Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5797
- Acceso en línea:
- http://hdl.handle.net/11407/5797
- Palabra clave:
- carrier generation rate
Multiple quantum well
nondegenerate two-photon absortion
Infrared devices
Modulators
Photons
Two photon processes
Carrier generation
Computational infrastructure
Operating characteristics
Optical characterization
Optical telecommunication
Theoretical framework
Two photon
Two photon absorption
Semiconductor quantum wells
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_a549440c0d3319c90d93d0346950f60a |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5797 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
title |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
spellingShingle |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells carrier generation rate Multiple quantum well nondegenerate two-photon absortion Infrared devices Modulators Photons Two photon processes Carrier generation Computational infrastructure Operating characteristics Optical characterization Optical telecommunication Theoretical framework Two photon Two photon absorption Semiconductor quantum wells |
title_short |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
title_full |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
title_fullStr |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
title_full_unstemmed |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
title_sort |
Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells |
dc.subject.none.fl_str_mv |
carrier generation rate Multiple quantum well nondegenerate two-photon absortion Infrared devices Modulators Photons Two photon processes Carrier generation Computational infrastructure Operating characteristics Optical characterization Optical telecommunication Theoretical framework Two photon Two photon absorption Semiconductor quantum wells |
topic |
carrier generation rate Multiple quantum well nondegenerate two-photon absortion Infrared devices Modulators Photons Two photon processes Carrier generation Computational infrastructure Operating characteristics Optical characterization Optical telecommunication Theoretical framework Two photon Two photon absorption Semiconductor quantum wells |
description |
A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to the C-band of optical telecommunications. This pulse width is shorter than the temporal resolution limit of a commercial PD, due to the nonlinear phenomenon known as nondegenerate two-photon absorption (ND2PA). The results show the importance of the operating characteristics that affect carrier generation rate (CGR). © 2019 World Scientific Publishing Company. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:03Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:03Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
2188635 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5797 |
dc.identifier.doi.none.fl_str_mv |
10.1142/S0218863519500139 |
identifier_str_mv |
2188635 10.1142/S0218863519500139 |
url |
http://hdl.handle.net/11407/5797 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072086039&doi=10.1142%2fS0218863519500139&partnerID=40&md5=a802b952cf4dfaeb84df94051b390369 |
dc.relation.references.none.fl_str_mv |
Acuna, R., Ocampo, C.A., E®ects of geometry and doping level on dispersion and spectrum in GaAs/AlGaAs quantum well waveguide for the near-IR region (2017) J. Nonlinear Opt. Phys, 26. , 1750031-1-10 Agrawal, G.P., (2013) Nonlinear Fiber Optics, , 5th edn. (Elsevier, Oxford Arakawa, Y., Sakaki, H., Radiative recombination coe±cient of free carriers in gaasalgaas quantum wells and its dependence on temperature (1987) Appl. Phys. Lett., 50 Arakawa, Y., Sakaki, H., Nishioka, M., Yoshino, J., Recombination lifetime of carriers in gaas-gaalas quantum wells near room temperature (1985) Appl. Phys. Lett, 46, pp. 519-521 Chuang, S.L., (2009) Physics of Photonic Devices, , 2nd edn. (Wiley, New Jersey Fishman, D., Cirloganu, C.M., Webster, S., Padilha, L.A., Monroe, M., Hagan, D., VanStryland, E.W., Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption (2011) Nat. Photonics, 5, pp. 561-565 Jensen, S.M., The nonlinear coherent couple (1982) IEEE T. Microw. Theo., MTT-30, pp. 1568-1571 Laughton, F., Marsh, J., Barrow, D., Portnoi, E., The two-photon absortion semiconductor waveguide autocorrelator (1994) IEEE J. Quantum Elect, 30, pp. 838-845 Liang, T., Nunes, L., Tsuchiya, M., Abedin, K., Miyazaki, T., Thourhout, V.V., Bogaerts, W., Tsang, H., High speed logic gate using two-photon absortion in silicon waveguides (2006) Opt. Commun, 265, pp. 171-174 Pattanaik, H.S., Reichert, M., Khurgin, J.B., Hagan, D.J., Stryland, E.W.V., Enhancement of two-photon absortion in quantum wells for extremely nondegenerate photon pairs (2016) IEEE J. Quantum Elect., 52 Thourhout, D.V., Doerr, C., Joyner, C., Pleumeekersi, J., Observation of WDM crosstalk in passive semiconductor waveguides (2001) IEEE Photonic Tech, 13 Tsang, H., Snow, P., Day, I., White, I., Penty, R., Grant, R., Su, Z., Sibbett, W., All-optical modulation with ultrafast recovery at low pump energies in passive ingaas/ingaasp multiquantum well waveguides (1993) Appl. Phys. Lett, 62, pp. 1451-1453 Wa, P.L.K., Sitch, J.E., Manson, N.J., Roberts, J.S., Robson, P.N., All optical multiple-quantum-well waveguide switch (1985) Electron. Lett, 21, pp. 27-28 Wagner, S.J., Meier, J., Helmy, A.S., Aitchison, J.S., Sorel, M., Hutchings, D.C., Polarization-dependent nonlinear refraction and two-photon absorption in gaas=alas superlattice waveguides below the half-bandgap (2007) J. Opt. Soc. Am. B, 24, pp. 1557-1563 Yarivl, A., (1989) Quantum Electronics, , 3rd edn. (Wiley, USA |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
World Scientific Publishing Co. Pte Ltd |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
World Scientific Publishing Co. Pte Ltd |
dc.source.none.fl_str_mv |
Journal of Nonlinear Optical Physics and Materials |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159268937465856 |
spelling |
20192020-04-29T14:54:03Z2020-04-29T14:54:03Z2188635http://hdl.handle.net/11407/579710.1142/S0218863519500139A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to the C-band of optical telecommunications. This pulse width is shorter than the temporal resolution limit of a commercial PD, due to the nonlinear phenomenon known as nondegenerate two-photon absorption (ND2PA). The results show the importance of the operating characteristics that affect carrier generation rate (CGR). © 2019 World Scientific Publishing Company.engWorld Scientific Publishing Co. Pte LtdFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072086039&doi=10.1142%2fS0218863519500139&partnerID=40&md5=a802b952cf4dfaeb84df94051b390369Acuna, R., Ocampo, C.A., E®ects of geometry and doping level on dispersion and spectrum in GaAs/AlGaAs quantum well waveguide for the near-IR region (2017) J. Nonlinear Opt. Phys, 26. , 1750031-1-10Agrawal, G.P., (2013) Nonlinear Fiber Optics, , 5th edn. (Elsevier, OxfordArakawa, Y., Sakaki, H., Radiative recombination coe±cient of free carriers in gaasalgaas quantum wells and its dependence on temperature (1987) Appl. Phys. Lett., 50Arakawa, Y., Sakaki, H., Nishioka, M., Yoshino, J., Recombination lifetime of carriers in gaas-gaalas quantum wells near room temperature (1985) Appl. Phys. Lett, 46, pp. 519-521Chuang, S.L., (2009) Physics of Photonic Devices, , 2nd edn. (Wiley, New JerseyFishman, D., Cirloganu, C.M., Webster, S., Padilha, L.A., Monroe, M., Hagan, D., VanStryland, E.W., Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption (2011) Nat. Photonics, 5, pp. 561-565Jensen, S.M., The nonlinear coherent couple (1982) IEEE T. Microw. Theo., MTT-30, pp. 1568-1571Laughton, F., Marsh, J., Barrow, D., Portnoi, E., The two-photon absortion semiconductor waveguide autocorrelator (1994) IEEE J. Quantum Elect, 30, pp. 838-845Liang, T., Nunes, L., Tsuchiya, M., Abedin, K., Miyazaki, T., Thourhout, V.V., Bogaerts, W., Tsang, H., High speed logic gate using two-photon absortion in silicon waveguides (2006) Opt. Commun, 265, pp. 171-174Pattanaik, H.S., Reichert, M., Khurgin, J.B., Hagan, D.J., Stryland, E.W.V., Enhancement of two-photon absortion in quantum wells for extremely nondegenerate photon pairs (2016) IEEE J. Quantum Elect., 52Thourhout, D.V., Doerr, C., Joyner, C., Pleumeekersi, J., Observation of WDM crosstalk in passive semiconductor waveguides (2001) IEEE Photonic Tech, 13Tsang, H., Snow, P., Day, I., White, I., Penty, R., Grant, R., Su, Z., Sibbett, W., All-optical modulation with ultrafast recovery at low pump energies in passive ingaas/ingaasp multiquantum well waveguides (1993) Appl. Phys. Lett, 62, pp. 1451-1453Wa, P.L.K., Sitch, J.E., Manson, N.J., Roberts, J.S., Robson, P.N., All optical multiple-quantum-well waveguide switch (1985) Electron. Lett, 21, pp. 27-28Wagner, S.J., Meier, J., Helmy, A.S., Aitchison, J.S., Sorel, M., Hutchings, D.C., Polarization-dependent nonlinear refraction and two-photon absorption in gaas=alas superlattice waveguides below the half-bandgap (2007) J. Opt. Soc. Am. B, 24, pp. 1557-1563Yarivl, A., (1989) Quantum Electronics, , 3rd edn. (Wiley, USAJournal of Nonlinear Optical Physics and Materialscarrier generation rateMultiple quantum wellnondegenerate two-photon absortionInfrared devicesModulatorsPhotonsTwo photon processesCarrier generationComputational infrastructureOperating characteristicsOptical characterizationOptical telecommunicationTheoretical frameworkTwo photonTwo photon absorptionSemiconductor quantum wellsDetecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wellsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Álvarez Ocampo, C.A., Escuela de Física, Universidad Nacional de Colombia-Medellín, Medellín, 050034, Colombia; Rodríguez, C.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Herrera, R.A., Escuela de Física, Universidad Nacional de Colombia-Medellín, Medellín, 050034, Colombiahttp://purl.org/coar/access_right/c_16ecÁlvarez Ocampo C.A.Rodríguez C.A.Herrera R.A.11407/5797oai:repository.udem.edu.co:11407/57972020-05-27 19:17:04.897Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |