Symmetry-protected metallic and topological phases in penta-materials
We analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5696
- Acceso en línea:
- http://hdl.handle.net/11407/5696
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_98a18ad49db91ad7dd73d0b268220b54 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5696 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Symmetry-protected metallic and topological phases in penta-materials |
title |
Symmetry-protected metallic and topological phases in penta-materials |
spellingShingle |
Symmetry-protected metallic and topological phases in penta-materials |
title_short |
Symmetry-protected metallic and topological phases in penta-materials |
title_full |
Symmetry-protected metallic and topological phases in penta-materials |
title_fullStr |
Symmetry-protected metallic and topological phases in penta-materials |
title_full_unstemmed |
Symmetry-protected metallic and topological phases in penta-materials |
title_sort |
Symmetry-protected metallic and topological phases in penta-materials |
description |
We analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology of the electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of protection for metallic and nontrivial topological phases that can be associated to the presence of fractional band filling, spin-orbit coupling and time-reversal symmetry breaking. © 2019, The Author(s). |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:41Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:41Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20452322 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5696 |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41598-019-49187-w |
identifier_str_mv |
20452322 10.1038/s41598-019-49187-w |
url |
http://hdl.handle.net/11407/5696 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071762621&doi=10.1038%2fs41598-019-49187-w&partnerID=40&md5=8dc7ffecff46b5ff215cb56372975af3 |
dc.relation.citationvolume.none.fl_str_mv |
9 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.references.none.fl_str_mv |
Magneto-optical effects in topological insulators (2016) Drouhin, H.-J., Wegrowe, J.-E. & Razeghi, M. (Eds) Proc. SPIE 9931, Spintronics IX, Vol. 9931, 99313I (International Society for Optics and Photonics Tse, W.K., MacDonald, A.H., Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators (2010) Phys. Rev. Lett., 105, p. 057401 Bauer, S., Bobisch, C.A., Nanoscale electron transport at the surface of a topological insulator (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xms1Klsrw%3D Wang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P., Liao, Z.-M., Quantum transport in dirac and weyl semimetals: a review (2017) Advances in Physics: X, 2, pp. 518-544. , COI: 1:CAS:528:DC%2BC1MXivVCksrs%3D Bernevig, B.A., Hughes, T.L., Zhang, S.-C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells (2006) Science, 314, pp. 1757-1761 Hasan, M.Z., Kane, C.L., Colloquium: Topological insulators (2010) Reviews of Modern Physics, 82, pp. 3045-3067. , COI: 1:CAS:528:DC%2BC3MXht1Kgsg%3D%3D Bansil, A., Lin, H., Das, T., Colloquium: Topological band theory (2016) Reviews of Modern Physics, 88, p. 021004 Slager, R.-J., Mesaros, A., Juri?i?, V., Zaanen, J., The space group classification of topological band-insulators (2012) Nature Physics, 9, p. 98 Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S., Classification of topological quantum matter with symmetries (2016) Rev. Mod. Phys., 88, p. 035005 Kruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., Topological classification of crystalline insulators through band structure combinatorics (2017) Phys. Rev. X, 7, p. 041069 Bradlyn, B., Topological quantum chemistry (2017) Nature, 547, pp. 298-305. , COI: 1:CAS:528:DC%2BC2sXhtF2qurrO Cano, J., Building blocks of topological quantum chemistry: Elementary band representations (2018) Phys. Rev. B, 97, p. 035139. , COI: 1:CAS:528:DC%2BC1MXlt1CjsLs%3D Bradlyn, B., Band connectivity for topological quantum chemistry: Band structures as a graph theory problem (2018) Phys. Rev. B, 97, p. 035138. , COI: 1:CAS:528:DC%2BC1MXlt1eqs7Y%3D Tang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized dirac dispersion