Symmetry-protected metallic and topological phases in penta-materials

We analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5696
Acceso en línea:
http://hdl.handle.net/11407/5696
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_98a18ad49db91ad7dd73d0b268220b54
oai_identifier_str oai:repository.udem.edu.co:11407/5696
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Symmetry-protected metallic and topological phases in penta-materials
title Symmetry-protected metallic and topological phases in penta-materials
spellingShingle Symmetry-protected metallic and topological phases in penta-materials
title_short Symmetry-protected metallic and topological phases in penta-materials
title_full Symmetry-protected metallic and topological phases in penta-materials
title_fullStr Symmetry-protected metallic and topological phases in penta-materials
title_full_unstemmed Symmetry-protected metallic and topological phases in penta-materials
title_sort Symmetry-protected metallic and topological phases in penta-materials
description We analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology of the electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of protection for metallic and nontrivial topological phases that can be associated to the presence of fractional band filling, spin-orbit coupling and time-reversal symmetry breaking. © 2019, The Author(s).
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:41Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:41Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20452322
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5696
dc.identifier.doi.none.fl_str_mv 10.1038/s41598-019-49187-w
identifier_str_mv 20452322
10.1038/s41598-019-49187-w
url http://hdl.handle.net/11407/5696
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071762621&doi=10.1038%2fs41598-019-49187-w&partnerID=40&md5=8dc7ffecff46b5ff215cb56372975af3
dc.relation.citationvolume.none.fl_str_mv 9
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.references.none.fl_str_mv Magneto-optical effects in topological insulators (2016) Drouhin, H.-J., Wegrowe, J.-E. & Razeghi, M. (Eds) Proc. SPIE 9931, Spintronics IX, Vol. 9931, 99313I (International Society for Optics and Photonics
Tse, W.K., MacDonald, A.H., Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators (2010) Phys. Rev. Lett., 105, p. 057401
Bauer, S., Bobisch, C.A., Nanoscale electron transport at the surface of a topological insulator (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xms1Klsrw%3D
Wang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P., Liao, Z.-M., Quantum transport in dirac and weyl semimetals: a review (2017) Advances in Physics: X, 2, pp. 518-544. , COI: 1:CAS:528:DC%2BC1MXivVCksrs%3D
Bernevig, B.A., Hughes, T.L., Zhang, S.-C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells (2006) Science, 314, pp. 1757-1761
Hasan, M.Z., Kane, C.L., Colloquium: Topological insulators (2010) Reviews of Modern Physics, 82, pp. 3045-3067. , COI: 1:CAS:528:DC%2BC3MXht1Kgsg%3D%3D
Bansil, A., Lin, H., Das, T., Colloquium: Topological band theory (2016) Reviews of Modern Physics, 88, p. 021004
Slager, R.-J., Mesaros, A., Juri?i?, V., Zaanen, J., The space group classification of topological band-insulators (2012) Nature Physics, 9, p. 98
Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S., Classification of topological quantum matter with symmetries (2016) Rev. Mod. Phys., 88, p. 035005
Kruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., Topological classification of crystalline insulators through band structure combinatorics (2017) Phys. Rev. X, 7, p. 041069
Bradlyn, B., Topological quantum chemistry (2017) Nature, 547, pp. 298-305. , COI: 1:CAS:528:DC%2BC2sXhtF2qurrO
Cano, J., Building blocks of topological quantum chemistry: Elementary band representations (2018) Phys. Rev. B, 97, p. 035139. , COI: 1:CAS:528:DC%2BC1MXlt1CjsLs%3D
Bradlyn, B., Band connectivity for topological quantum chemistry: Band structures as a graph theory problem (2018) Phys. Rev. B, 97, p. 035138. , COI: 1:CAS:528:DC%2BC1MXlt1eqs7Y%3D
Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized dirac dispersion relations (2014) Journal of Applied Physics, 115, p. 113702
Zhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , COI: 1:CAS:528:DC%2BC2MXhvFCgsb8%3D
Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Scientific Reports, 6
Liu, Z., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177
Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Computational Materials Science, 159, pp. 448-453
Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251
Cerdá, J.I., Unveiling the pentagonal nature of perfectly aligned single-and double-strand si nano-ribbons on ag(110) (2016) Nature Communications, 7
Oyedele, A.D., Pdse2: Pentagonal two-dimensional layers with high air stability for electronics (2017) Journal of the American Chemical Society, 139, pp. 14090-14097
Liu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Letters, 16, pp. 3831-3842. , COI: 1:CAS:528:DC%2BC28Xos1KhsL0%3D
Yuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , COI: 1:CAS:528:DC%2BC2sXktFykt7c%3D
He, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , COI: 1:CAS:528:DC%2BC2sXhtVSis7rM
Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125. , COI: 1:CAS:528:DC%2BC28XmtFClsw%3D%3D
Chen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The Journal of Physical Chemistry C, 121, pp. 9642-9647. , COI: 1:CAS:528:DC%2BC2sXmsFCkt7s%3D
Krishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation (2017) Carbon, 114, pp. 465-472. , COI: 1:CAS:528:DC%2BC28XitFKrtb7J
Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Scientific Reports, 8
Wu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Letters, 16, pp. 3925-3935. , COI: 1:CAS:528:DC%2BC28XnsVWjtrw%3D
Li, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , COI: 1:CAS:528:DC%2BC28XltFGksLc%3D
Quijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , COI: 1:CAS:528:DC%2BC28XotF2qtrg%3D
Enriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) International Journal of Hydrogen Energy, 41, pp. 12157-12166. , COI: 1:CAS:528:DC%2BC28XhtVGmsLjM
Xiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate (2016) ACS Applied Materials & Interfaces, 8, pp. 35342-35352. , COI: 1:CAS:528:DC%2BC28XitVSrsLnL
Berdiyorov, G.R., Madjet, M.E.-A., First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2 (2016) RSC Adv., 6, pp. 50867-50873. , COI: 1:CAS:528:DC%2BC28Xot1SjsLg%3D
Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: First-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001. , COI: 1:STN:280:DC%2BC2svgslGgtA%3D%3D
Zak, J., Band representations of space groups (1982) Phys. Rev. B, 26, pp. 3010-3023. , COI: 1:CAS:528:DyaL38Xlslartb8%3D
Vergniory, M.G., Graph theory data for topological quantum chemistry (2017) Phys. Rev. E, 96, p. 023310. , COI: 1:STN:280:DC%2BC1M%2FisFKmsA%3D%3D
http://www.cryst.ehu.es/, Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, Spain
Miller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, Denver
Dresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, Berlin
Young, S.M., Kane, C.L., Dirac semimetals in two dimensions (2015) Phys. Rev. Lett., 115, p. 126803
Burkov, A.A., Hook, M.D., Balents, L., Topological nodal semimetals (2011) Phys. Rev. B, 84, p. 235126
Watanabe, H., Po, H.C., Zaletel, M.P., Vishwanath, A., Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups (2016) Phys. Rev. Lett., 117, p. 096404
Chen, R., Po, H.C., Neaton, J.B., Vishwanath, A., Topological materials discovery using electron filling constraints (2018) Nature Physics, 14, pp. 55-61. , COI: 1:CAS:528:DC%2BC2sXhs1aisrvN
Soler, J.M., The siesta method for ab initio order-n materials simulation (2002) Journal of Physics: Condensed Matter, 14, p. 2745. , COI: 1:CAS:528:DC%2BD38XivFGrsL4%3D
Giannozzi, P., Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21, p. 395502. , http://www.quantum-espresso.org, PID: 21832390
Giannozzi, P., Advanced capabilities for materials modelling with quantum espresso (2017) Journal of Physics: Condensed Matter, 29, p. 465901. , COI: 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D, PID: 29064822
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77, p. 3865. , COI: 1:CAS:528:DyaK28XmsVCgsbs%3D
Yagmurcukardes, M., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) Journal of Applied Physics, 118, p. 104303
Yu, R., Weng, H., Fang, Z., Dai, X., Hu, X., Topological node-line semimetal and dirac semimetal state in antiperovskite cu3PdN (2015) Phys. Rev. Lett., 115, p. 036807
Matsuura, S., Chang, P.Y., Schnyder, A.P., Ryu, S., Protected boundary states in gapless topological phases (2013) New Journal of Physics, 15, p. 065001
Topp, A., The effect of spin-orbit coupling on nonsymmorphic square-net compounds (2017) Journal of Physics and Chemistry of Solids
Guan, S., Two-dimensional Spin-Orbit Dirac Point in Monolayer HfGeTe (2017) Physical Review Materials, 1, p. 054003
Klemenz, S., Lei, S., Schoop, L., Topological semimetals in square-net materials (2019) Annual Review of Materials Research, 49. , &
Taherinejad, M., Garrity, K.F., Vanderbilt, D., Wannier center sheets in topological insulators (2014) Physical Review B, 89, p. 115102
Soluyanov, A.A., Vanderbilt, D., Wannier representation of Z2 topological insulators (2011) Physical Review B, 83, p. 035108
Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D., Maximally localized Wannier functions: Theory and applications (2012) Reviews of Modern Physics, 84, pp. 1419-1475
Mostofi, A.A., An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions (2014) Computer Physics Communications, 185, pp. 2309-2310
Soluyanov, A.A., Vanderbilt, D., Smooth gauge for topological insulators (2012) Phys. Rev. B, 85, p. 115415
Gresch, D., Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials (2017) Physical Review B, 95, p. 075146
Wu, Q., Zhang, S., Song, H.-F., Troyer, M., Soluyanov, A.A., WannierTools: An open-source software package for novel topological materials (2018) Computer Physics Communications, 224, pp. 405-416. , COI: 1:CAS:528:DC%2BC2sXhslSgtrnO
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Nature Publishing Group
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv Scientific Reports
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159182577795072
spelling 20192020-04-29T14:53:41Z2020-04-29T14:53:41Z20452322http://hdl.handle.net/11407/569610.1038/s41598-019-49187-wWe analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology of the electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of protection for metallic and nontrivial topological phases that can be associated to the presence of fractional band filling, spin-orbit coupling and time-reversal symmetry breaking. © 2019, The Author(s).engNature Publishing GroupFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071762621&doi=10.1038%2fs41598-019-49187-w&partnerID=40&md5=8dc7ffecff46b5ff215cb56372975af391Magneto-optical effects in topological insulators (2016) Drouhin, H.-J., Wegrowe, J.-E. & Razeghi, M. (Eds) Proc. SPIE 9931, Spintronics IX, Vol. 9931, 99313I (International Society for Optics and PhotonicsTse, W.K., MacDonald, A.H., Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators (2010) Phys. Rev. Lett., 105, p. 057401Bauer, S., Bobisch, C.A., Nanoscale electron transport at the surface of a topological insulator (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xms1Klsrw%3DWang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P., Liao, Z.-M., Quantum transport in dirac and weyl semimetals: a review (2017) Advances in Physics: X, 2, pp. 518-544. , COI: 1:CAS:528:DC%2BC1MXivVCksrs%3DBernevig, B.A., Hughes, T.L., Zhang, S.-C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells (2006) Science, 314, pp. 1757-1761Hasan, M.Z., Kane, C.L., Colloquium: Topological insulators (2010) Reviews of Modern Physics, 82, pp. 3045-3067. , COI: 1:CAS:528:DC%2BC3MXht1Kgsg%3D%3DBansil, A., Lin, H., Das, T., Colloquium: Topological band theory (2016) Reviews of Modern Physics, 88, p. 021004Slager, R.-J., Mesaros, A., Juri?i?, V., Zaanen, J., The space group classification of topological band-insulators (2012) Nature Physics, 9, p. 98Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S., Classification of topological quantum matter with symmetries (2016) Rev. Mod. Phys., 88, p. 035005Kruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., Topological classification of crystalline insulators through band structure combinatorics (2017) Phys. Rev. X, 7, p. 041069Bradlyn, B., Topological quantum chemistry (2017) Nature, 547, pp. 298-305. , COI: 1:CAS:528:DC%2BC2sXhtF2qurrOCano, J., Building blocks of topological quantum chemistry: Elementary band representations (2018) Phys. Rev. B, 97, p. 035139. , COI: 1:CAS:528:DC%2BC1MXlt1CjsLs%3DBradlyn, B., Band connectivity for topological quantum chemistry: Band structures as a graph theory problem (2018) Phys. Rev. B, 97, p. 035138. , COI: 1:CAS:528:DC%2BC1MXlt1eqs7Y%3DTang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized dirac dispersion relations (2014) Journal of Applied Physics, 115, p. 113702Zhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , COI: 1:CAS:528:DC%2BC2MXhvFCgsb8%3DZhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Scientific Reports, 6Liu, Z., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Computational Materials Science, 159, pp. 448-453Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251Cerdá, J.I., Unveiling the pentagonal nature of perfectly aligned single-and double-strand si nano-ribbons on ag(110) (2016) Nature Communications, 7Oyedele, A.D., Pdse2: Pentagonal two-dimensional layers with high air stability for electronics (2017) Journal of the American Chemical Society, 139, pp. 14090-14097Liu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Letters, 16, pp. 3831-3842. , COI: 1:CAS:528:DC%2BC28Xos1KhsL0%3DYuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , COI: 1:CAS:528:DC%2BC2sXktFykt7c%3DHe, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , COI: 1:CAS:528:DC%2BC2sXhtVSis7rMRajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125. , COI: 1:CAS:528:DC%2BC28XmtFClsw%3D%3DChen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The Journal of Physical Chemistry C, 121, pp. 9642-9647. , COI: 1:CAS:528:DC%2BC2sXmsFCkt7s%3DKrishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation (2017) Carbon, 114, pp. 465-472. , COI: 1:CAS:528:DC%2BC28XitFKrtb7JBravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Scientific Reports, 8Wu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Letters, 16, pp. 3925-3935. , COI: 1:CAS:528:DC%2BC28XnsVWjtrw%3DLi, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , COI: 1:CAS:528:DC%2BC28XltFGksLc%3DQuijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , COI: 1:CAS:528:DC%2BC28XotF2qtrg%3DEnriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) International Journal of Hydrogen Energy, 41, pp. 12157-12166. , COI: 1:CAS:528:DC%2BC28XhtVGmsLjMXiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate (2016) ACS Applied Materials & Interfaces, 8, pp. 35342-35352. , COI: 1:CAS:528:DC%2BC28XitVSrsLnLBerdiyorov, G.R., Madjet, M.E.-A., First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2 (2016) RSC Adv., 6, pp. 50867-50873. , COI: 1:CAS:528:DC%2BC28Xot1SjsLg%3DBerdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: First-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001. , COI: 1:STN:280:DC%2BC2svgslGgtA%3D%3DZak, J., Band representations of space groups (1982) Phys. Rev. B, 26, pp. 3010-3023. , COI: 1:CAS:528:DyaL38Xlslartb8%3DVergniory, M.G., Graph theory data for topological quantum chemistry (2017) Phys. Rev. E, 96, p. 023310. , COI: 1:STN:280:DC%2BC1M%2FisFKmsA%3D%3Dhttp://www.cryst.ehu.es/, Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, SpainMiller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, DenverDresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, BerlinYoung, S.M., Kane, C.L., Dirac semimetals in two dimensions (2015) Phys. Rev. Lett., 115, p. 126803Burkov, A.A., Hook, M.D., Balents, L., Topological nodal semimetals (2011) Phys. Rev. B, 84, p. 235126Watanabe, H., Po, H.C., Zaletel, M.P., Vishwanath, A., Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups (2016) Phys. Rev. Lett., 117, p. 096404Chen, R., Po, H.C., Neaton, J.B., Vishwanath, A., Topological materials discovery using electron filling constraints (2018) Nature Physics, 14, pp. 55-61. , COI: 1:CAS:528:DC%2BC2sXhs1aisrvNSoler, J.M., The siesta method for ab initio order-n materials simulation (2002) Journal of Physics: Condensed Matter, 14, p. 2745. , COI: 1:CAS:528:DC%2BD38XivFGrsL4%3DGiannozzi, P., Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21, p. 395502. , http://www.quantum-espresso.org, PID: 21832390Giannozzi, P., Advanced capabilities for materials modelling with quantum espresso (2017) Journal of Physics: Condensed Matter, 29, p. 465901. , COI: 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D, PID: 29064822Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77, p. 3865. , COI: 1:CAS:528:DyaK28XmsVCgsbs%3DYagmurcukardes, M., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) Journal of Applied Physics, 118, p. 104303Yu, R., Weng, H., Fang, Z., Dai, X., Hu, X., Topological node-line semimetal and dirac semimetal state in antiperovskite cu3PdN (2015) Phys. Rev. Lett., 115, p. 036807Matsuura, S., Chang, P.Y., Schnyder, A.P., Ryu, S., Protected boundary states in gapless topological phases (2013) New Journal of Physics, 15, p. 065001Topp, A., The effect of spin-orbit coupling on nonsymmorphic square-net compounds (2017) Journal of Physics and Chemistry of SolidsGuan, S., Two-dimensional Spin-Orbit Dirac Point in Monolayer HfGeTe (2017) Physical Review Materials, 1, p. 054003Klemenz, S., Lei, S., Schoop, L., Topological semimetals in square-net materials (2019) Annual Review of Materials Research, 49. , &Taherinejad, M., Garrity, K.F., Vanderbilt, D., Wannier center sheets in topological insulators (2014) Physical Review B, 89, p. 115102Soluyanov, A.A., Vanderbilt, D., Wannier representation of Z2 topological insulators (2011) Physical Review B, 83, p. 035108Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D., Maximally localized Wannier functions: Theory and applications (2012) Reviews of Modern Physics, 84, pp. 1419-1475Mostofi, A.A., An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions (2014) Computer Physics Communications, 185, pp. 2309-2310Soluyanov, A.A., Vanderbilt, D., Smooth gauge for topological insulators (2012) Phys. Rev. B, 85, p. 115415Gresch, D., Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials (2017) Physical Review B, 95, p. 075146Wu, Q., Zhang, S., Song, H.-F., Troyer, M., Soluyanov, A.A., WannierTools: An open-source software package for novel topological materials (2018) Computer Physics Communications, 224, pp. 405-416. , COI: 1:CAS:528:DC%2BC2sXhslSgtrnOScientific ReportsSymmetry-protected metallic and topological phases in penta-materialsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bravo, S., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chile; Correa, J., Universidad de Medellín, Facultad de Ciencias Básicas, Medellín, Colombia; Chico, L., Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain; Pacheco, M., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chilehttp://purl.org/coar/access_right/c_16ecBravo S.Correa J.Chico L.Pacheco M.11407/5696oai:repository.udem.edu.co:11407/56962020-05-27 17:46:50.756Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co