Comput Phys Commun 93:212–240
Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873
Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154
Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534
Gazquez J (2008) Perspectives on density functional theory Of chemical reactivity. J Mex Chem Soc 52(1):3–10
Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863
Ayers PW, Levy M (2000) Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360
Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694
Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175
Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018
Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303
Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050
Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quantum Chem 107:37–45
Ayers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390
Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151
Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019
Cardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103–174113
Flores-Moreno R (2009) Symmetry conservation in Fukui functions. J Chem Theory Comput 6(1):48–54
Martínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322
Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224
Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6(5):1470–1478
Osorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comput 7(12):3995–4001
Florez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821
Tiznado W, Ona OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) Theoretical study of the adsorption of H on Sin clusters, (n = 3–10). J Chem Phys 123(21):214302
Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) Theoretical study of the structure and electronic properties of Si3On − and Si6On − (n = 1–6) clusters. Fragmentation and formation patterns. J Chem Theory Comput 5(9):2265–2273
Kohout M (2011) DGrid 4.6. Radebeul
Popelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, Harlow
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Springer Berlin Heidelberg
dc.publisher.program.spa.fl_str_mv Tronco común Ingenierías
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Journal of Molecular Modeling
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/3460/2/portada.png
http://repository.udem.edu.co/bitstream/11407/3460/1/Articulo.html
bitstream.checksum.fl_str_mv a2044dcb3962a7578f791af6db07c45e
c699d3ebb522a54de2f62d1c69565273
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1808481161923526656
spelling 2017-06-15T22:05:22Z2017-06-15T22:05:22Z2013Acelas, N. Y., López, D., Mondragón, F., Tiznado, W., & Flórez, E. (2013). Topological analysis of tetraphosphorus oxides (P4O6+ n (n= 0–4)). Journal of molecular modeling, 19(5), 2057-2067.16102940http://hdl.handle.net/11407/3460DOI: 10.1007/s00894-012-1633-709485023Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P.engSpringer Berlin HeidelbergTronco común IngenieríasFacultad de Ciencias Básicashttps://link.springer.com/article/10.1007/s00894-012-1633-7Journal of Molecular Modeling. May 2013, Volume 19, Issue 5, pp 2057–2067Salvadó MA, Pertierra P (2008) Theoretical study of P2O5 polymorphs at high pressure: hexacoordinated phosphorus. Inorg Chem 47(11):4884–4890Engels B, Soares Valentim AR, Peyerimhoff SD (2001) About the chemistry of phosphorus suboxides. Angew Chem Int Ed 40(2):378–381Dimitrov A, Ziemer B, Hunnius W-D, Meisel M (2003) The first ozonide of a phosphorus oxide—preparation, characterization, and structure of P4O18. Angew Chem Int Ed 42(22):2484–2486Klapötke TM (2003) P4O18—the first binary phosphorus oxide ozonide. Angew Chem Int Ed 42(30):3461–3462Carbonnière P, Pouchan C (2008) Vibrational spectra for P4O6 and P4O10 systems: theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem Phys Lett 462(4–6):169–172Mielke Z, Andrews L (1989) Infrared spectra of phosphorus oxides (P4O6, P4O7, P4O8, P4O9 and P4O10) in solid argon. J Phys Chem 93(8):2971–2976Jansen M, Moebs M (1984) Structural investigations on solid tetraphosphorus hexaoxide. Inorg Chem 23(26):4486–4488Beattie IR, Ogden JS, Price DD (1978) The characterization of molecular vanadium oxide (V4O10), an analog of phosphorus oxide (P4O10). Inorg Chem 17(11):3296–3297Sharma BD (1987) Phosphorus(V) oxides. Inorg Chem 26(3):454–455Valentim ARS, Engels B, Peyerimhoff SD, Clade J, Jansen M (1998) A comparative study of the bonding character in the P4On (n = 6–10) series by means of a vibrational analysis. J Phys Chem A 102(21):3690–3696Mowrey RC, Williams BA, Douglass CH (1997) Vibrational analysis of P4O6 and P4O10. J Phys Chem A 101(32):5748–5752Lohr LL (1990) An ab initio characterization of the gaseous diphosphorus oxides P2Ox (x = 1–5). J Phys Chem 94(5):1807–1811Moussaoui Y, Ouamerali O, De Maré GR (2003) Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data. Int Rev Phys Chem 22(4):641–675Butler JE, Kawaguchi K, Hirota E (1983) Infrared diode laser spectroscopy of the PO radical. J Mol Spectrosc 101(1):161–166Kanata H, Yamamoto S, Saito S (1988) The dipole moment of the PO radical determined by microwave spectroscopy. J Mol Spectrosc 131(1):89–95Dyke JM, Morris A, Ridha A (1982) Study of the ground state of PO + using photoelectron spectroscopy. J Chem Soc, Faraday Trans 78(12):2077–2082Zittel PF, Lineberger WC (1976) Laser photoelectron spectrometry of PO-, PH-, and PH2-. J Chem Phys 65(4):1236–1243Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod PackageFlkiger P, Lthi HP, Portmann S, Weber J (2008) MOLEKEL 5.3. Molekel homepage. http://www.cscs.ch/molekel (accessed 20 April 2010)Bader R (1990) Atoms in molecules. Oxford University Press, New York, A QuantumPopelier PLA (1996) MORPHY, a program for an automated "atoms in molecules" analysis. Comput Phys Commun 93:212–240Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534Gazquez J (2008) Perspectives on density functional theory Of chemical reactivity. J Mex Chem Soc 52(1):3–10Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863Ayers PW, Levy M (2000) Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quantum Chem 107:37–45Ayers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019Cardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103–174113Flores-Moreno R (2009) Symmetry conservation in Fukui functions. J Chem Theory Comput 6(1):48–54Martínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6(5):1470–1478Osorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comput 7(12):3995–4001Florez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821Tiznado W, Ona OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) Theoretical study of the adsorption of H on Sin clusters, (n = 3–10). J Chem Phys 123(21):214302Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) Theoretical study of the structure and electronic properties of Si3On − and Si6On − (n = 1–6) clusters. Fragmentation and formation patterns. J Chem Theory Comput 5(9):2265–2273Kohout M (2011) DGrid 4.6. RadebeulPopelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, HarlowJournal of Molecular ModelingAtoms in moleculesDFTThe Fukui functionTopological analysisTopological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))Articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecAcelas, Nancy Y.López, DianaMondragón, FanorTiznado, WilliamFlórez, ElizabethAcelas, Nancy Y.; Universidad de AntioquiaLópez, Diana; Universidad de AntioquiaMondragón, Fanor; Universidad de AntioquiaTiznado, William; Universidad Andres BelloFlórez, Elizabeth; Universidad de MedellínTHUMBNAILportada.pngportada.pngimage/png24460http://repository.udem.edu.co/bitstream/11407/3460/2/portada.pnga2044dcb3962a7578f791af6db07c45eMD52ORIGINALArticulo.htmlVer PDF en página del publicadortext/html481http://repository.udem.edu.co/bitstream/11407/3460/1/Articulo.htmlc699d3ebb522a54de2f62d1c69565273MD5111407/3460oai:repository.udem.edu.co:11407/34602020-05-27 15:58:20.842Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co