Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling

The terrestrial heat flux density, an essential information to evaluate the deep geothermal resource potential, is rarely defined over urban areas where energy needs are important. In an effort to fill this gap, the subsurface thermal conductivity estimated during two thermal response tests was coup...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5699
Acceso en línea:
http://hdl.handle.net/11407/5699
Palabra clave:
Geothermal
Heat flow
Paleoclimate
Temperature profile
Thermal conductivity
Thermal response test
Geophysics
Geothermal fields
Glacial geology
Heat exchangers
Heat flux
Heat transfer
Numerical models
Temperature control
Testing
Bottom boundary conditions
Conductive heat transfer
Geothermal
Ground heat exchangers
Numerical simulation approaches
Paleoclimates
Temperature profiles
Thermal response test
Thermal conductivity
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_9d18f5fa7e360f2b5ed8128566588e0c
oai_identifier_str oai:repository.udem.edu.co:11407/5699
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
title Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
spellingShingle Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
Geothermal
Heat flow
Paleoclimate
Temperature profile
Thermal conductivity
Thermal response test
Geophysics
Geothermal fields
Glacial geology
Heat exchangers
Heat flux
Heat transfer
Numerical models
Temperature control
Testing
Bottom boundary conditions
Conductive heat transfer
Geothermal
Ground heat exchangers
Numerical simulation approaches
Paleoclimates
Temperature profiles
Thermal response test
Thermal conductivity
title_short Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
title_full Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
title_fullStr Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
title_full_unstemmed Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
title_sort Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling
dc.subject.none.fl_str_mv Geothermal
Heat flow
Paleoclimate
Temperature profile
Thermal conductivity
Thermal response test
Geophysics
Geothermal fields
Glacial geology
Heat exchangers
Heat flux
Heat transfer
Numerical models
Temperature control
Testing
Bottom boundary conditions
Conductive heat transfer
Geothermal
Ground heat exchangers
Numerical simulation approaches
Paleoclimates
Temperature profiles
Thermal response test
Thermal conductivity
topic Geothermal
Heat flow
Paleoclimate
Temperature profile
Thermal conductivity
Thermal response test
Geophysics
Geothermal fields
Glacial geology
Heat exchangers
Heat flux
Heat transfer
Numerical models
Temperature control
Testing
Bottom boundary conditions
Conductive heat transfer
Geothermal
Ground heat exchangers
Numerical simulation approaches
Paleoclimates
Temperature profiles
Thermal response test
Thermal conductivity
description The terrestrial heat flux density, an essential information to evaluate the deep geothermal resource potential, is rarely defined over urban areas where energy needs are important. In an effort to fill this gap, the subsurface thermal conductivity estimated during two thermal response tests was coupled with undisturbed temperature profile measurements conducted in the same boreholes to infer terrestrial heat flow near the surface. The undisturbed temperature profiles were reproduced with an inverse numerical model of conductive heat transfer, where the optimization of the model bottom boundary condition allows determining the near-surface heat flow. The inverse numerical simulation approach was previously validated by optimizing a steady-state and synthetic temperature profile calculated with Fourier's Law. Data from two thermal response tests in ground heat exchangers of one hundred meters depth were analyzed with inverse numerical simulations provided as examples for the town of Québec City, Canada, and Orléans, France. The temperature profiles measured at the sites and corrected according to the paleoclimate effects of the quaternary glaciations were reproduced with the model. The approach presented offers an alternative to assess heat flow in the preliminary exploration of deep geothermal resources of urban areas, where thermal response tests may be common while deep wells are sparsely distributed over the area to assess heat flow. © 2019 Elsevier Ltd
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:42Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:42Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14747065
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5699
dc.identifier.doi.none.fl_str_mv 10.1016/j.pce.2019.07.002
identifier_str_mv 14747065
10.1016/j.pce.2019.07.002
url http://hdl.handle.net/11407/5699
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069710860&doi=10.1016%2fj.pce.2019.07.002&partnerID=40&md5=e61d9d1ef6a2a5719bda18b99cf1b182
dc.relation.references.none.fl_str_mv Allis, R.G., The effect of Pleistocene climatic variations on the geothermal regime in Ontario: a reassessment (1978) Can. J. Earth Sci., 16 (7), p. 1517
Aziz, A.K., Monk, P., Continuous finite elements in space and time for the heat equation (1989) Math. Comput., 52 (186), pp. 255-274
Bédard, K., Comeau, F.A., Raymond, J., Gloaguen, E., Comeau, G., Millet, E., Foy, S., Cartographie de la conductivité thermique des Basses-Terres du Saint-Laurent. Rapport de recherche (R1789) (2018), INRS, Centre Eau Terre Environnement Québec
Bédard, K., Comeau, F.A., Raymond, J., Malo, M., Nasr, M., Geothermal characterization of the St. Lawrence Lowlands sedimentary basin, Québec, Canada (2017) Nat. Resour. Res., , 10.1007/s11053-017-9363-2
Bédard, K., Raymond, J., Malo, M., Konstantinovskaya, E., Minea, V., St. Lawrence Lowlands bottom-hole temperature: various correction methods (2014) GRC Trans., 38, pp. 351-355
Bédard, K., Comeau, F.A., Malo, M., Capacité effective de stockage géologique du CO2 dans le bassin des Basses-Terres du Saint-Laurent (No. INRSCO2 2012 V3.1) (2012), Institut national de la recherche scientifique - Centre Eau Terre Environnement Québec, Canada
Beck, A.E., Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means (1977) Tectonophysics, 41 (1), pp. 17-39
Bodri, L., Cermak, V., CHAPTER 2 - climate change and subsurface temperature (2007) Borehole Climatology, pp. 37-173. , Elsevier Oxford
COMSOL, A.B., COMSOL Multiphysics Reference Manual. Stockholm (2016)
COMSOL, A.B., Optimization Module User's Guide, Version 4.4. Stockholm (2013)
Conn, A.R., Scheinberg, K., Vicente, L.N., (2009) Introduction to Derivative-free Optimization, 8. , Siam Philadelfia
Dabral, V., Kapoor, S., Dhawan, S., Numerical simulation of one dimensional heat equation: B-spline finite element method (2011) Indian J. Comput. Sci. Eng. (IJCSE), 2, pp. 222-235
Davies, J.H., Global map of solid Earth surface heat flow (2013) Geochem. Geophys. Geosyst., 14 (10), pp. 4608-4622
Fou, T.-K.J., Thermal Conductivity and Heat Flow at St. Jerôme, Quebec (1969), (M.Sc. Thesis) McGill University Montreal, Canada
Golovanova, I.V., Sal'manova, R.Y., Tagirova, C.D., Method for deep temperature estimation with regard to the paleoclimate influence on heat flow (2014) Russ. Geol. Geophys., 55 (9), pp. 1130-1137
Hartmann, A., Rath, V., Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs (2005) J. Geophys. Eng., 2 (4), p. 299
Jessop, A.M., (1990) Chapter 3 - Analysis and Correction of Heat Flow on Land. Thermal Geophysics, 17, pp. 57-85. , Elsevier Amsterdam
Majorowicz, J.A., Minea, V., Geothermal energy potential in the St-Lawrence river area, Québec (2012) Geothermics, 43, pp. 25-36
Majorowicz, J., Wybraniec, S., New terrestrial heat flow map of Europe after regional paleoclimatic correction application (2011) Int. J. Earth Sci., 100 (4), pp. 881-887
Majorowicz, J., afanda, J., Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km-deep well Torun-1 (2008) Int. J. Earth Sci., 97 (2), pp. 307-315
Mareschal, J.C., Jaupart, C., Variations of surface heat flow and lithospheric thermal structure beneath the North American craton (2004) Earth Planet. Sci. Lett., 223 (1), pp. 65-77
Mareschal, J.C., Jaupart, C., Gariépy, C., Cheng, L.Z., Guillou-Frottier, L., Bienfait, G., Lapointe, R., Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield (2000) Can. J. Earth Sci., 37 (2-3), pp. 399-414
Ouzzane, M., Eslami-Nejad, P., Badache, M., Aidoun, Z., New correlations for the prediction of the undisturbed ground temperature (2015) Geothermics, 53, pp. 379-384
Raymond, J., Lamarche, L., Malo, M., Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers (2016) Renew. Energy, 99, pp. 614-621
Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444
Sanner, B., Hellström, G., Spitler, J., Gehlin, S., More than 15 Years of Mobile Thermal Response Test A Summary of Experiences and Prospects (2013), European Geothermal Congress Pisa
Sass, J.H., Beardsmore, G., Heat Flow Measurements, Continental. Encyclopedia of Solid Earth Geophysics (2011), pp. 569-573. , Springer Dordrecht
Données thermiques (flux de chaleur et température) (2007), http://sigminesfrance.brgm.fr/geophy_flux.asp, Bureau de recherches géologiques et minières Orléans
Saull, V.A., Clark, T.H., Doig, R.P., Butler, R.B., Terrestrial heat flow in the St. Lawrence Lowland of Québec (1962) Can. Min. Metall. Bull., 65, pp. 63-66
Velez-Marquez, M.I., Raymond, J., Blessent, D., Philippe, M., Simon, N., Bour, O., Lamarche, L., Distributed thermal response tests using a heating cable and fiber optic temperature sensing (2018) Energies, 11 (11), p. 3059
Westaway, R., Younger, P.L., Accounting for paleoclimate and topography: a rigorous approach to correction of the British geothermal dataset (2013) Geothermics, 48, pp. 31-51
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental;Ingeniería en Energía
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv Physics and Chemistry of the Earth
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159103147114496
spelling 20192020-04-29T14:53:42Z2020-04-29T14:53:42Z14747065http://hdl.handle.net/11407/569910.1016/j.pce.2019.07.002The terrestrial heat flux density, an essential information to evaluate the deep geothermal resource potential, is rarely defined over urban areas where energy needs are important. In an effort to fill this gap, the subsurface thermal conductivity estimated during two thermal response tests was coupled with undisturbed temperature profile measurements conducted in the same boreholes to infer terrestrial heat flow near the surface. The undisturbed temperature profiles were reproduced with an inverse numerical model of conductive heat transfer, where the optimization of the model bottom boundary condition allows determining the near-surface heat flow. The inverse numerical simulation approach was previously validated by optimizing a steady-state and synthetic temperature profile calculated with Fourier's Law. Data from two thermal response tests in ground heat exchangers of one hundred meters depth were analyzed with inverse numerical simulations provided as examples for the town of Québec City, Canada, and Orléans, France. The temperature profiles measured at the sites and corrected according to the paleoclimate effects of the quaternary glaciations were reproduced with the model. The approach presented offers an alternative to assess heat flow in the preliminary exploration of deep geothermal resources of urban areas, where thermal response tests may be common while deep wells are sparsely distributed over the area to assess heat flow. © 2019 Elsevier LtdengElsevier LtdIngeniería Ambiental;Ingeniería en EnergíaFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069710860&doi=10.1016%2fj.pce.2019.07.002&partnerID=40&md5=e61d9d1ef6a2a5719bda18b99cf1b182Allis, R.G., The effect of Pleistocene climatic variations on the geothermal regime in Ontario: a reassessment (1978) Can. J. Earth Sci., 16 (7), p. 1517Aziz, A.K., Monk, P., Continuous finite elements in space and time for the heat equation (1989) Math. Comput., 52 (186), pp. 255-274Bédard, K., Comeau, F.A., Raymond, J., Gloaguen, E., Comeau, G., Millet, E., Foy, S., Cartographie de la conductivité thermique des Basses-Terres du Saint-Laurent. Rapport de recherche (R1789) (2018), INRS, Centre Eau Terre Environnement QuébecBédard, K., Comeau, F.A., Raymond, J., Malo, M., Nasr, M., Geothermal characterization of the St. Lawrence Lowlands sedimentary basin, Québec, Canada (2017) Nat. Resour. Res., , 10.1007/s11053-017-9363-2Bédard, K., Raymond, J., Malo, M., Konstantinovskaya, E., Minea, V., St. Lawrence Lowlands bottom-hole temperature: various correction methods (2014) GRC Trans., 38, pp. 351-355Bédard, K., Comeau, F.A., Malo, M., Capacité effective de stockage géologique du CO2 dans le bassin des Basses-Terres du Saint-Laurent (No. INRSCO2 2012 V3.1) (2012), Institut national de la recherche scientifique - Centre Eau Terre Environnement Québec, CanadaBeck, A.E., Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means (1977) Tectonophysics, 41 (1), pp. 17-39Bodri, L., Cermak, V., CHAPTER 2 - climate change and subsurface temperature (2007) Borehole Climatology, pp. 37-173. , Elsevier OxfordCOMSOL, A.B., COMSOL Multiphysics Reference Manual. Stockholm (2016)COMSOL, A.B., Optimization Module User's Guide, Version 4.4. Stockholm (2013)Conn, A.R., Scheinberg, K., Vicente, L.N., (2009) Introduction to Derivative-free Optimization, 8. , Siam PhiladelfiaDabral, V., Kapoor, S., Dhawan, S., Numerical simulation of one dimensional heat equation: B-spline finite element method (2011) Indian J. Comput. Sci. Eng. (IJCSE), 2, pp. 222-235Davies, J.H., Global map of solid Earth surface heat flow (2013) Geochem. Geophys. Geosyst., 14 (10), pp. 4608-4622Fou, T.-K.J., Thermal Conductivity and Heat Flow at St. Jerôme, Quebec (1969), (M.Sc. Thesis) McGill University Montreal, CanadaGolovanova, I.V., Sal'manova, R.Y., Tagirova, C.D., Method for deep temperature estimation with regard to the paleoclimate influence on heat flow (2014) Russ. Geol. Geophys., 55 (9), pp. 1130-1137Hartmann, A., Rath, V., Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs (2005) J. Geophys. Eng., 2 (4), p. 299Jessop, A.M., (1990) Chapter 3 - Analysis and Correction of Heat Flow on Land. Thermal Geophysics, 17, pp. 57-85. , Elsevier AmsterdamMajorowicz, J.A., Minea, V., Geothermal energy potential in the St-Lawrence river area, Québec (2012) Geothermics, 43, pp. 25-36Majorowicz, J., Wybraniec, S., New terrestrial heat flow map of Europe after regional paleoclimatic correction application (2011) Int. J. Earth Sci., 100 (4), pp. 881-887Majorowicz, J., afanda, J., Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km-deep well Torun-1 (2008) Int. J. Earth Sci., 97 (2), pp. 307-315Mareschal, J.C., Jaupart, C., Variations of surface heat flow and lithospheric thermal structure beneath the North American craton (2004) Earth Planet. Sci. Lett., 223 (1), pp. 65-77Mareschal, J.C., Jaupart, C., Gariépy, C., Cheng, L.Z., Guillou-Frottier, L., Bienfait, G., Lapointe, R., Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield (2000) Can. J. Earth Sci., 37 (2-3), pp. 399-414Ouzzane, M., Eslami-Nejad, P., Badache, M., Aidoun, Z., New correlations for the prediction of the undisturbed ground temperature (2015) Geothermics, 53, pp. 379-384Raymond, J., Lamarche, L., Malo, M., Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers (2016) Renew. Energy, 99, pp. 614-621Raymond, J., Lamarche, L., Development and numerical validation of a novel thermal response test with a low power source (2014) Geothermics, 51, pp. 434-444Sanner, B., Hellström, G., Spitler, J., Gehlin, S., More than 15 Years of Mobile Thermal Response Test A Summary of Experiences and Prospects (2013), European Geothermal Congress PisaSass, J.H., Beardsmore, G., Heat Flow Measurements, Continental. Encyclopedia of Solid Earth Geophysics (2011), pp. 569-573. , Springer DordrechtDonnées thermiques (flux de chaleur et température) (2007), http://sigminesfrance.brgm.fr/geophy_flux.asp, Bureau de recherches géologiques et minières OrléansSaull, V.A., Clark, T.H., Doig, R.P., Butler, R.B., Terrestrial heat flow in the St. Lawrence Lowland of Québec (1962) Can. Min. Metall. Bull., 65, pp. 63-66Velez-Marquez, M.I., Raymond, J., Blessent, D., Philippe, M., Simon, N., Bour, O., Lamarche, L., Distributed thermal response tests using a heating cable and fiber optic temperature sensing (2018) Energies, 11 (11), p. 3059Westaway, R., Younger, P.L., Accounting for paleoclimate and topography: a rigorous approach to correction of the British geothermal dataset (2013) Geothermics, 48, pp. 31-51Physics and Chemistry of the EarthGeothermalHeat flowPaleoclimateTemperature profileThermal conductivityThermal response testGeophysicsGeothermal fieldsGlacial geologyHeat exchangersHeat fluxHeat transferNumerical modelsTemperature controlTestingBottom boundary conditionsConductive heat transferGeothermalGround heat exchangersNumerical simulation approachesPaleoclimatesTemperature profilesThermal response testThermal conductivityTerrestrial heat flow evaluation from thermal response tests combined with temperature profilingArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Vélez Márquez, M.I., Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Qc, Canada; Raymond, J., Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Québec, Qc, Canada; Blessent, D., Programa de Ingeniería Ambiental, Universidad de Medellín, Carrera 87 N° 30 65, Medellín, Colombia; Philippe, M., Georesources Division, BRGM, 3 avenue Claude Guillemin, BP 36009, Orléans Cedex 2, 45060, Francehttp://purl.org/coar/access_right/c_16ecVélez Márquez M.I.Raymond J.Blessent D.Philippe M.11407/5699oai:repository.udem.edu.co:11407/56992020-05-27 15:44:05.067Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co