In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue

Exposure to gaseous air pollutants such as carbon monoxide (CO), nitric oxide (NO) and sulfur dioxide (SO2) promotes the occurrence of cardiac diseases. Investigations have shown that CO and SO2 block the calcium channel (ICaL) of myocytes. The SO2 also increases the sodium channel (INa), the transi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5818
Acceso en línea:
http://hdl.handle.net/11407/5818
Palabra clave:
Calcium compounds
Carbon monoxide
Cardiology
Fog
Nitric oxide
Sodium compounds
Sulfur dioxide
Tissue
Action potential durations
Action potentials
Calcium channels
Concentration-dependent
Gaseous pollutants
Inward-rectifying
Pollutant concentration
Potassium currents
Air pollution
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_9d5d8ae4923d7b6d77341b9dd5dac637
oai_identifier_str oai:repository.udem.edu.co:11407/5818
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
title In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
spellingShingle In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
Calcium compounds
Carbon monoxide
Cardiology
Fog
Nitric oxide
Sodium compounds
Sulfur dioxide
Tissue
Action potential durations
Action potentials
Calcium channels
Concentration-dependent
Gaseous pollutants
Inward-rectifying
Pollutant concentration
Potassium currents
Air pollution
title_short In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
title_full In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
title_fullStr In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
title_full_unstemmed In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
title_sort In Silico Study of Gaseous Air Pollutants Effects on Human Atrial Tissue
dc.subject.none.fl_str_mv Calcium compounds
Carbon monoxide
Cardiology
Fog
Nitric oxide
Sodium compounds
Sulfur dioxide
Tissue
Action potential durations
Action potentials
Calcium channels
Concentration-dependent
Gaseous pollutants
Inward-rectifying
Pollutant concentration
Potassium currents
Air pollution
topic Calcium compounds
Carbon monoxide
Cardiology
Fog
Nitric oxide
Sodium compounds
Sulfur dioxide
Tissue
Action potential durations
Action potentials
Calcium channels
Concentration-dependent
Gaseous pollutants
Inward-rectifying
Pollutant concentration
Potassium currents
Air pollution
description Exposure to gaseous air pollutants such as carbon monoxide (CO), nitric oxide (NO) and sulfur dioxide (SO2) promotes the occurrence of cardiac diseases. Investigations have shown that CO and SO2 block the calcium channel (ICaL) of myocytes. The SO2 also increases the sodium channel (INa), the transient outward (Ito) and inward rectifying (IK1) potassium currents. The NO blocks INa and increases ICaL. We developed concentration dependent equations to simulate the gaseous pollutants effects on the ionic currents. They were incorporated in the Courtemanche model of human atrial cell and in a 2D tissue model. A train of 10 stimuli was applied. The action potential duration (APD) was measured. S1-S2 cross-field protocol was applied to initiate a rotor. The CO and SO2 concentrations from 0 to 1000 uM and NO concentration from 0 to 500 nM were implemented. Six concentration combinations were simulated (cases 1 to 6). The gaseous air pollutants caused an APD shortening and loss of plateau phase of the action potential in a fraction that increases as the pollutant concentration increases. When the highest concentration was applied, the APD decreased by 81%. In the 2D model, from case 4 conditions it was possible to generate rotor, propagating with high stability. These results show pro-arrhythmic effects of gaseous air pollutants. © 2019 Creative Commons.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:54:09Z
dc.date.available.none.fl_str_mv 2020-04-29T14:54:09Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9781728169361
dc.identifier.issn.none.fl_str_mv 23258861
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5818
dc.identifier.doi.none.fl_str_mv 10.23919/CinC49843.2019.9005892
identifier_str_mv 9781728169361
23258861
10.23919/CinC49843.2019.9005892
url http://hdl.handle.net/11407/5818
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081137801&doi=10.23919%2fCinC49843.2019.9005892&partnerID=40&md5=f33b533b998d7d7b0a8bfe555f8c0771
dc.relation.citationvolume.none.fl_str_mv 2019-September
dc.relation.references.none.fl_str_mv (2014) Air Pollution: World's Worst Environmental Health Risk, , United Nations Environment Programme, UNEP Year Book 2014: Emerging Issues in Our Global Environment
Abramochkin, D.V., Haertdinov, N.N., Porokhnya, M.V., Zefirov, A.L., Sitdikova, G.F., Carbon monoxide affects electrical and contractile activity of rat myocardium (2011) J. Biomed. Sci., 18 (1), p. 40
Zhang, R.-Y., Sulfur dioxide derivatives depress Ltype calcium channel in rat cardiomyocytes (2011) Clin. Exp. Pharmacol. Physiol., 38 (7), pp. 416-422
Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol., 44 (3), pp. 355-363
Nie, A., Meng, Z., Study of the interaction of sulfur dioxide derivative with cardiac sodium channel (2005) Biochim Biophys Acta, 1718, pp. 67-73
Nie, A., Meng, Z., Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes (2005) Arch. Biochem. Biophys., 442 (2), pp. 187-195
Kirstein, M., Rivet-Bastide, M., Hatem, S., Benardeau, A., Mercadirer, J., Fischmeister, R., Nitric oxide regulates the calcium current in isolated human atrial myocytes (1995) J. Clin. Invest., 95 (2), pp. 794-802
Ahmmed, G., Xu, Y., Hong Dong, P., Zhao, Z., Eiserich, J., Chiamvimonvat, N., Nitric oxide modulates cardiac Na+ channel via protein kinase A and protein kinase G (2001) Circ. Res., 89, pp. 1005-1013
Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275, pp. H301-H321
Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol., 44 (3), pp. 355-363
Ugarte, J., Tobon, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), p. 194
Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol., 12 (6), pp. 716-722
Miller, K.A., Long-term exposure to air pollution and incidence of cardiovascular events in women (2007) N. Engl. J. Med., 356 (5), pp. 447-458
Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A., Increased particulate air pollution and the triggering of myocardial infarction (2001) Circulation, 103 (23), pp. 2810-2815
Glantz, S.A., Air pollution as a cause of heart disease. Time for action (2002) J. Am. Coll. Cardiol., 39 (6), pp. 943-945
Thurston, G.D., Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort (2016) Environ. Health Perspect., 124 (4), pp. 484-490
Atkinson, D., Sim, T., Grant, J., Sodium metabisulfite and SO2 release: An under-recognized hazard among shrimp fishermen (1993) Ann. Allergy, 71 (6), pp. 563-566
Henry, C.R., Satran, D., Lindgren, B., Adkinson, C., Nicholson, C.I., Henry, T.D., Myocardial injury and longterm mortality following moderate to severe carbon monoxide poisoning (2006) Am. Med. Assoc., 295 (4), pp. 398-402
Trenor, B., Cardona, K., Saiz, J., Rajamani, S., Belardinelli, L., Giles, W.R., Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations (2013) Front. Physiol., 4, p. 282
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv IEEE Computer Society
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv Computing in Cardiology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159136717275136
spelling 20192020-04-29T14:54:09Z2020-04-29T14:54:09Z978172816936123258861http://hdl.handle.net/11407/581810.23919/CinC49843.2019.9005892Exposure to gaseous air pollutants such as carbon monoxide (CO), nitric oxide (NO) and sulfur dioxide (SO2) promotes the occurrence of cardiac diseases. Investigations have shown that CO and SO2 block the calcium channel (ICaL) of myocytes. The SO2 also increases the sodium channel (INa), the transient outward (Ito) and inward rectifying (IK1) potassium currents. The NO blocks INa and increases ICaL. We developed concentration dependent equations to simulate the gaseous pollutants effects on the ionic currents. They were incorporated in the Courtemanche model of human atrial cell and in a 2D tissue model. A train of 10 stimuli was applied. The action potential duration (APD) was measured. S1-S2 cross-field protocol was applied to initiate a rotor. The CO and SO2 concentrations from 0 to 1000 uM and NO concentration from 0 to 500 nM were implemented. Six concentration combinations were simulated (cases 1 to 6). The gaseous air pollutants caused an APD shortening and loss of plateau phase of the action potential in a fraction that increases as the pollutant concentration increases. When the highest concentration was applied, the APD decreased by 81%. In the 2D model, from case 4 conditions it was possible to generate rotor, propagating with high stability. These results show pro-arrhythmic effects of gaseous air pollutants. © 2019 Creative Commons.engIEEE Computer SocietyFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081137801&doi=10.23919%2fCinC49843.2019.9005892&partnerID=40&md5=f33b533b998d7d7b0a8bfe555f8c07712019-September(2014) Air Pollution: World's Worst Environmental Health Risk, , United Nations Environment Programme, UNEP Year Book 2014: Emerging Issues in Our Global EnvironmentAbramochkin, D.V., Haertdinov, N.N., Porokhnya, M.V., Zefirov, A.L., Sitdikova, G.F., Carbon monoxide affects electrical and contractile activity of rat myocardium (2011) J. Biomed. Sci., 18 (1), p. 40Zhang, R.-Y., Sulfur dioxide derivatives depress Ltype calcium channel in rat cardiomyocytes (2011) Clin. Exp. Pharmacol. Physiol., 38 (7), pp. 416-422Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol., 44 (3), pp. 355-363Nie, A., Meng, Z., Study of the interaction of sulfur dioxide derivative with cardiac sodium channel (2005) Biochim Biophys Acta, 1718, pp. 67-73Nie, A., Meng, Z., Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes (2005) Arch. Biochem. Biophys., 442 (2), pp. 187-195Kirstein, M., Rivet-Bastide, M., Hatem, S., Benardeau, A., Mercadirer, J., Fischmeister, R., Nitric oxide regulates the calcium current in isolated human atrial myocytes (1995) J. Clin. Invest., 95 (2), pp. 794-802Ahmmed, G., Xu, Y., Hong Dong, P., Zhao, Z., Eiserich, J., Chiamvimonvat, N., Nitric oxide modulates cardiac Na+ channel via protein kinase A and protein kinase G (2001) Circ. Res., 89, pp. 1005-1013Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol., 275, pp. H301-H321Nie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol., 44 (3), pp. 355-363Ugarte, J., Tobon, C., Orozco-Duque, A., Entropy mapping approach for functional reentry detection in atrial fibrillation: An in-silico study (2019) Entropy, 21 (2), p. 194Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol., 12 (6), pp. 716-722Miller, K.A., Long-term exposure to air pollution and incidence of cardiovascular events in women (2007) N. Engl. J. Med., 356 (5), pp. 447-458Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A., Increased particulate air pollution and the triggering of myocardial infarction (2001) Circulation, 103 (23), pp. 2810-2815Glantz, S.A., Air pollution as a cause of heart disease. Time for action (2002) J. Am. Coll. Cardiol., 39 (6), pp. 943-945Thurston, G.D., Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort (2016) Environ. Health Perspect., 124 (4), pp. 484-490Atkinson, D., Sim, T., Grant, J., Sodium metabisulfite and SO2 release: An under-recognized hazard among shrimp fishermen (1993) Ann. Allergy, 71 (6), pp. 563-566Henry, C.R., Satran, D., Lindgren, B., Adkinson, C., Nicholson, C.I., Henry, T.D., Myocardial injury and longterm mortality following moderate to severe carbon monoxide poisoning (2006) Am. Med. Assoc., 295 (4), pp. 398-402Trenor, B., Cardona, K., Saiz, J., Rajamani, S., Belardinelli, L., Giles, W.R., Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations (2013) Front. Physiol., 4, p. 282Computing in CardiologyCalcium compoundsCarbon monoxideCardiologyFogNitric oxideSodium compoundsSulfur dioxideTissueAction potential durationsAction potentialsCalcium channelsConcentration-dependentGaseous pollutantsInward-rectifyingPollutant concentrationPotassium currentsAir pollutionIn Silico Study of Gaseous Air Pollutants Effects on Human Atrial TissueConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Tobón, C., Universidad de Medellín, MATBIOM, Cra. 87 #30-65, Medellín, Colombia; Pachajoa, D.C., Instituto Tecnológico Metropolitano, GI2B, Medellín, Colombia; Ugarte, J.P., Universidad de San Buenaventura, GIMSC, Medellín, Colombia; Saiz, J., Universitat Politècnica de València, CI2B, Valencia, Spainhttp://purl.org/coar/access_right/c_16ecTobón C.Pachajoa D.C.Ugarte J.P.Saiz J.11407/5818oai:repository.udem.edu.co:11407/58182020-05-27 16:23:30.099Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co