Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons

The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4255
Acceso en línea:
http://hdl.handle.net/11407/4255
Palabra clave:
Fullerene
Graphene
Nanoribons
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_9a4da613f043b1fa57fa7ae42b2ee07a
oai_identifier_str oai:repository.udem.edu.co:11407/4255
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
title Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
spellingShingle Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
Fullerene
Graphene
Nanoribons
title_short Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
title_full Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
title_fullStr Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
title_full_unstemmed Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
title_sort Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
dc.contributor.affiliation.spa.fl_str_mv Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
Orellana, P.A., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Pacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
dc.subject.keyword.eng.fl_str_mv Fullerene
Graphene
Nanoribons
topic Fullerene
Graphene
Nanoribons
description The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:41Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20794991
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4255
dc.identifier.doi.none.fl_str_mv 10.3390/nano7030069
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 20794991
10.3390/nano7030069
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4255
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016153200&doi=10.3390%2fnano7030069&partnerID=40&md5=492556d60a6bfc2eccc1a79b860e0823
dc.relation.ispartofes.spa.fl_str_mv Nanomaterials
Nanomaterials Volume 7, Issue 3, 20 March 2017
dc.relation.references.spa.fl_str_mv Åvec, M., Merino, P., Dappe, Y. J., González, C., Abad, E., Jelínek, P., & Martín-Gago, J. A. (2012). Van der waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B - Condensed Matter and Materials Physics, 86(12) doi:10.1103/PhysRevB.86.121407
Berland, K., Chakarova-Käck, S. D., Cooper, V. R., Langreth, D. C., & Schröder, E. (2011). A van der waals density functional study of adenine on graphene: Single-molecular adsorption and overlayer binding.Journal of Physics Condensed Matter, 23(13) doi:10.1088/0953-8984/23/13/135001
Berland, K., & Hyldgaard, P. (2013). Analysis of van der waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205421
Bernardi, M., Lohrman, J., Kumar, P. V., Kirkeminde, A., Ferralis, N., Grossman, J. C., & Ren, S. (2012). Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896-8903. doi:10.1021/nn302893p
Bernardi, M., Palummo, M., & Grossman, J. C. (2012). Semiconducting monolayer materials as a tunable platform for excitonic solar cells. ACS Nano, 6(11), 10082-10089. doi:10.1021/nn303815z
Chang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. doi:10.1016/j.carbon.2005.08.009
Chang, H., & Wu, H. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23(16), 1984-1997. doi:10.1002/adfm.201202460
Chung, H. -., Chang, C. -., Lin, C. -., & Lin, M. -. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573-7616. doi:10.1039/c5cp06533j
Dai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42. doi:10.1021/ar300122m
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der waals density functional for general geometries. Physical Review Letters, 92(24), 246401-1-246401-4. doi:10.1103/PhysRevLett.92.246401
D'Souza, F., & Ito, O. (2013). Photoinduced electron transfer processes of functionalized nanocarbons; fullerenes, nanotubes and graphene. Science Progress, 96(4), 369-397. doi:10.3184/003685013X13818510064403
Dubacheva, G. V., Liang, C. -., & Bassani, D. M. (2012). Functional monolayers from carbon nanostructures - fullerenes, carbon nanotubes, and graphene - as novel materials for solar energy conversion.Coordination Chemistry Reviews, 256(21-22), 2628-2639. doi:10.1016/j.ccr.2012.04.007
Ganesan, V. D., Linghu, J., Zhang, C., Feng, Y. P., & Shen, L. (2016). Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 108(12) doi:10.1063/1.4944642
Kim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y., & Bao, Z. (2015). Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 9(6), 5922-5928. doi:10.1021/acsnano.5b00581
Kleingeld, R., Wang, J., & Lein, M. (2016). Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT. Polyhedron, 114, 110-117. doi:10.1016/j.poly.2015.11.016
Laref, S., Asaduzzaman, A. M., Beck, W., Deymier, P. A., Runge, K., Adamowicz, L., & Muralidharan, K. (2013). Characterization of graphene-fullerene interactions: Insights from density functional theory.Chemical Physics Letters, 582, 115-118. doi:10.1016/j.cplett.2013.07.033
Ma, J., Guo, Q., Gao, H. -., & Qin, X. (2015). Synthesis of C60/Graphene composite as electrode in supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 23(6), 477-482. doi:10.1080/1536383X.2013.865604
Manna, A. K., & Pati, S. K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem, 14(9), 1844-1852. doi:10.1002/cphc.201300155
Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., . . . Kauppinen, E. I. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2(3), 156-161. doi:10.1038/nnano.2007.37
Osella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K., & Beljonne, D. (2012). Graphene nanoribbons as low band gap donor materials for organic photovoltaics: Quantum chemical aided design. ACS Nano, 6(6), 5539-5548. doi:10.1021/nn301478c
Sasaki, K. -., Kato, K., Tokura, Y., Oguri, K., & Sogawa, T. (2011). Theory of optical transitions in graphene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 84(8) doi:10.1103/PhysRevB.84.085458
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302
Ulbricht, H., Moos, G., & Hertel, T. (2003). Interaction of C60 with carbon nanotubes and graphite. Physical Review Letters, 90(9), 095501/1-095501/4.
Zhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3 doi:10.1038/srep03448
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159224771444736
spelling 2017-12-19T19:36:41Z2017-12-19T19:36:41Z201720794991http://hdl.handle.net/11407/425510.3390/nano7030069reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.engMDPI AGFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016153200&doi=10.3390%2fnano7030069&partnerID=40&md5=492556d60a6bfc2eccc1a79b860e0823NanomaterialsNanomaterials Volume 7, Issue 3, 20 March 2017Åvec, M., Merino, P., Dappe, Y. J., González, C., Abad, E., Jelínek, P., & Martín-Gago, J. A. (2012). Van der waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B - Condensed Matter and Materials Physics, 86(12) doi:10.1103/PhysRevB.86.121407Berland, K., Chakarova-Käck, S. D., Cooper, V. R., Langreth, D. C., & Schröder, E. (2011). A van der waals density functional study of adenine on graphene: Single-molecular adsorption and overlayer binding.Journal of Physics Condensed Matter, 23(13) doi:10.1088/0953-8984/23/13/135001Berland, K., & Hyldgaard, P. (2013). Analysis of van der waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205421Bernardi, M., Lohrman, J., Kumar, P. V., Kirkeminde, A., Ferralis, N., Grossman, J. C., & Ren, S. (2012). Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896-8903. doi:10.1021/nn302893pBernardi, M., Palummo, M., & Grossman, J. C. (2012). Semiconducting monolayer materials as a tunable platform for excitonic solar cells. ACS Nano, 6(11), 10082-10089. doi:10.1021/nn303815zChang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. doi:10.1016/j.carbon.2005.08.009Chang, H., & Wu, H. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23(16), 1984-1997. doi:10.1002/adfm.201202460Chung, H. -., Chang, C. -., Lin, C. -., & Lin, M. -. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573-7616. doi:10.1039/c5cp06533jDai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42. doi:10.1021/ar300122mDion, M., Rydberg, H., Schröder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der waals density functional for general geometries. Physical Review Letters, 92(24), 246401-1-246401-4. doi:10.1103/PhysRevLett.92.246401D'Souza, F., & Ito, O. (2013). Photoinduced electron transfer processes of functionalized nanocarbons; fullerenes, nanotubes and graphene. Science Progress, 96(4), 369-397. doi:10.3184/003685013X13818510064403Dubacheva, G. V., Liang, C. -., & Bassani, D. M. (2012). Functional monolayers from carbon nanostructures - fullerenes, carbon nanotubes, and graphene - as novel materials for solar energy conversion.Coordination Chemistry Reviews, 256(21-22), 2628-2639. doi:10.1016/j.ccr.2012.04.007Ganesan, V. D., Linghu, J., Zhang, C., Feng, Y. P., & Shen, L. (2016). Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 108(12) doi:10.1063/1.4944642Kim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y., & Bao, Z. (2015). Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 9(6), 5922-5928. doi:10.1021/acsnano.5b00581Kleingeld, R., Wang, J., & Lein, M. (2016). Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT. Polyhedron, 114, 110-117. doi:10.1016/j.poly.2015.11.016Laref, S., Asaduzzaman, A. M., Beck, W., Deymier, P. A., Runge, K., Adamowicz, L., & Muralidharan, K. (2013). Characterization of graphene-fullerene interactions: Insights from density functional theory.Chemical Physics Letters, 582, 115-118. doi:10.1016/j.cplett.2013.07.033Ma, J., Guo, Q., Gao, H. -., & Qin, X. (2015). Synthesis of C60/Graphene composite as electrode in supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 23(6), 477-482. doi:10.1080/1536383X.2013.865604Manna, A. K., & Pati, S. K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem, 14(9), 1844-1852. doi:10.1002/cphc.201300155Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., . . . Kauppinen, E. I. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2(3), 156-161. doi:10.1038/nnano.2007.37Osella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K., & Beljonne, D. (2012). Graphene nanoribbons as low band gap donor materials for organic photovoltaics: Quantum chemical aided design. ACS Nano, 6(6), 5539-5548. doi:10.1021/nn301478cSasaki, K. -., Kato, K., Tokura, Y., Oguri, K., & Sogawa, T. (2011). Theory of optical transitions in graphene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 84(8) doi:10.1103/PhysRevB.84.085458Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302Ulbricht, H., Moos, G., & Hertel, T. (2003). Interaction of C60 with carbon nanotubes and graphite. Physical Review Letters, 90(9), 095501/1-095501/4.Zhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3 doi:10.1038/srep03448ScopusOptoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOrellana, P.A., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChilePacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChileCorrea J.D.Orellana P.A.Pacheco M.Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChileFullereneGrapheneNanoribonsThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.http://purl.org/coar/access_right/c_16ec11407/4255oai:repository.udem.edu.co:11407/42552020-05-27 18:32:20.343Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co