Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media
Fractured geological media are complex systems where hydrodynamic parameters are highly variable as result of their structure. Indeed, measured parameters depend on the scale and the implemented methodologies. with high variability of hydrodynamic parameters. This variableness also depends on the sc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6058
- Acceso en línea:
- http://hdl.handle.net/11407/6058
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_9c11f72096a4ec16741e8903fae350ac |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6058 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
spellingShingle |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title_short |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title_full |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title_fullStr |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title_full_unstemmed |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
title_sort |
Analysis of the scale-dependence of the hydraulic conductivity in complex fractured media |
description |
Fractured geological media are complex systems where hydrodynamic parameters are highly variable as result of their structure. Indeed, measured parameters depend on the scale and the implemented methodologies. with high variability of hydrodynamic parameters. This variableness also depends on the scale of measurement. Most theoretical frameworks assume homogeneous media adding uncertainty to the fractured media hydrogeological characterization. In fractured media, the complexity is even harder to characterize as available theoretical frameworks assume homogeneous media. Nevertheless, the increase of underground engineering projects and their reported impacts on surface and groundwater resources claim efforts to a better understanding of fractured media groundwater hydrodynamics. In this work, we propose a general approach for the scale-dependence of the hydraulic conductivity based on power law concepts. To do so, the hydraulic conductivity field of a highly fractured massif in the Colombian Andes is estimated over scales from 6 cm to 12 km. Laboratory measurements, re-analyzes of hydraulic tests, and calibration of 3D numerical models were performed, using the La Línea tunnels (in Colombia) as real scale laboratory. Hydraulic conductivity values vary up to four orders of magnitude at each characteristic length scale and show an increase until the local scale, followed by a small decrease at regional scale. In this way, field and regional scales display the same orders of magnitude. Finally, the scale-dependence of the hydraulic conductivity values based on power law concepts is proposed. As a consequence, it suggests the possibility to use field data in regional models, once hydrogeological units and structures are properly defined. © 2018 Elsevier B.V. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:01Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:01Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
221694 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6058 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jhydrol.2018.12.006 |
identifier_str_mv |
221694 10.1016/j.jhydrol.2018.12.006 |
url |
http://hdl.handle.net/11407/6058 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059321267&doi=10.1016%2fj.jhydrol.2018.12.006&partnerID=40&md5=aef3495dc8ebb37fe5ba4f4836ab9d03 |
dc.relation.citationvolume.none.fl_str_mv |
569 |
dc.relation.citationstartpage.none.fl_str_mv |
556 |
dc.relation.citationendpage.none.fl_str_mv |
572 |
dc.relation.references.none.fl_str_mv |
