Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers
The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric la...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4280
- Acceso en línea:
- http://hdl.handle.net/11407/4280
- Palabra clave:
- 1D photonic crystals
Dielectric-superconductor heterostructures
Rudin-Shapiro
Crystals
Electric field effects
Electric fields
Frequency bands
Optical devices
Superconducting materials
Temperature
Transfer matrix method
1-D photonic crystal
Electric-field amplitude
Hybrid photonic crystals
Low temperature superconductors
One dimensional photonic crystal
Rudin-Shapiro
Superconductor heterostructures
Transmittance spectra
Photonic crystals
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_a2145cbb9e472ca943b241526bab99a8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4280 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
title |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
spellingShingle |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers 1D photonic crystals Dielectric-superconductor heterostructures Rudin-Shapiro Crystals Electric field effects Electric fields Frequency bands Optical devices Superconducting materials Temperature Transfer matrix method 1-D photonic crystal Electric-field amplitude Hybrid photonic crystals Low temperature superconductors One dimensional photonic crystal Rudin-Shapiro Superconductor heterostructures Transmittance spectra Photonic crystals |
title_short |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
title_full |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
title_fullStr |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
title_full_unstemmed |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
title_sort |
Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers |
dc.contributor.affiliation.spa.fl_str_mv |
Gómez-Urrea, H.A., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Escorcia-García, J., CONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe, Mexico Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, Mexico |
dc.subject.keyword.eng.fl_str_mv |
1D photonic crystals Dielectric-superconductor heterostructures Rudin-Shapiro Crystals Electric field effects Electric fields Frequency bands Optical devices Superconducting materials Temperature Transfer matrix method 1-D photonic crystal Electric-field amplitude Hybrid photonic crystals Low temperature superconductors One dimensional photonic crystal Rudin-Shapiro Superconductor heterostructures Transmittance spectra Photonic crystals |
topic |
1D photonic crystals Dielectric-superconductor heterostructures Rudin-Shapiro Crystals Electric field effects Electric fields Frequency bands Optical devices Superconducting materials Temperature Transfer matrix method 1-D photonic crystal Electric-field amplitude Hybrid photonic crystals Low temperature superconductors One dimensional photonic crystal Rudin-Shapiro Superconductor heterostructures Transmittance spectra Photonic crystals |
description |
The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter–Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc – a forbidden frequency band for propagation – that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin–Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity – which reaches a value of several tens – corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers. © 2017 Elsevier B.V. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:44Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
15694410 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4280 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.photonics.2017.08.001 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
15694410 10.1016/j.photonics.2017.08.001 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4280 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028341422&doi=10.1016%2fj.photonics.2017.08.001&partnerID=40&md5=1db7f2178dfcb8e2eba971aa4991bfe9 |
dc.relation.ispartofes.spa.fl_str_mv |
Photonics and Nanostructures - Fundamentals and Applications Photonics and Nanostructures - Fundamentals and Applications Volume 27, November 2017, Pages 1-10 |
dc.relation.references.spa.fl_str_mv |
Agarwal, V., Mora-Ramos, M. E., & Alvarado-Tenorio, B. (2009). Optical properties of multilayered period-doubling and rudin-shapiro porous silicon dielectric heterostructures. Photonics and Nanostructures - Fundamentals and Applications, 7(2), 63-68. doi:10.1016/j.photonics.2008.11.001 Albuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/S0370-1573(02)00559-8 Ali, N. B., & Kanzari, M. (2011). Designing of stop band filters using hybrid periodic/quasi-periodic one-dimensional photonic crystals in microwave domain. Physica Status Solidi (A) Applications and Materials Science, 208(1), 161-171. doi:10.1002/pssa.200925531 Aly, A. H., Ryu, S. -., Hsu, H. -., & Wu, C. -. (2009). THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Materials Chemistry and Physics, 113(1), 382-384. doi:10.1016/j.matchemphys.2008.07.123 Asmi, R., Ben Ali, N., & Kanzari, M. (2016). Enhancement of light localization in hybrid Thue–Morse/Periodic photonic crystals. J.Mater., 2016, 9471312. Baraket, Z., Zaghdoudi, J., & Kanzari, M. (2016). Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals. Progress in Electromagnetics Research M, 46, 29-37. Ben Ali, N., & Kanzari, M. (2010). Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band. Journal of Modern Optics, 57(4), 287-294. doi:10.1080/09500340903545289 Escorcia-García, J., Duque, C. A., & Mora-Ramos, M. E. (2011). Optical properties of hybrid periodic/quasiregular dielectric multilayers. Superlattices and Microstructures, 49(3), 203-208. doi:10.1016/j.spmi.2010.08.006 Escorcia-García, J., & Mora-Ramos, M. E. (2013). Propagation and confinement of electric field waves along one-dimensional porous silicon hybrid periodic/quasiperiodic structure. Opt.Photonics J., 3, 1-12. Escorcia-García, J., & Mora-Ramos, M. E. (2009). Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online, 5, 2. Janot, C. (1994). Quasicrystals. John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/PhysRevLett.58.2486 Kanzari, M., & Rezig, B. (2001). Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures. Journal of Optics A: Pure and Applied Optics, 3(6), S201-S207. doi:10.1088/1464-4258/3/6/372 Kautz, R. L. (1978). Picosecond pulses on superconducting striplines. Journal of Applied Physics, 49(1), 308-314. doi:10.1063/1.324387 Lee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935 Lee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935 Li, C. -., Liu, S. -., Kong, X. -., Bian, B. -., & Zhang, X. -. (2011). Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Applied Optics, 50(16), 2370-2375. doi:10.1364/AO.50.002370 Liu, C. -., Zhang, H. -., & Chen, Y. -. (2013). Enlarged the omnidirectional bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary thue-morse aperiodic structure. Optik, 124(22), 5811-5817. doi:10.1016/j.ijleo.2013.04.053 Liu, Y., & Yi, L. (2014). Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals. Journal of Applied Physics, 116(22) doi:10.1063/1.4904054 Lue, J. -., & Sheng, J. -. (1993). Retention of the pairing mechanism by coupled surface-plasmon-polariton waves in the YBa2Cu3O7/YBa2Cu3O6 superlattices. Physical Review B, 47(9), 5469-5472. doi:10.1103/PhysRevB.47.5469 Lyubchanskii, I. L., Dadoenkova, N. N., Zabolotin, A. E., Lee, Y. P., & Rasing, T. (2009). A one-dimensional photonic crystal with a superconducting defect layer. Journal of Optics A: Pure and Applied Optics, 11(11) doi:10.1088/1464-4258/11/11/114014 Maciá, E. (2009). Aperiodic structures in condensed matter: Fundamentals and applications. Aperiodic Structures in Condensed Matter: Fundamentals and Applications. MacIá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3) doi:10.1088/0034-4885/75/3/036502 Maciá, E. (2001). Exploiting quasiperiodic order in the design of optical devices. Physical Review B - Condensed Matter and Materials Physics, 63(20), 2054211-2054218. Mogilevtsev, D., Reyes-Gómez, E., Cavalcanti, S. B., De Carvalho, C. A. A., & Oliveira, L. E. (2010). Plasmon polaritons in photonic metamaterial superlattices: Absorption effects. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(4) doi:10.1103/PhysRevE.81.047601 Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2004). Phonon confinement in one-dimensional hybrid periodic/quasiregular structures. Physical Review B - Condensed Matter and Materials Physics, 70(13), 132301-1-132301-4. doi:10.1103/PhysRevB.70.132301 Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2009). Phonons in hybrid Fibonacci/periodic multilayers. Surface Science, 603(6), 938-944. doi:10.1016/j.susc.2009.02.011 Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2007). Selective spatial localization of the atom displacements in one-dimensional hybrid quasi-regular (thue-morse and rudin-shapiro)/periodic structures. Surface Science, 601(12), 2538-2547. doi:10.1016/j.susc.2007.04.204 Mora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026. Moreno, E., Erni, D., & Hafner, C. (2002). Band structure computations of metallic photonic crystals with the multiple multipole method. Physical Review B - Condensed Matter and Materials Physics, 65(15), 1551201-15512010. Peng, R. W., Huang, X. Q., Qiu, F., Wang, M., Hu, A., Jiang, S. S., & Mazzer, M. (2002). Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Applied Physics Letters, 80(17), 3063-3065. doi:10.1063/1.1468895 Peng, R. W., Liu, Y. M., Huang, X. Q., Qiu, F., Wang, M., Hu, A., . . . Zou, J. (2004). Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. Physical Review B - Condensed Matter and Materials Physics, 69(16), 165109-1-165109-7. doi:10.1103/PhysRevB.69.165109 Peréz-Alvarez, R., & García-Moliner, F. (2001). Quasirregular Heteroestructures, Contemporary Problems of the Condensed Matter Physics. Pimenov, A., Loidl, A., Przyslupski, P., & Dabrowski, B. (2005). Negative refraction in ferromagnet-superconductor superlattices. Physical Review Letters, 95(24) doi:10.1103/PhysRevLett.95.247009 Queffélec, M. (1987). Substitution dynamical systems - spectral analysis. Lecture Notes in Mathematics, 1294 Rahimi, H. (2016). Analysis of photonic spectra in thue-morse, double-period and rudin-shapiro quasiregular structures made of high temperature superconductors in visible range. Optical Materials, 57, 264-271. doi:10.1016/j.optmat.2016.04.022 Rauh, H., & Genenko, Y. A. (2008). The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite. Journal of Physics Condensed Matter, 20(14) doi:10.1088/0953-8984/20/14/145203 Raymond Ooi, C. H., & Au Yeung, T. C. (1999). Polariton gap in a superconductor-dielectric superlattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 259(5), 413-419. Raymond Ooi, C. H., Au Yeung, T. C., Kam, C. H., & Lim, T. K. (2000). Photonic band gap in a superconductor-dielectric superlattice. Physical Review B - Condensed Matter and Materials Physics, 61(9), 5920-5923. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159230186291200 |
spelling |
2017-12-19T19:36:44Z2017-12-19T19:36:44Z201715694410http://hdl.handle.net/11407/428010.1016/j.photonics.2017.08.001reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter–Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc – a forbidden frequency band for propagation – that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin–Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity – which reaches a value of several tens – corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers. © 2017 Elsevier B.V.engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028341422&doi=10.1016%2fj.photonics.2017.08.001&partnerID=40&md5=1db7f2178dfcb8e2eba971aa4991bfe9Photonics and Nanostructures - Fundamentals and ApplicationsPhotonics and Nanostructures - Fundamentals and Applications Volume 27, November 2017, Pages 1-10Agarwal, V., Mora-Ramos, M. E., & Alvarado-Tenorio, B. (2009). Optical properties of multilayered period-doubling and rudin-shapiro porous silicon dielectric heterostructures. Photonics and Nanostructures - Fundamentals and Applications, 7(2), 63-68. doi:10.1016/j.photonics.2008.11.001Albuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/S0370-1573(02)00559-8Ali, N. B., & Kanzari, M. (2011). Designing of stop band filters using hybrid periodic/quasi-periodic one-dimensional photonic crystals in microwave domain. Physica Status Solidi (A) Applications and Materials Science, 208(1), 161-171. doi:10.1002/pssa.200925531Aly, A. H., Ryu, S. -., Hsu, H. -., & Wu, C. -. (2009). THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Materials Chemistry and Physics, 113(1), 382-384. doi:10.1016/j.matchemphys.2008.07.123Asmi, R., Ben Ali, N., & Kanzari, M. (2016). Enhancement of light localization in hybrid Thue–Morse/Periodic photonic crystals. J.Mater., 2016, 9471312.Baraket, Z., Zaghdoudi, J., & Kanzari, M. (2016). Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals. Progress in Electromagnetics Research M, 46, 29-37.Ben Ali, N., & Kanzari, M. (2010). Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band. Journal of Modern Optics, 57(4), 287-294. doi:10.1080/09500340903545289Escorcia-García, J., Duque, C. A., & Mora-Ramos, M. E. (2011). Optical properties of hybrid periodic/quasiregular dielectric multilayers. Superlattices and Microstructures, 49(3), 203-208. doi:10.1016/j.spmi.2010.08.006Escorcia-García, J., & Mora-Ramos, M. E. (2013). Propagation and confinement of electric field waves along one-dimensional porous silicon hybrid periodic/quasiperiodic structure. Opt.Photonics J., 3, 1-12.Escorcia-García, J., & Mora-Ramos, M. E. (2009). Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online, 5, 2.Janot, C. (1994). Quasicrystals.John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/PhysRevLett.58.2486Kanzari, M., & Rezig, B. (2001). Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures. Journal of Optics A: Pure and Applied Optics, 3(6), S201-S207. doi:10.1088/1464-4258/3/6/372Kautz, R. L. (1978). Picosecond pulses on superconducting striplines. Journal of Applied Physics, 49(1), 308-314. doi:10.1063/1.324387Lee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935Lee, H. -., & wu, J. -. (2010). Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. Journal of Applied Physics, 107(9), 256. doi:10.1063/1.3362935Li, C. -., Liu, S. -., Kong, X. -., Bian, B. -., & Zhang, X. -. (2011). Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Applied Optics, 50(16), 2370-2375. doi:10.1364/AO.50.002370Liu, C. -., Zhang, H. -., & Chen, Y. -. (2013). Enlarged the omnidirectional bragg gap by one-dimensional superconductor-dielectric photonic crystals with ternary thue-morse aperiodic structure. Optik, 124(22), 5811-5817. doi:10.1016/j.ijleo.2013.04.053Liu, Y., & Yi, L. (2014). Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals. Journal of Applied Physics, 116(22) doi:10.1063/1.4904054Lue, J. -., & Sheng, J. -. (1993). Retention of the pairing mechanism by coupled surface-plasmon-polariton waves in the YBa2Cu3O7/YBa2Cu3O6 superlattices. Physical Review B, 47(9), 5469-5472. doi:10.1103/PhysRevB.47.5469Lyubchanskii, I. L., Dadoenkova, N. N., Zabolotin, A. E., Lee, Y. P., & Rasing, T. (2009). A one-dimensional photonic crystal with a superconducting defect layer. Journal of Optics A: Pure and Applied Optics, 11(11) doi:10.1088/1464-4258/11/11/114014Maciá, E. (2009). Aperiodic structures in condensed matter: Fundamentals and applications. Aperiodic Structures in Condensed Matter: Fundamentals and Applications.MacIá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3) doi:10.1088/0034-4885/75/3/036502Maciá, E. (2001). Exploiting quasiperiodic order in the design of optical devices. Physical Review B - Condensed Matter and Materials Physics, 63(20), 2054211-2054218.Mogilevtsev, D., Reyes-Gómez, E., Cavalcanti, S. B., De Carvalho, C. A. A., & Oliveira, L. E. (2010). Plasmon polaritons in photonic metamaterial superlattices: Absorption effects. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(4) doi:10.1103/PhysRevE.81.047601Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2004). Phonon confinement in one-dimensional hybrid periodic/quasiregular structures. Physical Review B - Condensed Matter and Materials Physics, 70(13), 132301-1-132301-4. doi:10.1103/PhysRevB.70.132301Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2009). Phonons in hybrid Fibonacci/periodic multilayers. Surface Science, 603(6), 938-944. doi:10.1016/j.susc.2009.02.011Montalbán, A., Velasco, V. R., Tutor, J., & Fernández-Velicia, F. J. (2007). Selective spatial localization of the atom displacements in one-dimensional hybrid quasi-regular (thue-morse and rudin-shapiro)/periodic structures. Surface Science, 601(12), 2538-2547. doi:10.1016/j.susc.2007.04.204Mora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026.Moreno, E., Erni, D., & Hafner, C. (2002). Band structure computations of metallic photonic crystals with the multiple multipole method. Physical Review B - Condensed Matter and Materials Physics, 65(15), 1551201-15512010.Peng, R. W., Huang, X. Q., Qiu, F., Wang, M., Hu, A., Jiang, S. S., & Mazzer, M. (2002). Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Applied Physics Letters, 80(17), 3063-3065. doi:10.1063/1.1468895Peng, R. W., Liu, Y. M., Huang, X. Q., Qiu, F., Wang, M., Hu, A., . . . Zou, J. (2004). Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. Physical Review B - Condensed Matter and Materials Physics, 69(16), 165109-1-165109-7. doi:10.1103/PhysRevB.69.165109Peréz-Alvarez, R., & García-Moliner, F. (2001). Quasirregular Heteroestructures, Contemporary Problems of the Condensed Matter Physics.Pimenov, A., Loidl, A., Przyslupski, P., & Dabrowski, B. (2005). Negative refraction in ferromagnet-superconductor superlattices. Physical Review Letters, 95(24) doi:10.1103/PhysRevLett.95.247009Queffélec, M. (1987). Substitution dynamical systems - spectral analysis. Lecture Notes in Mathematics, 1294Rahimi, H. (2016). Analysis of photonic spectra in thue-morse, double-period and rudin-shapiro quasiregular structures made of high temperature superconductors in visible range. Optical Materials, 57, 264-271. doi:10.1016/j.optmat.2016.04.022Rauh, H., & Genenko, Y. A. (2008). The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite. Journal of Physics Condensed Matter, 20(14) doi:10.1088/0953-8984/20/14/145203Raymond Ooi, C. H., & Au Yeung, T. C. (1999). Polariton gap in a superconductor-dielectric superlattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 259(5), 413-419.Raymond Ooi, C. H., Au Yeung, T. C., Kam, C. H., & Lim, T. K. (2000). Photonic band gap in a superconductor-dielectric superlattice. Physical Review B - Condensed Matter and Materials Physics, 61(9), 5920-5923.ScopusAnalysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layersArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gómez-Urrea, H.A., Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaEscorcia-García, J., CONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe, MexicoDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, MexicoGómez-Urrea H.A.Escorcia-García J.Duque C.A.Mora-Ramos M.E.Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe, MexicoGrupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaCentro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, Mexico1D photonic crystalsDielectric-superconductor heterostructuresRudin-ShapiroCrystalsElectric field effectsElectric fieldsFrequency bandsOptical devicesSuperconducting materialsTemperatureTransfer matrix method1-D photonic crystalElectric-field amplitudeHybrid photonic crystalsLow temperature superconductorsOne dimensional photonic crystalRudin-ShapiroSuperconductor heterostructuresTransmittance spectraPhotonic crystalsThe transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin–Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin–Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter–Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc – a forbidden frequency band for propagation – that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin–Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity – which reaches a value of several tens – corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers. © 2017 Elsevier B.V.http://purl.org/coar/access_right/c_16ec11407/4280oai:repository.udem.edu.co:11407/42802020-05-27 18:33:18.179Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |