Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons
The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4255
- Acceso en línea:
- http://hdl.handle.net/11407/4255
- Palabra clave:
- Fullerene
Graphene
Nanoribons
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_9a4da613f043b1fa57fa7ae42b2ee07a |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4255 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
title |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
spellingShingle |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons Fullerene Graphene Nanoribons |
title_short |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
title_full |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
title_fullStr |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
title_full_unstemmed |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
title_sort |
Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons |
dc.contributor.affiliation.spa.fl_str_mv |
Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Orellana, P.A., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile Pacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile |
dc.subject.keyword.eng.fl_str_mv |
Fullerene Graphene Nanoribons |
topic |
Fullerene Graphene Nanoribons |
description |
The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:41Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:41Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20794991 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4255 |
dc.identifier.doi.none.fl_str_mv |
10.3390/nano7030069 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
20794991 10.3390/nano7030069 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4255 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016153200&doi=10.3390%2fnano7030069&partnerID=40&md5=492556d60a6bfc2eccc1a79b860e0823 |
dc.relation.ispartofes.spa.fl_str_mv |
Nanomaterials Nanomaterials Volume 7, Issue 3, 20 March 2017 |
dc.relation.references.spa.fl_str_mv |
Åvec, M., Merino, P., Dappe, Y. J., González, C., Abad, E., Jelínek, P., & Martín-Gago, J. A. (2012). Van der waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B - Condensed Matter and Materials Physics, 86(12) doi:10.1103/PhysRevB.86.121407 Berland, K., Chakarova-Käck, S. D., Cooper, V. R., Langreth, D. C., & Schröder, E. (2011). A van der waals density functional study of adenine on graphene: Single-molecular adsorption and overlayer binding.Journal of Physics Condensed Matter, 23(13) doi:10.1088/0953-8984/23/13/135001 Berland, K., & Hyldgaard, P. (2013). Analysis of van der waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205421 Bernardi, M., Lohrman, J., Kumar, P. V., Kirkeminde, A., Ferralis, N., Grossman, J. C., & Ren, S. (2012). Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896-8903. doi:10.1021/nn302893p Bernardi, M., Palummo, M., & Grossman, J. C. (2012). Semiconducting monolayer materials as a tunable platform for excitonic solar cells. ACS Nano, 6(11), 10082-10089. doi:10.1021/nn303815z Chang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. doi:10.1016/j.carbon.2005.08.009 Chang, H., & Wu, H. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23(16), 1984-1997. doi:10.1002/adfm.201202460 Chung, H. -., Chang, C. -., Lin, C. -., & Lin, M. -. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573-7616. doi:10.1039/c5cp06533j Dai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42. doi:10.1021/ar300122m Dion, M., Rydberg, H., Schröder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der waals density functional for general geometries. Physical Review Letters, 92(24), 246401-1-246401-4. doi:10.1103/PhysRevLett.92.246401 D'Souza, F., & Ito, O. (2013). Photoinduced electron transfer processes of functionalized nanocarbons; fullerenes, nanotubes and graphene. Science Progress, 96(4), 369-397. doi:10.3184/003685013X13818510064403 Dubacheva, G. V., Liang, C. -., & Bassani, D. M. (2012). Functional monolayers from carbon nanostructures - fullerenes, carbon nanotubes, and graphene - as novel materials for solar energy conversion.Coordination Chemistry Reviews, 256(21-22), 2628-2639. doi:10.1016/j.ccr.2012.04.007 Ganesan, V. D., Linghu, J., Zhang, C., Feng, Y. P., & Shen, L. (2016). Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 108(12) doi:10.1063/1.4944642 Kim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y., & Bao, Z. (2015). Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 9(6), 5922-5928. doi:10.1021/acsnano.5b00581 Kleingeld, R., Wang, J., & Lein, M. (2016). Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT. Polyhedron, 114, 110-117. doi:10.1016/j.poly.2015.11.016 Laref, S., Asaduzzaman, A. M., Beck, W., Deymier, P. A., Runge, K., Adamowicz, L., & Muralidharan, K. (2013). Characterization of graphene-fullerene interactions: Insights from density functional theory.Chemical Physics Letters, 582, 115-118. doi:10.1016/j.cplett.2013.07.033 Ma, J., Guo, Q., Gao, H. -., & Qin, X. (2015). Synthesis of C60/Graphene composite as electrode in supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 23(6), 477-482. doi:10.1080/1536383X.2013.865604 Manna, A. K., & Pati, S. K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem, 14(9), 1844-1852. doi:10.1002/cphc.201300155 Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., . . . Kauppinen, E. I. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2(3), 156-161. doi:10.1038/nnano.2007.37 Osella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K., & Beljonne, D. (2012). Graphene nanoribbons as low band gap donor materials for organic photovoltaics: Quantum chemical aided design. ACS Nano, 6(6), 5539-5548. doi:10.1021/nn301478c Sasaki, K. -., Kato, K., Tokura, Y., Oguri, K., & Sogawa, T. (2011). Theory of optical transitions in graphene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 84(8) doi:10.1103/PhysRevB.84.085458 Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302 Ulbricht, H., Moos, G., & Hertel, T. (2003). Interaction of C60 with carbon nanotubes and graphite. Physical Review Letters, 90(9), 095501/1-095501/4. Zhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3 doi:10.1038/srep03448 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
MDPI AG |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159224771444736 |
spelling |
2017-12-19T19:36:41Z2017-12-19T19:36:41Z201720794991http://hdl.handle.net/11407/425510.3390/nano7030069reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.engMDPI AGFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016153200&doi=10.3390%2fnano7030069&partnerID=40&md5=492556d60a6bfc2eccc1a79b860e0823NanomaterialsNanomaterials Volume 7, Issue 3, 20 March 2017Åvec, M., Merino, P., Dappe, Y. J., González, C., Abad, E., Jelínek, P., & Martín-Gago, J. A. (2012). Van der waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B - Condensed Matter and Materials Physics, 86(12) doi:10.1103/PhysRevB.86.121407Berland, K., Chakarova-Käck, S. D., Cooper, V. R., Langreth, D. C., & Schröder, E. (2011). A van der waals density functional study of adenine on graphene: Single-molecular adsorption and overlayer binding.Journal of Physics Condensed Matter, 23(13) doi:10.1088/0953-8984/23/13/135001Berland, K., & Hyldgaard, P. (2013). Analysis of van der waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205421Bernardi, M., Lohrman, J., Kumar, P. V., Kirkeminde, A., Ferralis, N., Grossman, J. C., & Ren, S. (2012). Nanocarbon-based photovoltaics. ACS Nano, 6(10), 8896-8903. doi:10.1021/nn302893pBernardi, M., Palummo, M., & Grossman, J. C. (2012). Semiconducting monolayer materials as a tunable platform for excitonic solar cells. ACS Nano, 6(11), 10082-10089. doi:10.1021/nn303815zChang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., & Lin, M. F. (2006). Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44(3), 508-515. doi:10.1016/j.carbon.2005.08.009Chang, H., & Wu, H. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23(16), 1984-1997. doi:10.1002/adfm.201202460Chung, H. -., Chang, C. -., Lin, C. -., & Lin, M. -. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573-7616. doi:10.1039/c5cp06533jDai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42. doi:10.1021/ar300122mDion, M., Rydberg, H., Schröder, E., Langreth, D. C., & Lundqvist, B. I. (2004). Van der waals density functional for general geometries. Physical Review Letters, 92(24), 246401-1-246401-4. doi:10.1103/PhysRevLett.92.246401D'Souza, F., & Ito, O. (2013). Photoinduced electron transfer processes of functionalized nanocarbons; fullerenes, nanotubes and graphene. Science Progress, 96(4), 369-397. doi:10.3184/003685013X13818510064403Dubacheva, G. V., Liang, C. -., & Bassani, D. M. (2012). Functional monolayers from carbon nanostructures - fullerenes, carbon nanotubes, and graphene - as novel materials for solar energy conversion.Coordination Chemistry Reviews, 256(21-22), 2628-2639. doi:10.1016/j.ccr.2012.04.007Ganesan, V. D., Linghu, J., Zhang, C., Feng, Y. P., & Shen, L. (2016). Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Applied Physics Letters, 108(12) doi:10.1063/1.4944642Kim, K., Lee, T. H., Santos, E. J. G., Jo, P. S., Salleo, A., Nishi, Y., & Bao, Z. (2015). Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano, 9(6), 5922-5928. doi:10.1021/acsnano.5b00581Kleingeld, R., Wang, J., & Lein, M. (2016). Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT. Polyhedron, 114, 110-117. doi:10.1016/j.poly.2015.11.016Laref, S., Asaduzzaman, A. M., Beck, W., Deymier, P. A., Runge, K., Adamowicz, L., & Muralidharan, K. (2013). Characterization of graphene-fullerene interactions: Insights from density functional theory.Chemical Physics Letters, 582, 115-118. doi:10.1016/j.cplett.2013.07.033Ma, J., Guo, Q., Gao, H. -., & Qin, X. (2015). Synthesis of C60/Graphene composite as electrode in supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 23(6), 477-482. doi:10.1080/1536383X.2013.865604Manna, A. K., & Pati, S. K. (2013). Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. ChemPhysChem, 14(9), 1844-1852. doi:10.1002/cphc.201300155Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., . . . Kauppinen, E. I. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2(3), 156-161. doi:10.1038/nnano.2007.37Osella, S., Narita, A., Schwab, M. G., Hernandez, Y., Feng, X., Müllen, K., & Beljonne, D. (2012). Graphene nanoribbons as low band gap donor materials for organic photovoltaics: Quantum chemical aided design. ACS Nano, 6(6), 5539-5548. doi:10.1021/nn301478cSasaki, K. -., Kato, K., Tokura, Y., Oguri, K., & Sogawa, T. (2011). Theory of optical transitions in graphene nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 84(8) doi:10.1103/PhysRevB.84.085458Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics Condensed Matter, 14(11), 2745-2779. doi:10.1088/0953-8984/14/11/302Ulbricht, H., Moos, G., & Hertel, T. (2003). Interaction of C60 with carbon nanotubes and graphite. Physical Review Letters, 90(9), 095501/1-095501/4.Zhang, K., Zhang, Y., & Wang, S. (2013). Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Scientific Reports, 3 doi:10.1038/srep03448ScopusOptoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbonsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Correa, J.D., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaOrellana, P.A., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChilePacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChileCorrea J.D.Orellana P.A.Pacheco M.Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, ChileFullereneGrapheneNanoribonsThe search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.http://purl.org/coar/access_right/c_16ec11407/4255oai:repository.udem.edu.co:11407/42552020-05-27 18:32:20.343Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |