Local generation of love surface waves at the edge of a 2D alluvial valley

This work deals with the local generation of Love surface waves at the edge of an alluvial valley that is formed by a soft layer with dipping interface. These waves are extracted from the system response due to the incidence of antiplane SH plane waves. The indirect boundary-element method (IBEM) is...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4877
Acceso en línea:
http://hdl.handle.net/11407/4877
Palabra clave:
Boundary element method
Emission spectroscopy
Sailing vessels
Alluvial valleys
Antiplane problem
Emission spectrums
Fundamental modes
Impedance ratios
Incidence angles
Indirect boundary element method
Interface geometry
Surface waves
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_991ae19bd5bd43f0aaf9432acca84e7d
oai_identifier_str oai:repository.udem.edu.co:11407/4877
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Local generation of love surface waves at the edge of a 2D alluvial valley
title Local generation of love surface waves at the edge of a 2D alluvial valley
spellingShingle Local generation of love surface waves at the edge of a 2D alluvial valley
Boundary element method
Emission spectroscopy
Sailing vessels
Alluvial valleys
Antiplane problem
Emission spectrums
Fundamental modes
Impedance ratios
Incidence angles
Indirect boundary element method
Interface geometry
Surface waves
title_short Local generation of love surface waves at the edge of a 2D alluvial valley
title_full Local generation of love surface waves at the edge of a 2D alluvial valley
title_fullStr Local generation of love surface waves at the edge of a 2D alluvial valley
title_full_unstemmed Local generation of love surface waves at the edge of a 2D alluvial valley
title_sort Local generation of love surface waves at the edge of a 2D alluvial valley
dc.contributor.affiliation.spa.fl_str_mv Molina-Villegas, J.C., Universidad de Medellín; Universidad Nacional de Colombia;Jaramillo-Fernández, J.D., Universidad Eafit;Piña-Flores, J., Universidad Nacional Autónoma de México;Sánchez-Sesma, F.J., Universidad Nacional Autónoma de México
dc.subject.spa.fl_str_mv Boundary element method
Emission spectroscopy
Sailing vessels
Alluvial valleys
Antiplane problem
Emission spectrums
Fundamental modes
Impedance ratios
Incidence angles
Indirect boundary element method
Interface geometry
Surface waves
topic Boundary element method
Emission spectroscopy
Sailing vessels
Alluvial valleys
Antiplane problem
Emission spectrums
Fundamental modes
Impedance ratios
Incidence angles
Indirect boundary element method
Interface geometry
Surface waves
description This work deals with the local generation of Love surface waves at the edge of an alluvial valley that is formed by a soft layer with dipping interface. These waves are extracted from the system response due to the incidence of antiplane SH plane waves. The indirect boundary-element method (IBEM) is used for computations. Results are given as modal emission spectra of Love waves, as functions of frequency, for the fundamental mode and the first two harmonics for various combinations of incidence angles, interface geometries, and impedance ratios. The structure of these emission spectra is inspired by the analytical solution of the canonical antiplane problem of a semi-infinite layer with a moving base and wall, which allows indication of the 1D response and the locally generated surface waves. © 2018, Seismological Society of America. All rights reserved.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:20Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:20Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 371106
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4877
dc.identifier.doi.none.fl_str_mv 10.1785/0120170360
identifier_str_mv 371106
10.1785/0120170360
url http://hdl.handle.net/11407/4877
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052206562&doi=10.1785%2f0120170360&partnerID=40&md5=8eefe2f0756415c1c71421437b76b812
dc.relation.citationvolume.spa.fl_str_mv 108
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationstartpage.spa.fl_str_mv 2090
dc.relation.citationendpage.spa.fl_str_mv 2103
dc.relation.ispartofes.spa.fl_str_mv Bulletin of the Seismological Society of America
