A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization
This paper deals with the Maximal Covering Location Problem (MCLP) for Supply Chain optimization in the presence of incomplete information. A specific linear-integer structure of a generic mathematical model for Resilient Supply Chain Management System (RSCMS) makes it possible to reduce the origina...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4379
- Acceso en línea:
- http://hdl.handle.net/11407/4379
- Palabra clave:
- Computational complexity
Integer programming
Supply chain management
Complexity of algorithm
Computational methodology
Equivalent transformations
Incomplete information
Maximal covering location problems (MCLP)
Numerical approaches
Supply chain management system
Supply chain optimization
Optimization
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_9fff89ec4a4c69d4419350a3302c9d8c |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4379 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
title |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
spellingShingle |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization Computational complexity Integer programming Supply chain management Complexity of algorithm Computational methodology Equivalent transformations Incomplete information Maximal covering location problems (MCLP) Numerical approaches Supply chain management system Supply chain optimization Optimization |
title_short |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
title_full |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
title_fullStr |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
title_full_unstemmed |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
title_sort |
A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization |
dc.contributor.affiliation.spa.fl_str_mv |
Azhmyakov, V., Departamento de Ciencias Basicas, Universidad de Medellin, Medellin, Colombia Fernández-Gutiérrez, J.P., Departamento de Ciencias Basicas, Universidad de Medellin, Medellin, Colombia Gadi, S.K., Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, Torreon, Mexico Pickl, S., Department of Computer Science, Universität der Bundeswehr München, München, Germany |
dc.subject.keyword.eng.fl_str_mv |
Computational complexity Integer programming Supply chain management Complexity of algorithm Computational methodology Equivalent transformations Incomplete information Maximal covering location problems (MCLP) Numerical approaches Supply chain management system Supply chain optimization Optimization |
topic |
Computational complexity Integer programming Supply chain management Complexity of algorithm Computational methodology Equivalent transformations Incomplete information Maximal covering location problems (MCLP) Numerical approaches Supply chain management system Supply chain optimization Optimization |
description |
This paper deals with the Maximal Covering Location Problem (MCLP) for Supply Chain optimization in the presence of incomplete information. A specific linear-integer structure of a generic mathematical model for Resilient Supply Chain Management System (RSCMS) makes it possible to reduce the originally given MCLP to two auxiliary optimization Knapsack-type problems. The equivalent transformation (separation) we propose provides a useful tool for an effective numerical treatment of the original MCLP and reduces the complexity of algorithms. The computational methodology we follow involves a specific Lagrange relaxation procedure. We give a rigorous formal analysis of the resulting algorithm and apply it to a practically oriented example of an optimal RSCMS design. © 2016 |
publishDate |
2016 |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
24058963 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4379 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ifacol.2016.12.175 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
24058963 10.1016/j.ifacol.2016.12.175 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4379 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85012868634&doi=10.1016%2fj.ifacol.2016.12.175&partnerID=40&md5=26ac509f85a752096da4a6e849f29c78 |
dc.relation.ispartofes.spa.fl_str_mv |
IFAC-PapersOnLine IFAC-PapersOnLine Volume 49, Issue 31, 2016, Pages 137-142 |
dc.relation.references.spa.fl_str_mv |
Alexandris, G., & Giannikos, I. (2010). A new model for maximal coverage exploiting GIS capabilities. European Journal of Operational Research, 202(2), 328-338. doi:10.1016/j.ejor.2009.05.037 Atkinson, K., & Han, W. (2001). Theoretical Numerical Analysis. Aytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494. doi:10.1016/S0377-2217(01)00260-0 Azhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981. Azhmyakov, V., Cabrera, J., & Poznyak, A. (2016). Optimal fixed - levels control for non - linear systems with quadratic cost functionals. Azhmyakov, V., & Juarez, R. (2015). On the projected gradient method for switched - mode systems optimization. In: Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems. Azhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9 Batanović, V., Petrović, D., & Petrović, R. (2009). Fuzzy logic based algorithms for maximum covering location problems. Information Sciences, 179(1-2), 120-129. doi:10.1016/j.ins.2008.08.019 Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009). The ordered gradual covering location problem on a network. Discrete Applied Mathematics, 157(18), 3689-3707. doi:10.1016/j.dam.2009.08.003 Berman, O., & Wang, J. (2011). The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 208(3), 233-238. doi:10.1016/j.ejor.2010.08.016 Bertsekas, D. P. (1995). Nonlinear Programming. Canbolat, M. S., & Massow, M. v. (2009). Planar maximal covering with ellipses. Computers and Industrial Engineering, 57(1), 201-208. doi:10.1016/j.cie.2008.11.015 Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293 Galvão, R. D., Espejo, L. G. A., & Boffey, B. (2000). A comparison of lagrangean and surrogate relaxations for the maximal covering location problem. European Journal of Operational Research, 124(2), 377-389. Ghiani, G., Laporte, G., & Musmanno, R. (2004). Introduction to Logistics Systems Planning and Control. Ji, G., & Han, S. (2014). A strategy analysis in dual-channel supply chain based on effort levels. Proceedings of the 1th International Conference on Service Systems and Service Management. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems Mitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341 Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Management Science, 28(7), 775-780. Polak, E. (1997). Optimization. ReVelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem with heuristic concentration. Computers and Operations Research, 35(2), 427-435. doi:10.1016/j.cor.2006.03.007 Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus. Shavandi, H., & Mahlooji, H. (2006). A fuzzy queuing location model with a genetic algorithm for congested systems. Applied Mathematics and Computation, 181(1), 440-456. doi:10.1016/j.amc.2005.12.058 Sitek, P., & Wikarek, J. (2013). A hybrid approach to modeling and optimization for supply chain management with multimodal transport. Paper presented at the 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, 777-782. Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821. doi:10.1007/s00170-011-3212-y |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159139651190784 |
spelling |
2017-12-19T19:36:52Z2017-12-19T19:36:52Z201624058963http://hdl.handle.net/11407/437910.1016/j.ifacol.2016.12.175reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThis paper deals with the Maximal Covering Location Problem (MCLP) for Supply Chain optimization in the presence of incomplete information. A specific linear-integer structure of a generic mathematical model for Resilient Supply Chain Management System (RSCMS) makes it possible to reduce the originally given MCLP to two auxiliary optimization Knapsack-type problems. The equivalent transformation (separation) we propose provides a useful tool for an effective numerical treatment of the original MCLP and reduces the complexity of algorithms. The computational methodology we follow involves a specific Lagrange relaxation procedure. We give a rigorous formal analysis of the resulting algorithm and apply it to a practically oriented example of an optimal RSCMS design. © 2016engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85012868634&doi=10.1016%2fj.ifacol.2016.12.175&partnerID=40&md5=26ac509f85a752096da4a6e849f29c78IFAC-PapersOnLineIFAC-PapersOnLine Volume 49, Issue 31, 2016, Pages 137-142Alexandris, G., & Giannikos, I. (2010). A new model for maximal coverage exploiting GIS capabilities. European Journal of Operational Research, 202(2), 328-338. doi:10.1016/j.ejor.2009.05.037Atkinson, K., & Han, W. (2001). Theoretical Numerical Analysis.Aytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494. doi:10.1016/S0377-2217(01)00260-0Azhmyakov, V., Basin, M., & Reincke-Collon, C. (2014). Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 19 6976-6981.Azhmyakov, V., Cabrera, J., & Poznyak, A. (2016). Optimal fixed - levels control for non - linear systems with quadratic cost functionals.Azhmyakov, V., & Juarez, R. (2015). On the projected gradient method for switched - mode systems optimization. In: Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems.Azhmyakov, V., & Schmidt, W. (2006). Approximations of relaxed optimal control problems. Journal of Optimization Theory and Applications, 130(1), 61-77. doi:10.1007/s10957-006-9085-9Batanović, V., Petrović, D., & Petrović, R. (2009). Fuzzy logic based algorithms for maximum covering location problems. Information Sciences, 179(1-2), 120-129. doi:10.1016/j.ins.2008.08.019Berman, O., Kalcsics, J., Krass, D., & Nickel, S. (2009). The ordered gradual covering location problem on a network. Discrete Applied Mathematics, 157(18), 3689-3707. doi:10.1016/j.dam.2009.08.003Berman, O., & Wang, J. (2011). The minmax regret gradual covering location problem on a network with incomplete information of demand weights. European Journal of Operational Research, 208(3), 233-238. doi:10.1016/j.ejor.2010.08.016Bertsekas, D. P. (1995). Nonlinear Programming.Canbolat, M. S., & Massow, M. v. (2009). Planar maximal covering with ellipses. Computers and Industrial Engineering, 57(1), 201-208. doi:10.1016/j.cie.2008.11.015Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293Galvão, R. D., Espejo, L. G. A., & Boffey, B. (2000). A comparison of lagrangean and surrogate relaxations for the maximal covering location problem. European Journal of Operational Research, 124(2), 377-389.Ghiani, G., Laporte, G., & Musmanno, R. (2004). Introduction to Logistics Systems Planning and Control.Ji, G., & Han, S. (2014). A strategy analysis in dual-channel supply chain based on effort levels. Proceedings of the 1th International Conference on Service Systems and Service Management.Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack ProblemsMitsos, A., Chachuat, B., & Barton, P. I. (2009). Mccormick-based relaxations of algorithms. SIAM Journal on Optimization, 20(2), 573-601. doi:10.1137/080717341Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Management Science, 28(7), 775-780.Polak, E. (1997). Optimization.ReVelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem with heuristic concentration. Computers and Operations Research, 35(2), 427-435. doi:10.1016/j.cor.2006.03.007Roubíček, T. (1997). Relaxation in Optimization Theory and Variational Calculus.Shavandi, H., & Mahlooji, H. (2006). A fuzzy queuing location model with a genetic algorithm for congested systems. Applied Mathematics and Computation, 181(1), 440-456. doi:10.1016/j.amc.2005.12.058Sitek, P., & Wikarek, J. (2013). A hybrid approach to modeling and optimization for supply chain management with multimodal transport. Paper presented at the 2013 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, 777-782.Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. International Journal of Advanced Manufacturing Technology, 56(5-8), 809-821. doi:10.1007/s00170-011-3212-yScopusA Novel Numerical Approach to the MCLP Based Resilent Supply Chain OptimizationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Azhmyakov, V., Departamento de Ciencias Basicas, Universidad de Medellin, Medellin, ColombiaFernández-Gutiérrez, J.P., Departamento de Ciencias Basicas, Universidad de Medellin, Medellin, ColombiaGadi, S.K., Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, Torreon, MexicoPickl, S., Department of Computer Science, Universität der Bundeswehr München, München, GermanyAzhmyakov V.Fernández-Gutiérrez J.P.Gadi S.K.Pickl S.Departamento de Ciencias Basicas, Universidad de Medellin, Medellin, ColombiaFacultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, Torreon, MexicoDepartment of Computer Science, Universität der Bundeswehr München, München, GermanyComputational complexityInteger programmingSupply chain managementComplexity of algorithmComputational methodologyEquivalent transformationsIncomplete informationMaximal covering location problems (MCLP)Numerical approachesSupply chain management systemSupply chain optimizationOptimizationThis paper deals with the Maximal Covering Location Problem (MCLP) for Supply Chain optimization in the presence of incomplete information. A specific linear-integer structure of a generic mathematical model for Resilient Supply Chain Management System (RSCMS) makes it possible to reduce the originally given MCLP to two auxiliary optimization Knapsack-type problems. The equivalent transformation (separation) we propose provides a useful tool for an effective numerical treatment of the original MCLP and reduces the complexity of algorithms. The computational methodology we follow involves a specific Lagrange relaxation procedure. We give a rigorous formal analysis of the resulting algorithm and apply it to a practically oriented example of an optimal RSCMS design. © 2016http://purl.org/coar/access_right/c_16ec11407/4379oai:repository.udem.edu.co:11407/43792020-05-27 16:26:20.944Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |