Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]

The purpose of this article is to present the results of the application of the first Delphi round for Faculties of Agroindustrial Engineering in the framework of a prospective project, the objective was to establish research priorities, technology and areas of curricular interest for Faculties of A...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5807
Acceso en línea:
http://hdl.handle.net/11407/5807
Palabra clave:
Agroindustrial
Delphi
Engineering Agroindustry
Technologies
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_a30a5b78c512d97c6e33f5bb5ee54bbd
oai_identifier_str oai:repository.udem.edu.co:11407/5807
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
title Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
spellingShingle Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
Agroindustrial
Delphi
Engineering Agroindustry
Technologies
title_short Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
title_full Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
title_fullStr Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
title_full_unstemmed Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
title_sort Foresight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]
dc.subject.none.fl_str_mv Agroindustrial
Delphi
Engineering Agroindustry
Technologies
topic Agroindustrial
Delphi
Engineering Agroindustry
Technologies
description The purpose of this article is to present the results of the application of the first Delphi round for Faculties of Agroindustrial Engineering in the framework of a prospective project, the objective was to establish research priorities, technology and areas of curricular interest for Faculties of Agroindustrial Engineering and related to the year 2035, for this purpose a survey was conducted to more than 200 national and international stakeholders related to Agroindustrial Engineering, which contained 293 variables related to the core aspects of agro-industry, that is, management, production, transformation and marketing as well as four complementary thematic groups: CIT's, sustainability, agroindustrial residues and biotechnology. On this questionnaire responses were obtained in Likert scale, which were treated through the calculation of the mode, modal frequency and percentage of consensus, among the most important results the participation of 53 experts from countries such as Spain, Peru, Mexico, Chile and Argentina, from Universities, companies and public institutions is highlighted, some of the technologies with the highest percentage of consensus were, big data, Internet of Things (digital interconnection of daily objects), sustainable agriculture, sustainable constructions, Genetically Modified Organisms, biofuels, carbon capture, use and storage (CCUS), Collaborative Learning in Virtual Worlds (Second Life), Innovation Capabilities, among others. It was observed the existence of new topics and technologies that can be taken into account for the restructuring of the curriculum of the Faculties of Agroindustrial Engineering, as well as for the prioritization of topics, technologies and innovations in terms of training experiences or training courses, extension programs, new lines of research and creation of new graduate programs. © 2019 Latin American and Caribbean Consortium of Engineering Institutions. All rights reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:06Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:06Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9780999344361
dc.identifier.issn.none.fl_str_mv 24146390
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5807
dc.identifier.doi.none.fl_str_mv 10.18687/LACCEI2019.1.1.43
identifier_str_mv 9780999344361
24146390
10.18687/LACCEI2019.1.1.43
url http://hdl.handle.net/11407/5807
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073624863&doi=10.18687%2fLACCEI2019.1.1.43&partnerID=40&md5=ec586c2391fc898361ccfb0de7ac1607
dc.relation.citationvolume.none.fl_str_mv 2019-July
dc.relation.references.none.fl_str_mv "(2018) Ingeniería Agroindustrial y Agronegocios, , USIL Universidad San Ignacio de Loyola
(2013) Agroindustrias para El Desarrollo, , http://www.fao.org/3/a-i3125s.pdf, En línea. Available: Último acceso: 24 Enero 2018
Aguilar, G., Guerra, G., (2002) Economía Del Agronegocio, , y México: LIMUSA SA, Grupo Noriega Editores
(2016) Ingeniería Agroindustrial, , https://www.upb.edu.co/es/pregrados/ingenieriaagroindustrial-medellin, Universidad Pontificia Bolivariana, En línea. Available: Último acceso: 15 Febrero 2018
Zartha Sossa, J.W., Orozco Mendoza, G.L., Estudio de prospectiva académica de la facultad de ingeniería agroindustrial de la Universidad Pontificia Bolivariana al año 2020 (2008) Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 6 (2), pp. 67-75. , y
Balaraman, S., Venkatakrishnan, K.S., Identifying Engineering Education goals and priorities for the future: An experiment with the Delphi technique (1980) Higher Education, 9 (1), pp. 53-67. , y
Zartha Sossa, J.W., Montes Hincapié, J.M., Toro Jaramillo, I.D., Hernández Zarta, R., Villada Castillo, H.S., Hoyos Concha, J.L., Delphi method in technological foresight studies: An approach to calculating the number of experts and the application of the competence coefficient"" k"" expert (2017) Biotecnología En El Sector Agropecuario y Agroindustrial, 15 (1), pp. 105-115. , y
Zartha Sossa, J.W., Arango Alzate, B., Vélez Salazar, F.M., Coy Mesa, D.A., Méndez Naranjo, K., Orozco Mendoza, G.L., Ávalos Patiño, A.F., Ríos Jaramillo, L.M., Estudio de prospectiva de la ingeniería industrial al 2025 en algunos paises miembros de la oea (2013) Latin American and Caribbean Journal of Engineering Education, 7 (1), pp. 1-23. , y
Ramírez, C.C., Zartha Sossa, J.W., Arango, B., Orozco Mendoza, G.L., Prospectiva 2025 de la Carrera de Ingeniería Química en algunos Países pertenecientes a la Organización de Estados Americanos (OEA) (2016) Formación Universitaria, 9 (6), pp. 127-138. , y
Pereira, G.I., Da Silva, P., Soule, D., Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: A foresight analysis (2018) Environment, Development and Sustainability, pp. 1-37. , y
Santos, C., Araújo, M., Correia, N., A methodology for the identification of strategic technological competences: An application in the sheet metal equipment industry (2017) Futures, 90, pp. 31-45. , y
Eller, C., Naveiro, R.M., Technological trends on the functional textiles sector (2016) International Association for Management of Technology,» De IAMOT 2016 Conference Proceedings, , y
Karvonen, M., Kytola, O., Kassi, T., Mustonen, T., New perspectives on industry transformation through expansion of the technology base and creative cooperation (2008) IEEE International, pp. 1-5. , y
Dollinger, J., Dagès, C., Bailly, J.S., Lagacherie, P., Voltz, M., Managing ditches for agroecological engineering of landscape (2015) Agronomy for Sustainable Development, 35 (3), pp. 999-1020. , y
Chen, H., Wang, G., Lu, X., Jiang, M., Mendelssohn, I.A., Balancing the needs of China's wetland conservation and rice production (2015) Environmental Science & Technology, 49 (11), pp. 6385-6393. , y
Duru, M., Combining agroecology and management science to design field tools under high agrosystem structural or process uncertainty: Lessons from two case studies of grassland management (2013) Agricultural Systems, 114, pp. 84-94
Kumar, D., Singh, B., Korstad, J., Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel (2017) Renewable and Sustainable Energy Reviews, 73, pp. 654-671. , y
Saini, A., Aggarwal, N.K., Sharma, A., Yadav, A., Actinomycetes: A source of lignocellulolytic enzymes (2015) Enzyme Research, , y
Rosales Colunga, L.M., Martínez Antonio, A., Engineering Escherichia coli K12 MG1655 to use starch (2014) Microbial Cell Factories, 13 (1), p. 74. , y
Brauer, D.C., Larrick, D., Public communication and collaboration for carbon capture, utilization, and storage technology: Acceptance, education, and outreach (2015) 31st Annual International Pittsburgh Coal Conference: Coal - Energy, Environment and Sustainable Development, , y de In Pittsburgh
Luna Cañas, L.M., Ríos Reyes, C.A., Quintero Ortíz, L.A., Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials (2014) Dyna, 81 (188), pp. 34-41. , y
Ushada, M., Murase, H., Pilot model of production system for moss greening material in Yogyakarta (2012) II Asia Pacific Symposium on Postharvest Research Education and Extension: APS2012 1011, pp. 479-486. , y
Xin, J., Zazueta, F., Technology trends in ICT-towards data-driven, farmer-centered and knowledge-based hybrid cloud architectures for smart farming (2016) Agricultural Engineering International: CIGR Journal, 18 (4), pp. 275-279. , y
Ali, N., Heslop Harrison, J.P., Ahmad, H., Graybosch, R.A., Hein, G.L., Schwarzacher, T., Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance (2016) Heredity, 117 (2), p. 114. , y
Arrigoni Blank, M.D., Santos, M.S., Blank, A.F., Rabbani, A.R., Silva Mann, R., Santos, J.B., Menezes, T.S., Analysis of genetic diversity of Laeliinae (Orchidaceae) in the State of Sergipe using ISSR markers (2016) Genetics and Molecular Research, , y
Shin, H.D., Liu, L., Kim, M.K., Park, Y.I., Chen, R., Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose (2016) Journal of Industrial Microbiology & Biotechnology, 43 (9), pp. 1323-1331. , y
Ahmad, N., Michoux, F., Lössl, A.G., Nixon, P., Challenges and perspectives in commercializing plastid transformation technology (2016) Journal of Experimental Botany, 67 (21), pp. 5945-5960. , y
Sierra, L.M., Gutiérrez, R.S., Garzón Castro, C.L., Second Life as a support element for learning electronic related subjects: A real case (2012) Computers & Education, 58 (1), pp. 291-302. , y
Fernandez Ledesma, J.D., Ramirez, S., Proposed methodology for measuring innovation capabilities in a number of companies agrobusiness (2015) International Association for Management of Technology IAMOT, , y de In
Carayannis, E.G., Rozakis, S., Grigoroudis, E., Agri- ] science to agri-business: The technology transfer dimension (2018) The Journal of Technology Transfer, 43 (4), pp. 837-843. , y"
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.publisher.program.none.fl_str_mv Administración de Empresas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Económicas y Administrativas
publisher.none.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159124012728320
spelling 20192020-04-29T14:54:06Z2020-04-29T14:54:06Z978099934436124146390http://hdl.handle.net/11407/580710.18687/LACCEI2019.1.1.43The purpose of this article is to present the results of the application of the first Delphi round for Faculties of Agroindustrial Engineering in the framework of a prospective project, the objective was to establish research priorities, technology and areas of curricular interest for Faculties of Agroindustrial Engineering and related to the year 2035, for this purpose a survey was conducted to more than 200 national and international stakeholders related to Agroindustrial Engineering, which contained 293 variables related to the core aspects of agro-industry, that is, management, production, transformation and marketing as well as four complementary thematic groups: CIT's, sustainability, agroindustrial residues and biotechnology. On this questionnaire responses were obtained in Likert scale, which were treated through the calculation of the mode, modal frequency and percentage of consensus, among the most important results the participation of 53 experts from countries such as Spain, Peru, Mexico, Chile and Argentina, from Universities, companies and public institutions is highlighted, some of the technologies with the highest percentage of consensus were, big data, Internet of Things (digital interconnection of daily objects), sustainable agriculture, sustainable constructions, Genetically Modified Organisms, biofuels, carbon capture, use and storage (CCUS), Collaborative Learning in Virtual Worlds (Second Life), Innovation Capabilities, among others. It was observed the existence of new topics and technologies that can be taken into account for the restructuring of the curriculum of the Faculties of Agroindustrial Engineering, as well as for the prioritization of topics, technologies and innovations in terms of training experiences or training courses, extension programs, new lines of research and creation of new graduate programs. © 2019 Latin American and Caribbean Consortium of Engineering Institutions. All rights reserved.spaLatin American and Caribbean Consortium of Engineering InstitutionsAdministración de EmpresasFacultad de Ciencias Económicas y Administrativashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073624863&doi=10.18687%2fLACCEI2019.1.1.43&partnerID=40&md5=ec586c2391fc898361ccfb0de7ac16072019-July"(2018) Ingeniería Agroindustrial y Agronegocios, , USIL Universidad San Ignacio de Loyola(2013) Agroindustrias para El Desarrollo, , http://www.fao.org/3/a-i3125s.pdf, En línea. Available: Último acceso: 24 Enero 2018Aguilar, G., Guerra, G., (2002) Economía Del Agronegocio, , y México: LIMUSA SA, Grupo Noriega Editores(2016) Ingeniería Agroindustrial, , https://www.upb.edu.co/es/pregrados/ingenieriaagroindustrial-medellin, Universidad Pontificia Bolivariana, En línea. Available: Último acceso: 15 Febrero 2018Zartha Sossa, J.W., Orozco Mendoza, G.L., Estudio de prospectiva académica de la facultad de ingeniería agroindustrial de la Universidad Pontificia Bolivariana al año 2020 (2008) Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 6 (2), pp. 67-75. , yBalaraman, S., Venkatakrishnan, K.S., Identifying Engineering Education goals and priorities for the future: An experiment with the Delphi technique (1980) Higher Education, 9 (1), pp. 53-67. , yZartha Sossa, J.W., Montes Hincapié, J.M., Toro Jaramillo, I.D., Hernández Zarta, R., Villada Castillo, H.S., Hoyos Concha, J.L., Delphi method in technological foresight studies: An approach to calculating the number of experts and the application of the competence coefficient"" k"" expert (2017) Biotecnología En El Sector Agropecuario y Agroindustrial, 15 (1), pp. 105-115. , yZartha Sossa, J.W., Arango Alzate, B., Vélez Salazar, F.M., Coy Mesa, D.A., Méndez Naranjo, K., Orozco Mendoza, G.L., Ávalos Patiño, A.F., Ríos Jaramillo, L.M., Estudio de prospectiva de la ingeniería industrial al 2025 en algunos paises miembros de la oea (2013) Latin American and Caribbean Journal of Engineering Education, 7 (1), pp. 1-23. , yRamírez, C.C., Zartha Sossa, J.W., Arango, B., Orozco Mendoza, G.L., Prospectiva 2025 de la Carrera de Ingeniería Química en algunos Países pertenecientes a la Organización de Estados Americanos (OEA) (2016) Formación Universitaria, 9 (6), pp. 127-138. , yPereira, G.I., Da Silva, P., Soule, D., Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: A foresight analysis (2018) Environment, Development and Sustainability, pp. 1-37. , ySantos, C., Araújo, M., Correia, N., A methodology for the identification of strategic technological competences: An application in the sheet metal equipment industry (2017) Futures, 90, pp. 31-45. , yEller, C., Naveiro, R.M., Technological trends on the functional textiles sector (2016) International Association for Management of Technology,» De IAMOT 2016 Conference Proceedings, , yKarvonen, M., Kytola, O., Kassi, T., Mustonen, T., New perspectives on industry transformation through expansion of the technology base and creative cooperation (2008) IEEE International, pp. 1-5. , yDollinger, J., Dagès, C., Bailly, J.S., Lagacherie, P., Voltz, M., Managing ditches for agroecological engineering of landscape (2015) Agronomy for Sustainable Development, 35 (3), pp. 999-1020. , yChen, H., Wang, G., Lu, X., Jiang, M., Mendelssohn, I.A., Balancing the needs of China's wetland conservation and rice production (2015) Environmental Science & Technology, 49 (11), pp. 6385-6393. , yDuru, M., Combining agroecology and management science to design field tools under high agrosystem structural or process uncertainty: Lessons from two case studies of grassland management (2013) Agricultural Systems, 114, pp. 84-94Kumar, D., Singh, B., Korstad, J., Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel (2017) Renewable and Sustainable Energy Reviews, 73, pp. 654-671. , ySaini, A., Aggarwal, N.K., Sharma, A., Yadav, A., Actinomycetes: A source of lignocellulolytic enzymes (2015) Enzyme Research, , yRosales Colunga, L.M., Martínez Antonio, A., Engineering Escherichia coli K12 MG1655 to use starch (2014) Microbial Cell Factories, 13 (1), p. 74. , yBrauer, D.C., Larrick, D., Public communication and collaboration for carbon capture, utilization, and storage technology: Acceptance, education, and outreach (2015) 31st Annual International Pittsburgh Coal Conference: Coal - Energy, Environment and Sustainable Development, , y de In PittsburghLuna Cañas, L.M., Ríos Reyes, C.A., Quintero Ortíz, L.A., Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials (2014) Dyna, 81 (188), pp. 34-41. , yUshada, M., Murase, H., Pilot model of production system for moss greening material in Yogyakarta (2012) II Asia Pacific Symposium on Postharvest Research Education and Extension: APS2012 1011, pp. 479-486. , yXin, J., Zazueta, F., Technology trends in ICT-towards data-driven, farmer-centered and knowledge-based hybrid cloud architectures for smart farming (2016) Agricultural Engineering International: CIGR Journal, 18 (4), pp. 275-279. , yAli, N., Heslop Harrison, J.P., Ahmad, H., Graybosch, R.A., Hein, G.L., Schwarzacher, T., Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance (2016) Heredity, 117 (2), p. 114. , yArrigoni Blank, M.D., Santos, M.S., Blank, A.F., Rabbani, A.R., Silva Mann, R., Santos, J.B., Menezes, T.S., Analysis of genetic diversity of Laeliinae (Orchidaceae) in the State of Sergipe using ISSR markers (2016) Genetics and Molecular Research, , yShin, H.D., Liu, L., Kim, M.K., Park, Y.I., Chen, R., Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose (2016) Journal of Industrial Microbiology & Biotechnology, 43 (9), pp. 1323-1331. , yAhmad, N., Michoux, F., Lössl, A.G., Nixon, P., Challenges and perspectives in commercializing plastid transformation technology (2016) Journal of Experimental Botany, 67 (21), pp. 5945-5960. , ySierra, L.M., Gutiérrez, R.S., Garzón Castro, C.L., Second Life as a support element for learning electronic related subjects: A real case (2012) Computers & Education, 58 (1), pp. 291-302. , yFernandez Ledesma, J.D., Ramirez, S., Proposed methodology for measuring innovation capabilities in a number of companies agrobusiness (2015) International Association for Management of Technology IAMOT, , y de InCarayannis, E.G., Rozakis, S., Grigoroudis, E., Agri- ] science to agri-business: The technology transfer dimension (2018) The Journal of Technology Transfer, 43 (4), pp. 837-843. , y"Proceedings of the LACCEI international Multi-conference for Engineering, Education and TechnologyAgroindustrialDelphiEngineering AgroindustryTechnologiesForesight of the agroindustrial engineering to 2035 - Application of the delphi method as a dynamizer of curricular changes [Prospectiva de la ingeniería agroindustrial a 2035 - Aplicación del método Delphi como dinamizador de cambios curriculares]Conference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Sossa, J.W.Z., Universidad Pontificia Bolivariana, Colombia; Ríos, V.T.Á., Universidad Pontificia Bolivariana, Colombia; Piedrahita, J.C.P., Universidad Pontificia Bolivariana, Colombia; Hincapié, J.M.M., Universidad de Medellín, Colombia; Quintal, A., Organización de Estados Americanos (OEA), Estados Unidos, United States; Manrique, J.A., Universidad Pontificia Bolivariana, Colombia; Lopera, J.C.O., Universidad Pontificia Bolivariana, Colombia; Mendoza, G.L.O., Universidad Pontificia Bolivariana, Colombia; Hernández, R., Universidad Nacional, Colombia; Moreno, J.F., Instituto Tecnológico Metropolitano - ITM, Colombiahttp://purl.org/coar/access_right/c_16ecSossa J.W.Z.Ríos V.T.Á.Piedrahita J.C.P.Hincapié J.M.M.Quintal A.Manrique J.A.Lopera J.C.O.Mendoza G.L.O.Hernández R.Moreno J.F.11407/5807oai:repository.udem.edu.co:11407/58072020-05-27 15:56:44.993Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co