relations (2014) Journal of Applied Physics, 115, p. 113702 Zhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , COI: 1:CAS:528:DC%2BC2MXhvFCgsb8%3D Zhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Scientific Reports, 6 Liu, Z., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177 Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Computational Materials Science, 159, pp. 448-453 Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251 Cerdá, J.I., Unveiling the pentagonal nature of perfectly aligned single-and double-strand si nano-ribbons on ag(110) (2016) Nature Communications, 7 Oyedele, A.D., Pdse2: Pentagonal two-dimensional layers with high air stability for electronics (2017) Journal of the American Chemical Society, 139, pp. 14090-14097 Liu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Letters, 16, pp. 3831-3842. , COI: 1:CAS:528:DC%2BC28Xos1KhsL0%3D Yuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , COI: 1:CAS:528:DC%2BC2sXktFykt7c%3D He, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , COI: 1:CAS:528:DC%2BC2sXhtVSis7rM Rajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125. , COI: 1:CAS:528:DC%2BC28XmtFClsw%3D%3D Chen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The Journal of Physical Chemistry C, 121, pp. 9642-9647. , COI: 1:CAS:528:DC%2BC2sXmsFCkt7s%3D Krishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation (2017) Carbon, 114, pp. 465-472. , COI: 1:CAS:528:DC%2BC28XitFKrtb7J Bravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Scientific Reports, 8 Wu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Letters, 16, pp. 3925-3935. , COI: 1:CAS:528:DC%2BC28XnsVWjtrw%3D Li, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , COI: 1:CAS:528:DC%2BC28XltFGksLc%3D Quijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , COI: 1:CAS:528:DC%2BC28XotF2qtrg%3D Enriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) International Journal of Hydrogen Energy, 41, pp. 12157-12166. , COI: 1:CAS:528:DC%2BC28XhtVGmsLjM Xiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate (2016) ACS Applied Materials & Interfaces, 8, pp. 35342-35352. , COI: 1:CAS:528:DC%2BC28XitVSrsLnL Berdiyorov, G.R., Madjet, M.E.-A., First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2 (2016) RSC Adv., 6, pp. 50867-50873. , COI: 1:CAS:528:DC%2BC28Xot1SjsLg%3D Berdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: First-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001. , COI: 1:STN:280:DC%2BC2svgslGgtA%3D%3D Zak, J., Band representations of space groups (1982) Phys. Rev. B, 26, pp. 3010-3023. , COI: 1:CAS:528:DyaL38Xlslartb8%3D Vergniory, M.G., Graph theory data for topological quantum chemistry (2017) Phys. Rev. E, 96, p. 023310. , COI: 1:STN:280:DC%2BC1M%2FisFKmsA%3D%3D http://www.cryst.ehu.es/, Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, Spain Miller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, Denver Dresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, Berlin Young, S.M., Kane, C.L., Dirac semimetals in two dimensions (2015) Phys. Rev. Lett., 115, p. 126803 Burkov, A.A., Hook, M.D., Balents, L., Topological nodal semimetals (2011) Phys. Rev. B, 84, p. 235126 Watanabe, H., Po, H.C., Zaletel, M.P., Vishwanath, A., Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups (2016) Phys. Rev. Lett., 117, p. 096404 Chen, R., Po, H.C., Neaton, J.B., Vishwanath, A., Topological materials discovery using electron filling constraints (2018) Nature Physics, 14, pp. 55-61. , COI: 1:CAS:528:DC%2BC2sXhs1aisrvN Soler, J.M., The siesta method for ab initio order-n materials simulation (2002) Journal of Physics: Condensed Matter, 14, p. 2745. , COI: 1:CAS:528:DC%2BD38XivFGrsL4%3D Giannozzi, P., Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21, p. 395502. , http://www.quantum-espresso.org, PID: 21832390 Giannozzi, P., Advanced capabilities for materials modelling with quantum espresso (2017) Journal of Physics: Condensed Matter, 29, p. 465901. , COI: 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D, PID: 29064822 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77, p. 3865. , COI: 1:CAS:528:DyaK28XmsVCgsbs%3D Yagmurcukardes, M., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) Journal of Applied Physics, 118, p. 104303 Yu, R., Weng, H., Fang, Z., Dai, X., Hu, X., Topological node-line semimetal and dirac semimetal state in antiperovskite cu3PdN (2015) Phys. Rev. Lett., 115, p. 036807 Matsuura, S., Chang, P.Y., Schnyder, A.P., Ryu, S., Protected boundary states in gapless topological phases (2013) New Journal of Physics, 15, p. 065001 Topp, A., The effect of spin-orbit coupling on nonsymmorphic square-net compounds (2017) Journal of Physics and Chemistry of Solids Guan, S., Two-dimensional Spin-Orbit Dirac Point in Monolayer HfGeTe (2017) Physical Review Materials, 1, p. 054003 Klemenz, S., Lei, S., Schoop, L., Topological semimetals in square-net materials (2019) Annual Review of Materials Research, 49. , & Taherinejad, M., Garrity, K.F., Vanderbilt, D., Wannier center sheets in topological insulators (2014) Physical Review B, 89, p. 115102 Soluyanov, A.A., Vanderbilt, D., Wannier representation of Z2 topological insulators (2011) Physical Review B, 83, p. 035108 Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D., Maximally localized Wannier functions: Theory and applications (2012) Reviews of Modern Physics, 84, pp. 1419-1475 Mostofi, A.A., An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions (2014) Computer Physics Communications, 185, pp. 2309-2310 Soluyanov, A.A., Vanderbilt, D., Smooth gauge for topological insulators (2012) Phys. Rev. B, 85, p. 115415 Gresch, D., Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials (2017) Physical Review B, 95, p. 075146 Wu, Q., Zhang, S., Song, H.-F., Troyer, M., Soluyanov, A.A., WannierTools: An open-source software package for novel topological materials (2018) Computer Physics Communications, 224, pp. 405-416. , COI: 1:CAS:528:DC%2BC2sXhslSgtrnO |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
Scientific Reports |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159182577795072 |
spelling |
20192020-04-29T14:53:41Z2020-04-29T14:53:41Z20452322http://hdl.handle.net/11407/569610.1038/s41598-019-49187-wWe analyze the symmetry and topological features of a family of materials closely related to penta-graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a novel approach, called topological quantum chemistry, that allows to characterize the topology of the electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of protection for metallic and nontrivial topological phases that can be associated to the presence of fractional band filling, spin-orbit coupling and time-reversal symmetry breaking. © 2019, The Author(s).engNature Publishing GroupFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071762621&doi=10.1038%2fs41598-019-49187-w&partnerID=40&md5=8dc7ffecff46b5ff215cb56372975af391Magneto-optical effects in topological insulators (2016) Drouhin, H.-J., Wegrowe, J.-E. & Razeghi, M. (Eds) Proc. SPIE 9931, Spintronics IX, Vol. 9931, 99313I (International Society for Optics and PhotonicsTse, W.K., MacDonald, A.H., Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators (2010) Phys. Rev. Lett., 105, p. 057401Bauer, S., Bobisch, C.A., Nanoscale electron transport at the surface of a topological insulator (2016) Nature Communications, 7. , COI: 1:CAS:528:DC%2BC28Xms1Klsrw%3DWang, S., Lin, B.-C., Wang, A.-Q., Yu, D.-P., Liao, Z.-M., Quantum transport in dirac and weyl semimetals: a review (2017) Advances in Physics: X, 2, pp. 518-544. , COI: 1:CAS:528:DC%2BC1MXivVCksrs%3DBernevig, B.A., Hughes, T.L., Zhang, S.-C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells (2006) Science, 314, pp. 1757-1761Hasan, M.Z., Kane, C.L., Colloquium: Topological insulators (2010) Reviews of Modern Physics, 82, pp. 3045-3067. , COI: 1:CAS:528:DC%2BC3MXht1Kgsg%3D%3DBansil, A., Lin, H., Das, T., Colloquium: Topological band theory (2016) Reviews of Modern Physics, 88, p. 021004Slager, R.-J., Mesaros, A., Juri?i?, V., Zaanen, J., The space group classification of topological band-insulators (2012) Nature Physics, 9, p. 98Chiu, C.-K., Teo, J.C.Y., Schnyder, A.P., Ryu, S., Classification of topological quantum matter with symmetries (2016) Rev. Mod. Phys., 88, p. 035005Kruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., Topological classification of crystalline insulators through band structure combinatorics (2017) Phys. Rev. X, 7, p. 041069Bradlyn, B., Topological quantum chemistry (2017) Nature, 547, pp. 298-305. , COI: 1:CAS:528:DC%2BC2sXhtF2qurrOCano, J., Building blocks of topological quantum chemistry: Elementary band representations (2018) Phys. Rev. B, 97, p. 035139. , COI: 1:CAS:528:DC%2BC1MXlt1CjsLs%3DBradlyn, B., Band connectivity for topological quantum chemistry: Band structures as a graph theory problem (2018) Phys. Rev. B, 97, p. 035138. , COI: 1:CAS:528:DC%2BC1MXlt1eqs7Y%3DTang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., Two-dimensional pentagonal crystals and possible spin-polarized dirac dispersion relations (2014) Journal of Applied Physics, 115, p. 113702Zhang, S., Penta-graphene: A new carbon allotrope (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2372-2377. , COI: 1:CAS:528:DC%2BC2MXhvFCgsb8%3DZhang, C., Zhang, S., Wang, Q., Bonding-restricted structure search for novel 2d materials with dispersed c2 dimers (2016) Scientific Reports, 6Liu, Z., Penta-pt2n4: an ideal two-dimensional material for nanoelectronics (2018) Nanoscale, 10, pp. 16169-16177Zhuang, H.L., From pentagonal geometries to two-dimensional materials (2019) Computational Materials Science, 159, pp. 448-453Zhao, K., Li, X., Wang, S., Wang, Q., 2d planar penta-mn2 (m = pd, pt) sheets identified through structure search (2019) Phys. Chem. Chem. Phys., 21, pp. 246-251Cerdá, J.I., Unveiling the pentagonal nature of perfectly aligned single-and double-strand si nano-ribbons on ag(110) (2016) Nature Communications, 7Oyedele, A.D., Pdse2: Pentagonal two-dimensional layers with high air stability for electronics (2017) Journal of the American Chemical Society, 139, pp. 14090-14097Liu, H., Qin, G., Lin, Y., Hu, M., Disparate strain dependent thermal conductivity of two-dimensional penta-structures (2016) Nano Letters, 16, pp. 3831-3842. , COI: 1:CAS:528:DC%2BC28Xos1KhsL0%3DYuan, P.F., Zhang, Z.H., Fan, Z.Q., Qiu, M., Electronic structure and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 9528-9536. , COI: 1:CAS:528:DC%2BC2sXktFykt7c%3DHe, C., Wang, X.F., Zhang, W.X., Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons (2017) Phys. Chem. Chem. Phys., 19, pp. 18426-18433. , COI: 1:CAS:528:DC%2BC2sXhtVSis7rMRajbanshi, B., Sarkar, S., Mandal, B., Sarkar, P., Energetic and electronic structure of penta-graphene nanoribbons (2016) Carbon, 100, pp. 118-125. , COI: 1:CAS:528:DC%2BC28XmtFClsw%3D%3DChen, M., Zhan, H., Zhu, Y., Wu, H., Gu, Y., Mechanical properties of penta-graphene nanotubes (2017) The Journal of Physical Chemistry C, 121, pp. 9642-9647. , COI: 1:CAS:528:DC%2BC2sXmsFCkt7s%3DKrishnan, R., Su, W.-S., Chen, H.-T., A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation (2017) Carbon, 114, pp. 465-472. , COI: 1:CAS:528:DC%2BC28XitFKrtb7JBravo, S., Correa, J., Chico, L., Pacheco, M., Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Scientific Reports, 8Wu, X., Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity (2016) Nano Letters, 16, pp. 3925-3935. , COI: 1:CAS:528:DC%2BC28XnsVWjtrw%3DLi, X., Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination (2016) Phys. Chem. Chem. Phys., 18, pp. 14191-14197. , COI: 1:CAS:528:DC%2BC28XltFGksLc%3DQuijano-Briones, J.J., Fernandez-Escamilla, H.N., Tlahuice-Flores, A., Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study (2016) Phys. Chem. Chem. Phys., 18, pp. 15505-15509. , COI: 1:CAS:528:DC%2BC28XotF2qtrg%3DEnriquez, J.I.G., Villagracia, A.R.C., Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene (2016) International Journal of Hydrogen Energy, 41, pp. 12157-12166. , COI: 1:CAS:528:DC%2BC28XhtVGmsLjMXiao, B., Li, Y.-C., Yu, X.-F., Cheng, J.-B., Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate (2016) ACS Applied Materials & Interfaces, 8, pp. 35342-35352. , COI: 1:CAS:528:DC%2BC28XitVSrsLnLBerdiyorov, G.R., Madjet, M.E.-A., First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2 (2016) RSC Adv., 6, pp. 50867-50873. , COI: 1:CAS:528:DC%2BC28Xot1SjsLg%3DBerdiyorov, G., Dixit, G., Madjet, M., Band gap engineering in penta-graphene by substitutional doping: First-principles calculations (2016) J. Phys. Condens. Matter, 28, p. 475001. , COI: 1:STN:280:DC%2BC2svgslGgtA%3D%3DZak, J., Band representations of space groups (1982) Phys. Rev. B, 26, pp. 3010-3023. , COI: 1:CAS:528:DyaL38Xlslartb8%3DVergniory, M.G., Graph theory data for topological quantum chemistry (2017) Phys. Rev. E, 96, p. 023310. , COI: 1:STN:280:DC%2BC1M%2FisFKmsA%3D%3Dhttp://www.cryst.ehu.es/, Bilbao Crystallographic Server, University of the Basque Country, Bilbao, Basque Country, SpainMiller, S.C., Love, W.H., (1967) Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups, , Pruett Press, DenverDresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory - Applications to the Physics of Condensed Matter, , Springer, BerlinYoung, S.M., Kane, C.L., Dirac semimetals in two dimensions (2015) Phys. Rev. Lett., 115, p. 126803Burkov, A.A., Hook, M.D., Balents, L., Topological nodal semimetals (2011) Phys. Rev. B, 84, p. 235126Watanabe, H., Po, H.C., Zaletel, M.P., Vishwanath, A., Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups (2016) Phys. Rev. Lett., 117, p. 096404Chen, R., Po, H.C., Neaton, J.B., Vishwanath, A., Topological materials discovery using electron filling constraints (2018) Nature Physics, 14, pp. 55-61. , COI: 1:CAS:528:DC%2BC2sXhs1aisrvNSoler, J.M., The siesta method for ab initio order-n materials simulation (2002) Journal of Physics: Condensed Matter, 14, p. 2745. , COI: 1:CAS:528:DC%2BD38XivFGrsL4%3DGiannozzi, P., Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21, p. 395502. , http://www.quantum-espresso.org, PID: 21832390Giannozzi, P., Advanced capabilities for materials modelling with quantum espresso (2017) Journal of Physics: Condensed Matter, 29, p. 465901. , COI: 1:STN:280:DC%2BC1M7jvFOjuw%3D%3D, PID: 29064822Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77, p. 3865. , COI: 1:CAS:528:DyaK28XmsVCgsbs%3DYagmurcukardes, M., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide (2015) Journal of Applied Physics, 118, p. 104303Yu, R., Weng, H., Fang, Z., Dai, X., Hu, X., Topological node-line semimetal and dirac semimetal state in antiperovskite cu3PdN (2015) Phys. Rev. Lett., 115, p. 036807Matsuura, S., Chang, P.Y., Schnyder, A.P., Ryu, S., Protected boundary states in gapless topological phases (2013) New Journal of Physics, 15, p. 065001Topp, A., The effect of spin-orbit coupling on nonsymmorphic square-net compounds (2017) Journal of Physics and Chemistry of SolidsGuan, S., Two-dimensional Spin-Orbit Dirac Point in Monolayer HfGeTe (2017) Physical Review Materials, 1, p. 054003Klemenz, S., Lei, S., Schoop, L., Topological semimetals in square-net materials (2019) Annual Review of Materials Research, 49. , &Taherinejad, M., Garrity, K.F., Vanderbilt, D., Wannier center sheets in topological insulators (2014) Physical Review B, 89, p. 115102Soluyanov, A.A., Vanderbilt, D., Wannier representation of Z2 topological insulators (2011) Physical Review B, 83, p. 035108Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D., Maximally localized Wannier functions: Theory and applications (2012) Reviews of Modern Physics, 84, pp. 1419-1475Mostofi, A.A., An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions (2014) Computer Physics Communications, 185, pp. 2309-2310Soluyanov, A.A., Vanderbilt, D., Smooth gauge for topological insulators (2012) Phys. Rev. B, 85, p. 115415Gresch, D., Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials (2017) Physical Review B, 95, p. 075146Wu, Q., Zhang, S., Song, H.-F., Troyer, M., Soluyanov, A.A., WannierTools: An open-source software package for novel topological materials (2018) Computer Physics Communications, 224, pp. 405-416. , COI: 1:CAS:528:DC%2BC2sXhslSgtrnOScientific ReportsSymmetry-protected metallic and topological phases in penta-materialsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bravo, S., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chile; Correa, J., Universidad de Medellín, Facultad de Ciencias Básicas, Medellín, Colombia; Chico, L., Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain; Pacheco, M., Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Chilehttp://purl.org/coar/access_right/c_16ecBravo S.Correa J.Chico L.Pacheco M.11407/5696oai:repository.udem.edu.co:11407/56962020-05-27 17:46:50.756Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |