ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS

We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny pertu...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4377
Acceso en línea:
http://hdl.handle.net/11407/4377
Palabra clave:
galaxies: kinematics and dynamics
Galaxy: disk
Galaxy: evolution
stars: kinematics and dynamics
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_9fb72fbb24138d41de460e386afe75a8
oai_identifier_str oai:repository.udem.edu.co:11407/4377
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
title ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
spellingShingle ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
galaxies: kinematics and dynamics
Galaxy: disk
Galaxy: evolution
stars: kinematics and dynamics
title_short ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
title_full ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
title_fullStr ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
title_full_unstemmed ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
title_sort ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
dc.contributor.affiliation.spa.fl_str_mv Vera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia
D'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia
dc.subject.keyword.eng.fl_str_mv galaxies: kinematics and dynamics
Galaxy: disk
Galaxy: evolution
stars: kinematics and dynamics
topic galaxies: kinematics and dynamics
Galaxy: disk
Galaxy: evolution
stars: kinematics and dynamics
description We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:52Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:52Z
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 0004637X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4377
dc.identifier.doi.none.fl_str_mv 10.3847/0004-637X/824/1/39
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 0004637X
10.3847/0004-637X/824/1/39
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4377
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89
dc.relation.ispartofes.spa.fl_str_mv Astrophysical Journal
Astrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39
dc.relation.references.spa.fl_str_mv Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.
Athanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454.
Binney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206.
Binney, J., & Tremaine, S. (1987). Galactic Dynamics.
Bird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.x
Bovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704
Brunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566
Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-Z
Carlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298.
Daniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683
D'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8
D'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34
Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3
Eddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76.
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152.
Goldstein, H. (1980). Classical Mechanics.
Grand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016
Grand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.x
Halle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612
Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364.
Hernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400.
Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics.
Jenkins, A. (1992). MNRAS, 257.
Jenkins, A., & Binney, J. (1990). MNRAS, 245.
Kazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958
Loebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8
Martinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338
Merritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567.
Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics.
Minchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112
Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139
Ollongren, A. (1962). BAN, 16, 241.
Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600
Pfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134.
Pfenniger, D., & Friedli, D. (1991). A&A, 252, 75.
Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130
Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231
Roškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.x
Schönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.x
Sellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.x
Sellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74.
Serenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123
Solway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.x
Spitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118.
Springel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.x
Toomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136.
Vera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2).
Villalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.x
Wielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447.
Yurin, D., & Springel, V. (2015). MNRAS, 452, 2343.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Institute of Physics Publishing
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
bitstream.url.fl_str_mv http://repository.udem.edu.co/bitstream/11407/4377/2/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf.jpg
http://repository.udem.edu.co/bitstream/11407/4377/1/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf
bitstream.checksum.fl_str_mv ae11fad4d5930cb856e3120b808374e3
afb5b859962be869fcbee744b1a5b34e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159145241149440
spelling 2017-12-19T19:36:52Z2017-12-19T19:36:52Z20160004637Xhttp://hdl.handle.net/11407/437710.3847/0004-637X/824/1/39reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.engInstitute of Physics PublishingFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89Astrophysical JournalAstrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.Athanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454.Binney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206.Binney, J., & Tremaine, S. (1987). Galactic Dynamics.Bird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.xBovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704Brunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-ZCarlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298.Daniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683D'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8D'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3Eddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76.Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152.Goldstein, H. (1980). Classical Mechanics.Grand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016Grand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.xHalle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364.Hernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400.Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics.Jenkins, A. (1992). MNRAS, 257.Jenkins, A., & Binney, J. (1990). MNRAS, 245.Kazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958Loebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8Martinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338Merritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567.Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics.Minchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139Ollongren, A. (1962). BAN, 16, 241.Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600Pfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134.Pfenniger, D., & Friedli, D. (1991). A&A, 252, 75.Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231Roškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.xSchönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.xSellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.xSellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74.Serenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123Solway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.xSpitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118.Springel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.xToomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136.Vera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2).Villalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.xWielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447.Yurin, D., & Springel, V. (2015). MNRAS, 452, 2343.ScopusON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKSArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, ColombiaD'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, ColombiaVera-Ciro C.D'Onghia E.Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombiagalaxies: kinematics and dynamicsGalaxy: diskGalaxy: evolutionstars: kinematics and dynamicsWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.http://purl.org/coar/access_right/c_16ecTHUMBNAIL26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf.jpg26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf.jpgIM Thumbnailimage/jpeg10724http://repository.udem.edu.co/bitstream/11407/4377/2/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf.jpgae11fad4d5930cb856e3120b808374e3MD52ORIGINAL26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdfapplication/pdf1347920http://repository.udem.edu.co/bitstream/11407/4377/1/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdfafb5b859962be869fcbee744b1a5b34eMD5111407/4377oai:repository.udem.edu.co:11407/43772020-05-27 16:29:02.519Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co