Agarwal, R., (1980), https://doi.org/10.2118/9289-MS, A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Annual Technical Conference and Exhibition, (p. 20 pp.) American Petroleum Institute, (1998), p. 236. , Recommended Practices for Core Analysis RB 40. API Avellaneda, P.M., Donado, L.D., (2013), Asistencia técnica a CAF e INVÍAS en la revisión, análisis, evaluación y diseño de propuestas para el monitoreo, seguimiento y manejo adecuado de los aspectos hidrogeológicos del proyecto cruce de la cordillera central. Informe Final. Technical Report Universidad Nacional de Colombia, Facultad de Ingeniería Bogotá, D.C., Colombia Azizmohammadi, S., Matthäi, S.K., Is the permeability of naturally fractured rocks scale dependent? (2017) Water Resour. Res., 53, pp. 8041-8063 Barker, J., A generalized radial flow model for hydraulic tests in fractured rock (1988) Water Resour. Res., 24, pp. 1796-1804. Barker, J., Black, J.H., Slug test in fissured aquifers (1983) Water Resour. Res., 19, pp. 1558-1564 Bierkens, M.F.P., Gaast, J.W.J.V.D., Upscaling hydraulic conductivity: theory and examples from geohydrological studies (1998) Nutr. Cycl. Agroecosyst., 50, pp. 193-207 Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Morata, D., Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia) (2014) Int. Geol. Rev., 56, pp. 1852-1872 Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B., Scaling of fracture systems in geological media (2001) Rev. Geophys., 39, pp. 347-383 Bourdet, D., Whitle, T., Douglas, A., Pirard, Y., A new set of type curves simplifies well test analysis (1983) World Oil, 196, pp. 95-106 Bouwer, H., Rice, R., A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells (1976) Water Resour. Res., 12, pp. 423-428 Brunner, P., Simmons, C.T., HydroGeoSphere: a fully integrated, physically based hydrological model (2012) Ground Water, 50, pp. 170-176. Butler, J.J., McElwee, C.D., Liu, W., Improving the Quality of Parameter Estimates Obtained from Slug Tests (1996), https://doi.org/10.1111/j.1745-6584.1996.tb02029.x Březina, J., Stebel, J., Flanderka, D., Exner, P., Hybš, J., (2017), FLOW123D version 2.1.2 User guide and input reference. Technical Report Technical university of Liberec Cediel, F., Shaw, R.P., (2003), pp. 815-848. , Tectonic Assembly of the Northern Andean Block. eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, 79 (1999), Consorcio la Línea Estudio de Impacto Ambiental ”Estudios de Fase III Cruce de la Cordillera Central (paralela Ibagué - La Línea) entre los Departamentos de Tolima y Quindí”. Informe de geología y geotécnia. Technical Report (Gómez Cajiao y asociados S.A, Consultoria Colombiana S.A, Estudios técnicos S.A) Cooper, H., Bredehoeft, J.D., Papadopulus, I., Response of a finite-diameter well to an instantaneous charge of water (1967) Water Resour. Res., 3 Darcel, C., Davy, P., Le Goc, R., de Dreuzy, J.R., (2009), Bour, O. Statistical methodology for discrete fracture model – including fracture size, orientation uncertainty together with intensity uncertainty and variability Davy, P., Le Goc, R., Darcel, C., A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling (2013) J. Geophys. Res.: Solid Earth, 118, pp. 1393-1407 Davy, P., Le Goc, R., Darcel, C., Bour, O., De Dreuzy, J.R., Munier, R., A likely universal model of fracture scaling and its consequence for crustal hydromechanics (2010) J. Geophys. Res.: Solid Earth, 115, pp. 1-13 De Bartolo, S., Fallico, C., Veltri, M., A note on the fractal behavior of hydraulic conductivity and effective porosity for experimental values in a confined aquifer (2013) Sci. World J., p. 2013 Dewandel, B., Lachassagne, P., Boudier, F., Al-Hattali, S., Ladouche, B., Pinault, J.L., Al-Suleimani, Z., A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach (2005) Hydrogeol. J., 13, pp. 708-726 Donado, L., Piña, A., Vargas, L., Figueroa, A., Sanchez, I., Pescador, J., Saavedra, E., Cortes, A., (2018), Contrato Interadministrativo No. 01226 de 2017 Diseñar e implementar un programa de modelación matemática que permita consolidar y analizar la información obtenida de los monitoreos a las estaciones hidrometeorológicas según requerimiento ANLA. Technical Report Universidad Nacional de Colombia - INVIAS Bogotá Dougherty, D., Marryott, R., Optimal groundwater management. Simulated annealing (1991) Water Resour. Res., 27, pp. 2493-52508 Duffield, G.M., (2007), Aqtesolve. User's Guide Evans, D.D., Nicholson, T.J., Rasmussen, T.C., (2001) Flow and Transport Through Unsaturated Fractured Rock, Geophys. Monogr. Ser., 42. , American Geophysical Union Washington, D.C Farmer, C.L., Upscaling: a review (2002) Int. J. Numer. Meth. Fluids, 40, pp. 63-78 Ferroud, A., Chesnaux, R., Rafini, S., Insights on pumping well interpretation from flow dimension analysis: the learnings of a multi-context field database (2018) J. Hydrol., 556, pp. 449-474 Giménez, D., Perfect, E., Rawls, W.J., Pachepsky, Y., Fractal models for predicting soil hydraulic properties: a review (1997) Eng. Geol., p. 48 Gomez-Cruz, A.D.J., Moreno-Sánchez, M., Pardo-Trujillo, A., Edad y Origen del Complejo metasedimentario Aranzazu-Manizales en los Alrededores de Manizales (Departamento de Caldas, Colombia) (1995) Geología Colombiana, 19, pp. 83-93 Guadagnini, A., Riva, M., Neuman, S.P., Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks (2012) Hydrol. Earth Syst. Sci., 16, pp. 3249-3260 Hartley, L., Joyce, S., Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden (2013) J. Hydrol., 500, pp. 200-216 Horner, D.R., (1951), Pressure build-up in wells. 3rd World Petroleum Congress Hvorslev, M.J., (1951), Time lag and soil permeability in ground-water observations. Technical Report Corps of Engineers, U.S. ARMY Vicksburg, Mississippi Hyder, A., Butler, J., McElwee, C., Liu, W., Slug test in partially penetrating wells (1994) Water Resour. Res., 30, pp. 2945-2957 (2007), IRENA Estudios hidrogeológicos e hidrológicos en el área de influencia del túnel piloto de la línea, enmarcado dentro de la gestión ambiental. Informe Final. Technical Report Armenia, Colombia Karasaki, K., Long, J.C., Witherspoon, P.A., Analytical models of slug tests (1988) Water Resour. Res., 24, pp. 115-126. Kirali, L., Rapport sur l’état actuel des connaissances dans le domaine des caractères physques des roches karstiques (1975) Hydrogeology of Karstic Terrains, pp. 53-67 Kirkpatrick, S., Gelatt, C., Vecchi, M., Optimization by simulated annealing (1983) Science, 220, pp. 671-680 Klimczak, C., Schultz, R.A., Parashar, R., Reeves, D.M., Cubic law with aperture-length correlation: implications for network scale fluid flow (2010) Hydrogeol. J., 18, pp. 851-862. Krause, P., Boyle, D.P., Bäse, F., Comparison of different efficiency criteria for hydrological model assessment (2005) Adv. Geosci., 5, pp. 89-97. Kumar, D., Ahmed, S., Krishnamurthy, N., Dewandel, B., Reducing ambiguities in vertical electrical sounding interpretations: a geostatistical application (2007) J. Appl. Geophys., 62, pp. 16-32. Liu, R., Jiang, Y., Li, B., Wang, X., A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks (2015) Comput. Geotech., 65, pp. 45-55. Liu, R., Yu, L., Jiang, Y., Wang, Y., Li, B., Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks (2017) J. Nat. Gas Sci. Eng., 45, pp. 771-785 (2015), Madrid Montoya, C.A. Memoria Explicativa Del Mapa Geológico Del Túnel De La Línea. Technical Report Servicio Geologico Colombiano Martinez-Landa, L., Carrera, J., An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland) (2005) Water Resour. Res., 41, pp. 1-13. Martinez-Landa, L., Carrera, J., Perez-Estaún, A., Gomez, P., Bajos, C., Structural geology and geophysics as a key to build a hydrogeologic model of granite rock to support a mine (2016) Solid Earth Discussions, pp. 1-25 Mattot, L., (2005), Ostrich: An Optimization Software Tool, Documentation and User's Guide, Version 1.6 (Ph.D. thesis), University at Buffalo Miao, T., Yu, B., Duan, Y., Fang, Q., A fractal analysis of permeability for fractured rocks (2015) Int. J. Heat Mass Transf., 81, pp. 75-80. Molz, F.J., (2004), https://doi.org/10.1029/2003RG000126.1.INTRODUCTION, Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins, applications, limitations, and future research questions. (pp. 1–42) Molz, F.J., Kozubowski, T.J., Podgórski, K., Castle, J.W., A generalization of the fractal/facies model (2007) Hydrogeol. J., 15, pp. 809-816. Neuman, S.P., Generalized scaling of permeabilities: validation and effect of support scale (1994) Geophys. Res. Lett., 21, pp. 349-352. Olson, J.E., Sublinear scaling of fracture aperture versus length: an exception or the rule? (2003) J. Geophys. Res.: Solid Earth, p. 108 Piña, A., Donado, L.D., Blake, S., Cramer, T., Compositional multivariate statistical analysis of hydrogeochemical processes in a fractured massif: La Línea Tunnel project, Colombia (2018) Appl. Geochem., 95C, pp. 1-18. Preisig, G., (2013), Regional simulation of coupled hydromechanical processes in fractured and granular porous aquifer using effective stress-dependent parameters (Ph.D. thesis), University of Neuchâtel Renard, P., Hytool: an open source matlab toolbox for the interpretation of hydraulic tests using analytical solutions (2017) J. Open Source Software, 2, pp. 2016-2018. Renard, P., Glenz, D., Mejias, M., Understanding diagnostic plots for well-test interpretation (2008) Hydrogeol. J., 17, pp. 589-600. Renard, P., de Marsily, G., Calculating equivalent permeability: a review (1997) Adv. Water Resour., 20, pp. 253-278 Siena, M., Guadagnini, A., Riva, M., Neuman, S.P., Extended power-law scaling of air permeabilities measured on a block of tuff (2012) Hydrol. Earth Syst. Sci., 16, pp. 29-42. Singh, S.K., New methods for aquifer parameters from slug test data (2007) J. Irrig., pp. 272-275 Singhal, B., Gupta, R., (2010), Applied Hydrogeology of fractured rocks Tennekoon, L., Boufadel, M.C., Lavallee, D., Weaver, J., Multifractal anisotropic scaling of the hydraulic conductivity (2003) Water Resour. Res., 39 (2007), Therrien, Mclaren, R., Sudicky, E., Panday, S. HydroGeoSphere: A Three-dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute Transport Therrien, R., Blessent, D., (2015), Äspö Task Force on modelling of groundwater flow and transport of solutes Task 7 – Reduction of performance assessment uncertainty through modelling. Technical Report Department of Geology and Geological Engineering, Université Laval Tolson, B.A., Shoemaker, C.A., Dynamically dimensioned search algorithm for computationally efficient watershed model calibration (2007) Water Resour. Res., 43, pp. 1-16 (2010), UNAL Evaluación del impacto de la construcción de los túneles viales del Sumpaz y de La Línea en los hidrosistemas circunvecinos. Ph.D. thesis Universidad Nacional de Colombia. Grupo de Investigación en Ingeniería de Recursos Hídricos Bogotá (2015), UNAL Informe Final Ensayos Hidráulicos Especiales en el Macizo Fracturado de La Línea. Ph.D. thesis Universidad Nacional de Colombia. Grupo de Investigación en Ingeniería de Recursos Hídricos Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., Beltrán, A., Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia (2011) Lithos, 125, pp. 875-896 Wagener, T., Wheater, H.S., Lees, M.J., (2004), Monte-Carlo Analysis Toolbox User Manual – Version 5 Wen, X.-H., Gomez-Hernandez, J.J., Upscaling hydraulic conductivities in heterogeneous media: An overview (1996) J. Hydrol., p. 183 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Journal of Hydrology |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159235383033856 |
spelling |
20192021-02-05T14:59:01Z2021-02-05T14:59:01Z221694http://hdl.handle.net/11407/605810.1016/j.jhydrol.2018.12.006Fractured geological media are complex systems where hydrodynamic parameters are highly variable as result of their structure. Indeed, measured parameters depend on the scale and the implemented methodologies. with high variability of hydrodynamic parameters. This variableness also depends on the scale of measurement. Most theoretical frameworks assume homogeneous media adding uncertainty to the fractured media hydrogeological characterization. In fractured media, the complexity is even harder to characterize as available theoretical frameworks assume homogeneous media. Nevertheless, the increase of underground engineering projects and their reported impacts on surface and groundwater resources claim efforts to a better understanding of fractured media groundwater hydrodynamics. In this work, we propose a general approach for the scale-dependence of the hydraulic conductivity based on power law concepts. To do so, the hydraulic conductivity field of a highly fractured massif in the Colombian Andes is estimated over scales from 6 cm to 12 km. Laboratory measurements, re-analyzes of hydraulic tests, and calibration of 3D numerical models were performed, using the La Línea tunnels (in Colombia) as real scale laboratory. Hydraulic conductivity values vary up to four orders of magnitude at each characteristic length scale and show an increase until the local scale, followed by a small decrease at regional scale. In this way, field and regional scales display the same orders of magnitude. Finally, the scale-dependence of the hydraulic conductivity values based on power law concepts is proposed. As a consequence, it suggests the possibility to use field data in regional models, once hydrogeological units and structures are properly defined. © 2018 Elsevier B.V.engElsevier B.V.Ingeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85059321267&doi=10.1016%2fj.jhydrol.2018.12.006&partnerID=40&md5=aef3495dc8ebb37fe5ba4f4836ab9d03569556572Agarwal, R., (1980), https://doi.org/10.2118/9289-MS, A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Annual Technical Conference and Exhibition, (p. 20 pp.)American Petroleum Institute, (1998), p. 236. , Recommended Practices for Core Analysis RB 40. APIAvellaneda, P.M., Donado, L.D., (2013), Asistencia técnica a CAF e INVÍAS en la revisión, análisis, evaluación y diseño de propuestas para el monitoreo, seguimiento y manejo adecuado de los aspectos hidrogeológicos del proyecto cruce de la cordillera central. Informe Final. Technical Report Universidad Nacional de Colombia, Facultad de Ingeniería Bogotá, D.C., ColombiaAzizmohammadi, S., Matthäi, S.K., Is the permeability of naturally fractured rocks scale dependent? (2017) Water Resour. Res., 53, pp. 8041-8063Barker, J., A generalized radial flow model for hydraulic tests in fractured rock (1988) Water Resour. Res., 24, pp. 1796-1804.Barker, J., Black, J.H., Slug test in fissured aquifers (1983) Water Resour. Res., 19, pp. 1558-1564Bierkens, M.F.P., Gaast, J.W.J.V.D., Upscaling hydraulic conductivity: theory and examples from geohydrological studies (1998) Nutr. Cycl. Agroecosyst., 50, pp. 193-207Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Morata, D., Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia) (2014) Int. Geol. Rev., 56, pp. 1852-1872Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B., Scaling of fracture systems in geological media (2001) Rev. Geophys., 39, pp. 347-383Bourdet, D., Whitle, T., Douglas, A., Pirard, Y., A new set of type curves simplifies well test analysis (1983) World Oil, 196, pp. 95-106Bouwer, H., Rice, R., A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells (1976) Water Resour. Res., 12, pp. 423-428Brunner, P., Simmons, C.T., HydroGeoSphere: a fully integrated, physically based hydrological model (2012) Ground Water, 50, pp. 170-176.Butler, J.J., McElwee, C.D., Liu, W., Improving the Quality of Parameter Estimates Obtained from Slug Tests (1996), https://doi.org/10.1111/j.1745-6584.1996.tb02029.xBřezina, J., Stebel, J., Flanderka, D., Exner, P., Hybš, J., (2017), FLOW123D version 2.1.2 User guide and input reference. Technical Report Technical university of LiberecCediel, F., Shaw, R.P., (2003), pp. 815-848. , Tectonic Assembly of the Northern Andean Block. eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, 79(1999), Consorcio la Línea Estudio de Impacto Ambiental ”Estudios de Fase III Cruce de la Cordillera Central (paralela Ibagué - La Línea) entre los Departamentos de Tolima y Quindí”. Informe de geología y geotécnia. Technical Report (Gómez Cajiao y asociados S.A, Consultoria Colombiana S.A, Estudios técnicos S.A)Cooper, H., Bredehoeft, J.D., Papadopulus, I., Response of a finite-diameter well to an instantaneous charge of water (1967) Water Resour. Res., 3Darcel, C., Davy, P., Le Goc, R., de Dreuzy, J.R., (2009), Bour, O. Statistical methodology for discrete fracture model – including fracture size, orientation uncertainty together with intensity uncertainty and variabilityDavy, P., Le Goc, R., Darcel, C., A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling (2013) J. Geophys. Res.: Solid Earth, 118, pp. 1393-1407Davy, P., Le Goc, R., Darcel, C., Bour, O., De Dreuzy, J.R., Munier, R., A likely universal model of fracture scaling and its consequence for crustal hydromechanics (2010) J. Geophys. Res.: Solid Earth, 115, pp. 1-13De Bartolo, S., Fallico, C., Veltri, M., A note on the fractal behavior of hydraulic conductivity and effective porosity for experimental values in a confined aquifer (2013) Sci. World J., p. 2013Dewandel, B., Lachassagne, P., Boudier, F., Al-Hattali, S., Ladouche, B., Pinault, J.L., Al-Suleimani, Z., A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach (2005) Hydrogeol. J., 13, pp. 708-726Donado, L., Piña, A., Vargas, L., Figueroa, A., Sanchez, I., Pescador, J., Saavedra, E., Cortes, A., (2018), Contrato Interadministrativo No. 01226 de 2017 Diseñar e implementar un programa de modelación matemática que permita consolidar y analizar la información obtenida de los monitoreos a las estaciones hidrometeorológicas según requerimiento ANLA. Technical Report Universidad Nacional de Colombia - INVIAS BogotáDougherty, D., Marryott, R., Optimal groundwater management. Simulated annealing (1991) Water Resour. Res., 27, pp. 2493-52508Duffield, G.M., (2007), Aqtesolve. User's GuideEvans, D.D., Nicholson, T.J., Rasmussen, T.C., (2001) Flow and Transport Through Unsaturated Fractured Rock, Geophys. Monogr. Ser., 42. , American Geophysical Union Washington, D.CFarmer, C.L., Upscaling: a review (2002) Int. J. Numer. Meth. Fluids, 40, pp. 63-78Ferroud, A., Chesnaux, R., Rafini, S., Insights on pumping well interpretation from flow dimension analysis: the learnings of a multi-context field database (2018) J. Hydrol., 556, pp. 449-474Giménez, D., Perfect, E., Rawls, W.J., Pachepsky, Y., Fractal models for predicting soil hydraulic properties: a review (1997) Eng. Geol., p. 48Gomez-Cruz, A.D.J., Moreno-Sánchez, M., Pardo-Trujillo, A., Edad y Origen del Complejo metasedimentario Aranzazu-Manizales en los Alrededores de Manizales (Departamento de Caldas, Colombia) (1995) Geología Colombiana, 19, pp. 83-93Guadagnini, A., Riva, M., Neuman, S.P., Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks (2012) Hydrol. Earth Syst. Sci., 16, pp. 3249-3260Hartley, L., Joyce, S., Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site, Sweden (2013) J. Hydrol., 500, pp. 200-216Horner, D.R., (1951), Pressure build-up in wells. 3rd World Petroleum CongressHvorslev, M.J., (1951), Time lag and soil permeability in ground-water observations. Technical Report Corps of Engineers, U.S. ARMY Vicksburg, MississippiHyder, A., Butler, J., McElwee, C., Liu, W., Slug test in partially penetrating wells (1994) Water Resour. Res., 30, pp. 2945-2957(2007), IRENA Estudios hidrogeológicos e hidrológicos en el área de influencia del túnel piloto de la línea, enmarcado dentro de la gestión ambiental. Informe Final. Technical Report Armenia, ColombiaKarasaki, K., Long, J.C., Witherspoon, P.A., Analytical models of slug tests (1988) Water Resour. Res., 24, pp. 115-126.Kirali, L., Rapport sur l’état actuel des connaissances dans le domaine des caractères physques des roches karstiques (1975) Hydrogeology of Karstic Terrains, pp. 53-67Kirkpatrick, S., Gelatt, C., Vecchi, M., Optimization by simulated annealing (1983) Science, 220, pp. 671-680Klimczak, C., Schultz, R.A., Parashar, R., Reeves, D.M., Cubic law with aperture-length correlation: implications for network scale fluid flow (2010) Hydrogeol. J., 18, pp. 851-862.Krause, P., Boyle, D.P., Bäse, F., Comparison of different efficiency criteria for hydrological model assessment (2005) Adv. Geosci., 5, pp. 89-97.Kumar, D., Ahmed, S., Krishnamurthy, N., Dewandel, B., Reducing ambiguities in vertical electrical sounding interpretations: a geostatistical application (2007) J. Appl. Geophys., 62, pp. 16-32.Liu, R., Jiang, Y., Li, B., Wang, X., A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks (2015) Comput. Geotech., 65, pp. 45-55.Liu, R., Yu, L., Jiang, Y., Wang, Y., Li, B., Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks (2017) J. Nat. Gas Sci. Eng., 45, pp. 771-785(2015), Madrid Montoya, C.A. Memoria Explicativa Del Mapa Geológico Del Túnel De La Línea. Technical Report Servicio Geologico ColombianoMartinez-Landa, L., Carrera, J., An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland) (2005) Water Resour. Res., 41, pp. 1-13.Martinez-Landa, L., Carrera, J., Perez-Estaún, A., Gomez, P., Bajos, C., Structural geology and geophysics as a key to build a hydrogeologic model of granite rock to support a mine (2016) Solid Earth Discussions, pp. 1-25Mattot, L., (2005), Ostrich: An Optimization Software Tool, Documentation and User's Guide, Version 1.6 (Ph.D. thesis), University at BuffaloMiao, T., Yu, B., Duan, Y., Fang, Q., A fractal analysis of permeability for fractured rocks (2015) Int. J. Heat Mass Transf., 81, pp. 75-80.Molz, F.J., (2004), https://doi.org/10.1029/2003RG000126.1.INTRODUCTION, Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins, applications, limitations, and future research questions. (pp. 1–42)Molz, F.J., Kozubowski, T.J., Podgórski, K., Castle, J.W., A generalization of the fractal/facies model (2007) Hydrogeol. J., 15, pp. 809-816.Neuman, S.P., Generalized scaling of permeabilities: validation and effect of support scale (1994) Geophys. Res. Lett., 21, pp. 349-352.Olson, J.E., Sublinear scaling of fracture aperture versus length: an exception or the rule? (2003) J. Geophys. Res.: Solid Earth, p. 108Piña, A., Donado, L.D., Blake, S., Cramer, T., Compositional multivariate statistical analysis of hydrogeochemical processes in a fractured massif: La Línea Tunnel project, Colombia (2018) Appl. Geochem., 95C, pp. 1-18.Preisig, G., (2013), Regional simulation of coupled hydromechanical processes in fractured and granular porous aquifer using effective stress-dependent parameters (Ph.D. thesis), University of NeuchâtelRenard, P., Hytool: an open source matlab toolbox for the interpretation of hydraulic tests using analytical solutions (2017) J. Open Source Software, 2, pp. 2016-2018.Renard, P., Glenz, D., Mejias, M., Understanding diagnostic plots for well-test interpretation (2008) Hydrogeol. J., 17, pp. 589-600.Renard, P., de Marsily, G., Calculating equivalent permeability: a review (1997) Adv. Water Resour., 20, pp. 253-278Siena, M., Guadagnini, A., Riva, M., Neuman, S.P., Extended power-law scaling of air permeabilities measured on a block of tuff (2012) Hydrol. Earth Syst. Sci., 16, pp. 29-42.Singh, S.K., New methods for aquifer parameters from slug test data (2007) J. Irrig., pp. 272-275Singhal, B., Gupta, R., (2010), Applied Hydrogeology of fractured rocksTennekoon, L., Boufadel, M.C., Lavallee, D., Weaver, J., Multifractal anisotropic scaling of the hydraulic conductivity (2003) Water Resour. Res., 39(2007), Therrien, Mclaren, R., Sudicky, E., Panday, S. HydroGeoSphere: A Three-dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute TransportTherrien, R., Blessent, D., (2015), Äspö Task Force on modelling of groundwater flow and transport of solutes Task 7 – Reduction of performance assessment uncertainty through modelling. Technical Report Department of Geology and Geological Engineering, Université LavalTolson, B.A., Shoemaker, C.A., Dynamically dimensioned search algorithm for computationally efficient watershed model calibration (2007) Water Resour. Res., 43, pp. 1-16(2010), UNAL Evaluación del impacto de la construcción de los túneles viales del Sumpaz y de La Línea en los hidrosistemas circunvecinos. Ph.D. thesis Universidad Nacional de Colombia. Grupo de Investigación en Ingeniería de Recursos Hídricos Bogotá(2015), UNAL Informe Final Ensayos Hidráulicos Especiales en el Macizo Fracturado de La Línea. Ph.D. thesis Universidad Nacional de Colombia. Grupo de Investigación en Ingeniería de Recursos HídricosVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., Beltrán, A., Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia (2011) Lithos, 125, pp. 875-896Wagener, T., Wheater, H.S., Lees, M.J., (2004), Monte-Carlo Analysis Toolbox User Manual – Version 5Wen, X.-H., Gomez-Hernandez, J.J., Upscaling hydraulic conductivities in heterogeneous media: An overview (1996) J. Hydrol., p. 183Journal of HydrologyAnalysis of the scale-dependence of the hydraulic conductivity in complex fractured mediaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Piña, A., School of Engineering, Universidad Nacional de Colombia, Av. NQS (Carrera 30) No. 45-03, Bogotá DC, 111321, ColombiaDonado, L.D., School of Engineering, Universidad Nacional de Colombia, Av. NQS (Carrera 30) No. 45-03, Bogotá DC, 111321, ColombiaBlessent, D., School of Engineering, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecPiña A.Donado L.D.Blessent D.11407/6058oai:repository.udem.edu.co:11407/60582021-02-05 09:59:01.89Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |