ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS
We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny pertu...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4377
- Acceso en línea:
- http://hdl.handle.net/11407/4377
- Palabra clave:
- galaxies: kinematics and dynamics
Galaxy: disk
Galaxy: evolution
stars: kinematics and dynamics
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_9fb72fbb24138d41de460e386afe75a8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4377 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
title |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
spellingShingle |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS galaxies: kinematics and dynamics Galaxy: disk Galaxy: evolution stars: kinematics and dynamics |
title_short |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
title_full |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
title_fullStr |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
title_full_unstemmed |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
title_sort |
ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS |
dc.contributor.affiliation.spa.fl_str_mv |
Vera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia D'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
galaxies: kinematics and dynamics Galaxy: disk Galaxy: evolution stars: kinematics and dynamics |
topic |
galaxies: kinematics and dynamics Galaxy: disk Galaxy: evolution stars: kinematics and dynamics |
description |
We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved. |
publishDate |
2016 |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:52Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
0004637X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4377 |
dc.identifier.doi.none.fl_str_mv |
10.3847/0004-637X/824/1/39 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
0004637X 10.3847/0004-637X/824/1/39 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4377 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89 |
dc.relation.ispartofes.spa.fl_str_mv |
Astrophysical Journal Astrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39 |
dc.relation.references.spa.fl_str_mv |
Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. Athanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454. Binney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206. Binney, J., & Tremaine, S. (1987). Galactic Dynamics. Bird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.x Bovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704 Brunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566 Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-Z Carlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298. Daniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683 D'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8 D'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34 Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3 Eddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76. Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152. Goldstein, H. (1980). Classical Mechanics. Grand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016 Grand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.x Halle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612 Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364. Hernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400. Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics. Jenkins, A. (1992). MNRAS, 257. Jenkins, A., & Binney, J. (1990). MNRAS, 245. Kazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958 Loebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8 Martinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338 Merritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567. Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics. Minchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112 Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139 Ollongren, A. (1962). BAN, 16, 241. Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600 Pfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134. Pfenniger, D., & Friedli, D. (1991). A&A, 252, 75. Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130 Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231 Roškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.x Schönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.x Sellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.x Sellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74. Serenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123 Solway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.x Spitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118. Springel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.x Toomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136. Vera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2). Villalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.x Wielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447. Yurin, D., & Springel, V. (2015). MNRAS, 452, 2343. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4377/2/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf.jpg http://repository.udem.edu.co/bitstream/11407/4377/1/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf |
bitstream.checksum.fl_str_mv |
ae11fad4d5930cb856e3120b808374e3 afb5b859962be869fcbee744b1a5b34e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159145241149440 |
spelling |
2017-12-19T19:36:52Z2017-12-19T19:36:52Z20160004637Xhttp://hdl.handle.net/11407/437710.3847/0004-637X/824/1/39reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.engInstitute of Physics PublishingFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89Astrophysical JournalAstrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics.Athanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454.Binney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206.Binney, J., & Tremaine, S. (1987). Galactic Dynamics.Bird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.xBovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704Brunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-ZCarlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298.Daniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683D'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8D'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3Eddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76.Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152.Goldstein, H. (1980). Classical Mechanics.Grand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016Grand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.xHalle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364.Hernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400.Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics.Jenkins, A. (1992). MNRAS, 257.Jenkins, A., & Binney, J. (1990). MNRAS, 245.Kazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958Loebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8Martinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338Merritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567.Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics.Minchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139Ollongren, A. (1962). BAN, 16, 241.Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600Pfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134.Pfenniger, D., & Friedli, D. (1991). A&A, 252, 75.Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231Roškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.xSchönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.xSellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.xSellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74.Serenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123Solway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.xSpitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118.Springel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.xToomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136.Vera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2).Villalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.xWielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447.Yurin, D., & Springel, V. (2015). MNRAS, 452, 2343.ScopusON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKSArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, ColombiaD'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, ColombiaVera-Ciro C.D'Onghia E.Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombiagalaxies: kinematics and dynamicsGalaxy: diskGalaxy: evolutionstars: kinematics and dynamicsWe employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved.http://purl.org/coar/access_right/c_16ecTHUMBNAIL26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf.jpg26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf.jpgIM Thumbnailimage/jpeg10724http://repository.udem.edu.co/bitstream/11407/4377/2/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdf.jpgae11fad4d5930cb856e3120b808374e3MD52ORIGINAL26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdf26. ON THE CONSERVATION OF THE VERTICAL ACTION IN GALACTIC DISKS.pdfapplication/pdf1347920http://repository.udem.edu.co/bitstream/11407/4377/1/26.%20ON%20THE%20CONSERVATION%20OF%20THE%20VERTICAL%20ACTION%20IN%20GALACTIC%20DISKS.pdfafb5b859962be869fcbee744b1a5b34eMD5111407/4377oai:repository.udem.edu.co:11407/43772020-05-27 16:29:02.519Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |