Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells

A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5797
Acceso en línea:
http://hdl.handle.net/11407/5797
Palabra clave:
carrier generation rate
Multiple quantum well
nondegenerate two-photon absortion
Infrared devices
Modulators
Photons
Two photon processes
Carrier generation
Computational infrastructure
Operating characteristics
Optical characterization
Optical telecommunication
Theoretical framework
Two photon
Two photon absorption
Semiconductor quantum wells
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_a549440c0d3319c90d93d0346950f60a
oai_identifier_str oai:repository.udem.edu.co:11407/5797
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
title Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
spellingShingle Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
carrier generation rate
Multiple quantum well
nondegenerate two-photon absortion
Infrared devices
Modulators
Photons
Two photon processes
Carrier generation
Computational infrastructure
Operating characteristics
Optical characterization
Optical telecommunication
Theoretical framework
Two photon
Two photon absorption
Semiconductor quantum wells
title_short Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
title_full Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
title_fullStr Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
title_full_unstemmed Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
title_sort Detecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wells
dc.subject.none.fl_str_mv carrier generation rate
Multiple quantum well
nondegenerate two-photon absortion
Infrared devices
Modulators
Photons
Two photon processes
Carrier generation
Computational infrastructure
Operating characteristics
Optical characterization
Optical telecommunication
Theoretical framework
Two photon
Two photon absorption
Semiconductor quantum wells
topic carrier generation rate
Multiple quantum well
nondegenerate two-photon absortion
Infrared devices
Modulators
Photons
Two photon processes
Carrier generation
Computational infrastructure
Operating characteristics
Optical characterization
Optical telecommunication
Theoretical framework
Two photon
Two photon absorption
Semiconductor quantum wells
description A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to the C-band of optical telecommunications. This pulse width is shorter than the temporal resolution limit of a commercial PD, due to the nonlinear phenomenon known as nondegenerate two-photon absorption (ND2PA). The results show the importance of the operating characteristics that affect carrier generation rate (CGR). © 2019 World Scientific Publishing Company.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:03Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:03Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 2188635
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5797
dc.identifier.doi.none.fl_str_mv 10.1142/S0218863519500139
identifier_str_mv 2188635
10.1142/S0218863519500139
url http://hdl.handle.net/11407/5797
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072086039&doi=10.1142%2fS0218863519500139&partnerID=40&md5=a802b952cf4dfaeb84df94051b390369
dc.relation.references.none.fl_str_mv Acuna, R., Ocampo, C.A., E®ects of geometry and doping level on dispersion and spectrum in GaAs/AlGaAs quantum well waveguide for the near-IR region (2017) J. Nonlinear Opt. Phys, 26. , 1750031-1-10
Agrawal, G.P., (2013) Nonlinear Fiber Optics, , 5th edn. (Elsevier, Oxford
Arakawa, Y., Sakaki, H., Radiative recombination coe±cient of free carriers in gaasalgaas quantum wells and its dependence on temperature (1987) Appl. Phys. Lett., 50
Arakawa, Y., Sakaki, H., Nishioka, M., Yoshino, J., Recombination lifetime of carriers in gaas-gaalas quantum wells near room temperature (1985) Appl. Phys. Lett, 46, pp. 519-521
Chuang, S.L., (2009) Physics of Photonic Devices, , 2nd edn. (Wiley, New Jersey
Fishman, D., Cirloganu, C.M., Webster, S., Padilha, L.A., Monroe, M., Hagan, D., VanStryland, E.W., Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption (2011) Nat. Photonics, 5, pp. 561-565
Jensen, S.M., The nonlinear coherent couple (1982) IEEE T. Microw. Theo., MTT-30, pp. 1568-1571
Laughton, F., Marsh, J., Barrow, D., Portnoi, E., The two-photon absortion semiconductor waveguide autocorrelator (1994) IEEE J. Quantum Elect, 30, pp. 838-845
Liang, T., Nunes, L., Tsuchiya, M., Abedin, K., Miyazaki, T., Thourhout, V.V., Bogaerts, W., Tsang, H., High speed logic gate using two-photon absortion in silicon waveguides (2006) Opt. Commun, 265, pp. 171-174
Pattanaik, H.S., Reichert, M., Khurgin, J.B., Hagan, D.J., Stryland, E.W.V., Enhancement of two-photon absortion in quantum wells for extremely nondegenerate photon pairs (2016) IEEE J. Quantum Elect., 52
Thourhout, D.V., Doerr, C., Joyner, C., Pleumeekersi, J., Observation of WDM crosstalk in passive semiconductor waveguides (2001) IEEE Photonic Tech, 13
Tsang, H., Snow, P., Day, I., White, I., Penty, R., Grant, R., Su, Z., Sibbett, W., All-optical modulation with ultrafast recovery at low pump energies in passive ingaas/ingaasp multiquantum well waveguides (1993) Appl. Phys. Lett, 62, pp. 1451-1453
Wa, P.L.K., Sitch, J.E., Manson, N.J., Roberts, J.S., Robson, P.N., All optical multiple-quantum-well waveguide switch (1985) Electron. Lett, 21, pp. 27-28
Wagner, S.J., Meier, J., Helmy, A.S., Aitchison, J.S., Sorel, M., Hutchings, D.C., Polarization-dependent nonlinear refraction and two-photon absorption in gaas=alas superlattice waveguides below the half-bandgap (2007) J. Opt. Soc. Am. B, 24, pp. 1557-1563
Yarivl, A., (1989) Quantum Electronics, , 3rd edn. (Wiley, USA
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv World Scientific Publishing Co. Pte Ltd
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv World Scientific Publishing Co. Pte Ltd
dc.source.none.fl_str_mv Journal of Nonlinear Optical Physics and Materials
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159268937465856
spelling 20192020-04-29T14:54:03Z2020-04-29T14:54:03Z2188635http://hdl.handle.net/11407/579710.1142/S0218863519500139A theoretical framework and the computational infrastructure for optical characterization of a waveguide (WG) photodetector (PD) are presented based on multiples quantum well (MQW) with a rib structure that is able to resolve a light pulse with a temporal width of 10fs. Such pulses are limited to the C-band of optical telecommunications. This pulse width is shorter than the temporal resolution limit of a commercial PD, due to the nonlinear phenomenon known as nondegenerate two-photon absorption (ND2PA). The results show the importance of the operating characteristics that affect carrier generation rate (CGR). © 2019 World Scientific Publishing Company.engWorld Scientific Publishing Co. Pte LtdFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072086039&doi=10.1142%2fS0218863519500139&partnerID=40&md5=a802b952cf4dfaeb84df94051b390369Acuna, R., Ocampo, C.A., E®ects of geometry and doping level on dispersion and spectrum in GaAs/AlGaAs quantum well waveguide for the near-IR region (2017) J. Nonlinear Opt. Phys, 26. , 1750031-1-10Agrawal, G.P., (2013) Nonlinear Fiber Optics, , 5th edn. (Elsevier, OxfordArakawa, Y., Sakaki, H., Radiative recombination coe±cient of free carriers in gaasalgaas quantum wells and its dependence on temperature (1987) Appl. Phys. Lett., 50Arakawa, Y., Sakaki, H., Nishioka, M., Yoshino, J., Recombination lifetime of carriers in gaas-gaalas quantum wells near room temperature (1985) Appl. Phys. Lett, 46, pp. 519-521Chuang, S.L., (2009) Physics of Photonic Devices, , 2nd edn. (Wiley, New JerseyFishman, D., Cirloganu, C.M., Webster, S., Padilha, L.A., Monroe, M., Hagan, D., VanStryland, E.W., Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption (2011) Nat. Photonics, 5, pp. 561-565Jensen, S.M., The nonlinear coherent couple (1982) IEEE T. Microw. Theo., MTT-30, pp. 1568-1571Laughton, F., Marsh, J., Barrow, D., Portnoi, E., The two-photon absortion semiconductor waveguide autocorrelator (1994) IEEE J. Quantum Elect, 30, pp. 838-845Liang, T., Nunes, L., Tsuchiya, M., Abedin, K., Miyazaki, T., Thourhout, V.V., Bogaerts, W., Tsang, H., High speed logic gate using two-photon absortion in silicon waveguides (2006) Opt. Commun, 265, pp. 171-174Pattanaik, H.S., Reichert, M., Khurgin, J.B., Hagan, D.J., Stryland, E.W.V., Enhancement of two-photon absortion in quantum wells for extremely nondegenerate photon pairs (2016) IEEE J. Quantum Elect., 52Thourhout, D.V., Doerr, C., Joyner, C., Pleumeekersi, J., Observation of WDM crosstalk in passive semiconductor waveguides (2001) IEEE Photonic Tech, 13Tsang, H., Snow, P., Day, I., White, I., Penty, R., Grant, R., Su, Z., Sibbett, W., All-optical modulation with ultrafast recovery at low pump energies in passive ingaas/ingaasp multiquantum well waveguides (1993) Appl. Phys. Lett, 62, pp. 1451-1453Wa, P.L.K., Sitch, J.E., Manson, N.J., Roberts, J.S., Robson, P.N., All optical multiple-quantum-well waveguide switch (1985) Electron. Lett, 21, pp. 27-28Wagner, S.J., Meier, J., Helmy, A.S., Aitchison, J.S., Sorel, M., Hutchings, D.C., Polarization-dependent nonlinear refraction and two-photon absorption in gaas=alas superlattice waveguides below the half-bandgap (2007) J. Opt. Soc. Am. B, 24, pp. 1557-1563Yarivl, A., (1989) Quantum Electronics, , 3rd edn. (Wiley, USAJournal of Nonlinear Optical Physics and Materialscarrier generation rateMultiple quantum wellnondegenerate two-photon absortionInfrared devicesModulatorsPhotonsTwo photon processesCarrier generationComputational infrastructureOperating characteristicsOptical characterizationOptical telecommunicationTheoretical frameworkTwo photonTwo photon absorptionSemiconductor quantum wellsDetecting ultra-fast and near-infrared pulses based on two-photon absorption in multiple quantum wellsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Álvarez Ocampo, C.A., Escuela de Física, Universidad Nacional de Colombia-Medellín, Medellín, 050034, Colombia; Rodríguez, C.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Herrera, R.A., Escuela de Física, Universidad Nacional de Colombia-Medellín, Medellín, 050034, Colombiahttp://purl.org/coar/access_right/c_16ecÁlvarez Ocampo C.A.Rodríguez C.A.Herrera R.A.11407/5797oai:repository.udem.edu.co:11407/57972020-05-27 19:17:04.897Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co