dc.relation.references.spa.fl_str_mv Bak?r, B.S., Özkan, M.Y., C?l?z, S., Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake (2002) Soil Dynam. Earthq. Eng., 22, pp. 335-345;Bard, P.Y., Bouchon, M., The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves (1980) Bull. Seismol. Soc. Am., 70, pp. 1263-1286;Bard, P.Y., Bouchon, M., The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves (1980) Bull. Seismol. Soc. Am., 70, pp. 1921-1941;Bard, P.Y., Gariel, J.C., The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients (1986) Bull. Seismol. Soc. Am., 76, pp. 343-366;Bowden, D.C., Tsai, V.C., Earthquake ground motion amplification for surface waves (2016) Geophys. Res. Lett., 43, pp. 121-127;Campillo, M., Gariel, J.C., Aki, K., Sánchez-Sesma, F.J., Destructive strong ground motion in Mexico City: Source, path, and site effects during great 1985 Michoacán earthquake (1989) Bull. Seismol. Soc. Am., 79, pp. 1718-1735;Campillo, M., Sánchez-Sesma, F.J., Aki, K., Influence of small lateral variations of a soft surficial layer on seismic ground motion (1990) Soil. Dynam. Earthq. Eng., 9, pp. 284-287;Cruz-Atienza, V.M., Tago, J., Sanabria-Gómez, J.D., Chaljub, E., Etienne, V., Virieux, J., Quintanar, L., Long duration of ground motion in the paradigmatic valley of Mexico (2016) Sci. Rep., 6, pp. 1-9;Heymsfield, E., Two-dimensional scattering of SH waves in a soil layer underlain with a sloping bedrock (2000) Soil Dynam. Earthq. Eng., 19, pp. 489-500;Hudson, D.E., Local distribution of strong earthquake ground motions (1972) Bull. Seismol. Soc. Am., 62, pp. 1765-1786;King, J.L., Tucker, B.E., Observed variations of earthquake motion across a sediment-filled valley (1984) Bull. Seismol. Soc. Am., 74, pp. 137-151;Moczo, P., Bard, P.Y., Wave diffraction, amplification and differential motion near strong lateral discontinuities (1993) Bull. Seismol. Soc. Am., 83, pp. 85-106;Narayan, J.P., Effects of angle of incidence of SH-wave at the basin-edge on the characteristics of basin-edge induced Love wave (2012) J. Earthq. Tsunami, 6 (1), p. 1250006;Narayan, J.P., Kumar, S., Effects of soil layering on the characteristics of basin-edge induced surface waves (2009) Acta Geophys, 57, pp. 294-310;Narayan, J.P., Richharia, A.A., Effects of strong lateral discontinuity on ground motion characteristics and aggravation factor (2008) J. Seismol., 12, pp. 557-573;Novikova, E.I., Trifunac, M.D., The modified Mercalli intensity and the geometry of the sedimentary basin as scaling parameters of the frequency dependent duration of strong ground motion (1993) Soil Dynam. Earthq. Eng., 12, pp. 209-225;Novikova, E.I., Trifunac, M.D., Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site conditions and site geometry (1994) Earthq. Eng. Struct. Dynam., 23, pp. 1023-1043;Pitarka, A., Irikura, K., Iwata, T., Sekiguchi, H., Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake (1998) Bull. Seismol. Soc. Am, 88, pp. 428-440;Rodríguez-Zúñiga, J.L., Sánchez-Sesma, F.J., Pérez-Rocha, L.E., Seismic response of shallow alluvial valleys: The use of simplified models (1995) Bull. Seismol. Soc. Am., 85, pp. 890-899;Sánchez-Sesma, F.J., Esquivel, J.A., Ground motion on alluvial valleys under incident plane SH waves (1979) Bull. Seismol. Soc. Am., 69, pp. 1107-1120;Sánchez-Sesma, F.J., Ramos-Martínez, J., Campillo, M., An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves (1993) Earthq. Eng. Struct. Dynam., 22, pp. 279-295;Semblat, J.F., Kham, M., Parara, E., Bard, P.Y., Pitilakis, K., Makra, K., Raptakis, D., Seismic wave amplification: Basin geometry vs soil layering (2005) Soil Dynam. Earthq. Eng., 25, pp. 529-538;Stolte, A.C., Cox, B.R., Lee, R.C., An experimental topographic amplification study at Los Alamos National Laboratory using ambient vibrations (2017) Bull. Seismol. Soc. Am., 107, pp. 1386-1401;Volk, O., Shani-Kadmiel, S., Gvirtzman, Z., Tsesarsky, M., 3D Effects of sedimentary wedges and subsurface canyons: Ground-motion amplification in the Israeli coastal plain (2017) Bull. Seismol. Soc. Am., 107, pp. 1324-1335
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Seismological Society of America
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159182546337792
spelling 2018-10-31T13:44:20Z2018-10-31T13:44:20Z2018371106http://hdl.handle.net/11407/487710.1785/0120170360This work deals with the local generation of Love surface waves at the edge of an alluvial valley that is formed by a soft layer with dipping interface. These waves are extracted from the system response due to the incidence of antiplane SH plane waves. The indirect boundary-element method (IBEM) is used for computations. Results are given as modal emission spectra of Love waves, as functions of frequency, for the fundamental mode and the first two harmonics for various combinations of incidence angles, interface geometries, and impedance ratios. The structure of these emission spectra is inspired by the analytical solution of the canonical antiplane problem of a semi-infinite layer with a moving base and wall, which allows indication of the 1D response and the locally generated surface waves. © 2018, Seismological Society of America. All rights reserved.engSeismological Society of AmericaIngeniería CivilFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85052206562&doi=10.1785%2f0120170360&partnerID=40&md5=8eefe2f0756415c1c71421437b76b812108420902103Bulletin of the Seismological Society of AmericaBak?r, B.S., Özkan, M.Y., C?l?z, S., Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake (2002) Soil Dynam. Earthq. Eng., 22, pp. 335-345;Bard, P.Y., Bouchon, M., The seismic response of sediment-filled valleys. Part 1. The case of incident SH waves (1980) Bull. Seismol. Soc. Am., 70, pp. 1263-1286;Bard, P.Y., Bouchon, M., The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves (1980) Bull. Seismol. Soc. Am., 70, pp. 1921-1941;Bard, P.Y., Gariel, J.C., The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients (1986) Bull. Seismol. Soc. Am., 76, pp. 343-366;Bowden, D.C., Tsai, V.C., Earthquake ground motion amplification for surface waves (2016) Geophys. Res. Lett., 43, pp. 121-127;Campillo, M., Gariel, J.C., Aki, K., Sánchez-Sesma, F.J., Destructive strong ground motion in Mexico City: Source, path, and site effects during great 1985 Michoacán earthquake (1989) Bull. Seismol. Soc. Am., 79, pp. 1718-1735;Campillo, M., Sánchez-Sesma, F.J., Aki, K., Influence of small lateral variations of a soft surficial layer on seismic ground motion (1990) Soil. Dynam. Earthq. Eng., 9, pp. 284-287;Cruz-Atienza, V.M., Tago, J., Sanabria-Gómez, J.D., Chaljub, E., Etienne, V., Virieux, J., Quintanar, L., Long duration of ground motion in the paradigmatic valley of Mexico (2016) Sci. Rep., 6, pp. 1-9;Heymsfield, E., Two-dimensional scattering of SH waves in a soil layer underlain with a sloping bedrock (2000) Soil Dynam. Earthq. Eng., 19, pp. 489-500;Hudson, D.E., Local distribution of strong earthquake ground motions (1972) Bull. Seismol. Soc. Am., 62, pp. 1765-1786;King, J.L., Tucker, B.E., Observed variations of earthquake motion across a sediment-filled valley (1984) Bull. Seismol. Soc. Am., 74, pp. 137-151;Moczo, P., Bard, P.Y., Wave diffraction, amplification and differential motion near strong lateral discontinuities (1993) Bull. Seismol. Soc. Am., 83, pp. 85-106;Narayan, J.P., Effects of angle of incidence of SH-wave at the basin-edge on the characteristics of basin-edge induced Love wave (2012) J. Earthq. Tsunami, 6 (1), p. 1250006;Narayan, J.P., Kumar, S., Effects of soil layering on the characteristics of basin-edge induced surface waves (2009) Acta Geophys, 57, pp. 294-310;Narayan, J.P., Richharia, A.A., Effects of strong lateral discontinuity on ground motion characteristics and aggravation factor (2008) J. Seismol., 12, pp. 557-573;Novikova, E.I., Trifunac, M.D., The modified Mercalli intensity and the geometry of the sedimentary basin as scaling parameters of the frequency dependent duration of strong ground motion (1993) Soil Dynam. Earthq. Eng., 12, pp. 209-225;Novikova, E.I., Trifunac, M.D., Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site conditions and site geometry (1994) Earthq. Eng. Struct. Dynam., 23, pp. 1023-1043;Pitarka, A., Irikura, K., Iwata, T., Sekiguchi, H., Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake (1998) Bull. Seismol. Soc. Am, 88, pp. 428-440;Rodríguez-Zúñiga, J.L., Sánchez-Sesma, F.J., Pérez-Rocha, L.E., Seismic response of shallow alluvial valleys: The use of simplified models (1995) Bull. Seismol. Soc. Am., 85, pp. 890-899;Sánchez-Sesma, F.J., Esquivel, J.A., Ground motion on alluvial valleys under incident plane SH waves (1979) Bull. Seismol. Soc. Am., 69, pp. 1107-1120;Sánchez-Sesma, F.J., Ramos-Martínez, J., Campillo, M., An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh waves (1993) Earthq. Eng. Struct. Dynam., 22, pp. 279-295;Semblat, J.F., Kham, M., Parara, E., Bard, P.Y., Pitilakis, K., Makra, K., Raptakis, D., Seismic wave amplification: Basin geometry vs soil layering (2005) Soil Dynam. Earthq. Eng., 25, pp. 529-538;Stolte, A.C., Cox, B.R., Lee, R.C., An experimental topographic amplification study at Los Alamos National Laboratory using ambient vibrations (2017) Bull. Seismol. Soc. Am., 107, pp. 1386-1401;Volk, O., Shani-Kadmiel, S., Gvirtzman, Z., Tsesarsky, M., 3D Effects of sedimentary wedges and subsurface canyons: Ground-motion amplification in the Israeli coastal plain (2017) Bull. Seismol. Soc. Am., 107, pp. 1324-1335ScopusBoundary element methodEmission spectroscopySailing vesselsAlluvial valleysAntiplane problemEmission spectrumsFundamental modesImpedance ratiosIncidence anglesIndirect boundary element methodInterface geometrySurface wavesLocal generation of love surface waves at the edge of a 2D alluvial valleyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Molina-Villegas, J.C., Universidad de Medellín; Universidad Nacional de Colombia;Jaramillo-Fernández, J.D., Universidad Eafit;Piña-Flores, J., Universidad Nacional Autónoma de México;Sánchez-Sesma, F.J., Universidad Nacional Autónoma de MéxicoMolina-Villegas J.C.Jaramillo-Fernández J.D.Piña-Flores J.Sánchez-Sesma F.J.http://purl.org/coar/access_right/c_16ec11407/4877oai:repository.udem.edu.co:11407/48772020-05-27 17:46:38.136Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co