Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study

A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significa...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4285
Acceso en línea:
http://hdl.handle.net/11407/4285
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_985c36b410f9f4626feb04312feb11e9
oai_identifier_str oai:repository.udem.edu.co:11407/4285
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
spellingShingle Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title_short Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title_full Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title_fullStr Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title_full_unstemmed Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
title_sort Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
dc.contributor.affiliation.spa.fl_str_mv Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Florez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
Moreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Liu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
Rodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
description A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:44Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4285
dc.identifier.doi.none.fl_str_mv 10.1039/c6cp07400f
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 14639076
10.1039/c6cp07400f
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4285
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016930582&doi=10.1039%2fc6cp07400f&partnerID=40&md5=1b7d3c762d099284ac8ff7e17406c853
dc.relation.ispartofes.spa.fl_str_mv Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics Volume 19, Issue 2, 2017
dc.relation.references.spa.fl_str_mv Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048
Ardakani, S. J., & Smith, K. J. (2011). A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Applied Catalysis A: General, 403(1-2), 36-47. doi:10.1016/j.apcata.2011.06.013
Basaran, D., Aleksandrov, H. A., Chen, Z. -., Zhao, Z. -., & Rösch, N. (2011). Decomposition of ethylene on transition metal surfaces M(1 1 1). A comparative DFT study of model reactions for M = pd, pt, rh, ni. Journal of Molecular Catalysis A: Chemical, 344(1-2), 37-46. doi:10.1016/j.molcata.2011.04.019
Chang, C. -., Yeh, C. -., & Ho, J. -. (2013). Theoretical study of selective hydrogenation in a mixture of acetylene and ethylene over Fe@W(1 1 1) bimetallic surfaces. Applied Catalysis A: General, 462-463, 296-301. doi:10.1016/j.apcata.2013.05.014
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075
Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., . . . Shi, J. (2011). In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 36(17), 10513-10521. doi:10.1016/j.ijhydene.2011.06.050
Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.
Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882g
Gomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445
Hartley, F. R. (1972). Metal‐Olefin and ‐Acetylene bonding in complexes. Angewandte Chemie International Edition in English, 11(7), 596-606. doi:10.1002/anie.197205961
Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0
Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106
Jin, Y., Datye, A. K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., . . . Blacksony, J. (2001). The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 203(2), 292-306. doi:10.1006/jcat.2001.3347
Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1982). Catalysis by transition metal carbides. IV. mechanism of ethylene hydrogenation and the nature of active sites on tantalum monocarbide. Journal of Catalysis, 73(1), 128-135. doi:10.1016/0021-9517(82)90087-2
Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1979). Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene. Journal of Catalysis, 59(3), 472-474. doi:10.1016/S0021-9517(79)80019-6
Levy, R. B., & Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science, 181(4099), 547-549.
Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629
Massera, C., & Frenking, G. (2003). Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = ni, pd, pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2). Organometallics, 22(13), 2758-2765. doi:10.1021/om0301637
McCue, A. J., & Anderson, J. A. (2015). Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 9(2), 142-153. doi:10.1007/s11705-015-1516-4
Mei, D., Sheth, P. A., Neurock, M., & Smith, C. M. (2006). First-principles-based kinetic monte carlo simulation of the selective hydrogenation of acetylene over pd(111). Journal of Catalysis, 242(1), 1-15. doi:10.1016/j.jcat.2006.05.009
Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188
Moskaleva, L. V., Chen, Z. -., Aleksandrov, H. A., Mohammed, A. B., Sun, Q., & Rösch, N. (2009). Ethylene conversion to ethylidyne over pd(111): Revisiting the mechanism with first-principles calculations.Journal of Physical Chemistry C, 113(6), 2512-2520. doi:10.1021/jp8082562
Nechaev, M. S., Rayon, V. M., & Frenking, G. (2004). Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM-C2H x and Cl4TM-C2Hx (TM = cr, mo, W), (CO)4TM-C2Hx (TM = fe, ru, os), and TM +-C2Hx (TM = cu, ag, au). Journal of Physical Chemistry A, 108(15), 3134-3142. doi:10.1021/jp031185+
Neyman, K. M., & Schauermann, S. (2010). Hydrogen diffusion into palladium nanoparticles: Pivotal promotion by carbon. Angewandte Chemie - International Edition, 49(28), 4743-4746. doi:10.1002/anie.200904688
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865
Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389k
Posada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225f
Posada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943a
Posada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8
Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032
Sautet, P., & Paul, J. -. (1991). Low temperature adsorption of ethylene and butadiene on platinum and palladium surfaces: A theoretical study of the diσ/π competition. Catalysis Letters, 9(3-4), 245-260. doi:10.1007/BF00773183
Sheth, P. A., Neurock, M., & Smith, C. M. (2003). A first-principles analysis of acetylene hydrogenation over pd(111). Journal of Physical Chemistry B, 107(9), 2009-2017. doi:10.1021/jp021342p
Sorescu, D. C., & Jordan, K. D. (2000). Theoretical study of the adsorption of acetylene on the si(001) surface. Journal of Physical Chemistry B, 104(34), 8259-8267. doi:10.1021/jp001353n
Spiewak, B. E., Cortright, R. D., & Dumesic, J. A. (1998). Microcalorimetric studies of H2, C2H4, and C2H2 adsorption on pt powder. Journal of Catalysis, 176(2), 405-414. doi:10.1006/jcat.1998.2047
Stachurski, J., & Fra̧ckiewicz, A. (1985). A new phase in the pd-C system formed during the catalytic hydrogenation of acetylene. Journal of the Less-Common Metals, 108(2), 249-256. doi:10.1016/0022-5088(85)90219-X
Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R. Z., Christensen, C. H., & Nørskov, J. K. (2008). Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 320(5881), 1320-1322. doi:10.1126/science.1156660
Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892
Vértes, G., Horányi, G., & Szakács, S. (1973). Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (10), 1400-1402.
Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987
Viñes, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). J.Chem.Phys., 122.
Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 73.
Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 74.
Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5
Yang, B., Burch, R., Hardacre, C., Hu, P., & Hughes, P. (2016). Importance of surface carbide formation on the activity and selectivity of pd surfaces in the selective hydrogenation of acetylene. Surface Science, 646, 45-49. doi:10.1016/j.susc.2015.07.015
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Royal Society of Chemistry
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159157100544000
spelling 2017-12-19T19:36:44Z2017-12-19T19:36:44Z201714639076http://hdl.handle.net/11407/428510.1039/c6cp07400freponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínA comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.engRoyal Society of ChemistryFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85016930582&doi=10.1039%2fc6cp07400f&partnerID=40&md5=1b7d3c762d099284ac8ff7e17406c853Physical Chemistry Chemical PhysicsPhysical Chemistry Chemical Physics Volume 19, Issue 2, 2017Ardakani, S. J., Liu, X., & Smith, K. J. (2007). Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Applied Catalysis A: General, 324(1-2), 9-19. doi:10.1016/j.apcata.2007.02.048Ardakani, S. J., & Smith, K. J. (2011). A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts. Applied Catalysis A: General, 403(1-2), 36-47. doi:10.1016/j.apcata.2011.06.013Basaran, D., Aleksandrov, H. A., Chen, Z. -., Zhao, Z. -., & Rösch, N. (2011). Decomposition of ethylene on transition metal surfaces M(1 1 1). A comparative DFT study of model reactions for M = pd, pt, rh, ni. Journal of Molecular Catalysis A: Chemical, 344(1-2), 37-46. doi:10.1016/j.molcata.2011.04.019Chang, C. -., Yeh, C. -., & Ho, J. -. (2013). Theoretical study of selective hydrogenation in a mixture of acetylene and ethylene over Fe@W(1 1 1) bimetallic surfaces. Applied Catalysis A: General, 462-463, 296-301. doi:10.1016/j.apcata.2013.05.014Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 220(5-6), 567-570. doi:10.1524/zkri.220.5.567.65075Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., . . . Shi, J. (2011). In-situ carbonization synthesis and ethylene hydrogenation activity of ordered mesoporous tungsten carbide. International Journal of Hydrogen Energy, 36(17), 10513-10521. doi:10.1016/j.ijhydene.2011.06.050Dhandapani, B., St. Clair, T., & Oyama, S. T. (1998). Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Applied Catalysis A: General, 168(2), 219-228.Florez, E., Gomez, T., Rodriguez, J. A., & Illas, F. (2011). On the dissociation of molecular hydrogen by au supported on transition metal carbides: Choice of the most active support. Physical Chemistry Chemical Physics, 13(15), 6865-6871. doi:10.1039/c0cp02882gGomez, T., Florez, E., Rodriguez, J. A., & Illas, F. (2011). Reactivity of transition metals (pd, pt, cu, ag, au) toward molecular hydrogen dissociation: Extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad. Journal of Physical Chemistry C, 115(23), 11666-11672. doi:10.1021/jp2024445Hartley, F. R. (1972). Metal‐Olefin and ‐Acetylene bonding in complexes. Angewandte Chemie International Edition in English, 11(7), 596-606. doi:10.1002/anie.197205961Herzberg, G., & Stoicheff, B. P. (1955). Carbon-carbon and carbon-hydrogen distances in simple polyatomic molecules [4]. Nature, 175(4445), 79-80. doi:10.1038/175079a0Jimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., & Rodriguez, J. A. (2016). Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces. Journal of Physical Chemistry C, 120(25), 13531-13540. doi:10.1021/acs.jpcc.6b03106Jin, Y., Datye, A. K., Rightor, E., Gulotty, R., Waterman, W., Smith, M., . . . Blacksony, J. (2001). The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 203(2), 292-306. doi:10.1006/jcat.2001.3347Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1982). Catalysis by transition metal carbides. IV. mechanism of ethylene hydrogenation and the nature of active sites on tantalum monocarbide. Journal of Catalysis, 73(1), 128-135. doi:10.1016/0021-9517(82)90087-2Kojima, I., Miyazaki, E., Inoue, Y., & Yasumori, I. (1979). Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene. Journal of Catalysis, 59(3), 472-474. doi:10.1016/S0021-9517(79)80019-6Levy, R. B., & Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science, 181(4099), 547-549.Liu, P., & Rodriguez, J. A. (2006). Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. Journal of Physical Chemistry B, 110(39), 19418-19425. doi:10.1021/jp0621629Massera, C., & Frenking, G. (2003). Energy partitioning analysis of the bonding in L2TM-C2H2 and L2TM-C2H4 (TM = ni, pd, pt; L2 = (PH3)2, (PMe3)2, H2PCH2PH2, H2P(CH2)2PH2). Organometallics, 22(13), 2758-2765. doi:10.1021/om0301637McCue, A. J., & Anderson, J. A. (2015). Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 9(2), 142-153. doi:10.1007/s11705-015-1516-4Mei, D., Sheth, P. A., Neurock, M., & Smith, C. M. (2006). First-principles-based kinetic monte carlo simulation of the selective hydrogenation of acetylene over pd(111). Journal of Catalysis, 242(1), 1-15. doi:10.1016/j.jcat.2006.05.009Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188Moskaleva, L. V., Chen, Z. -., Aleksandrov, H. A., Mohammed, A. B., Sun, Q., & Rösch, N. (2009). Ethylene conversion to ethylidyne over pd(111): Revisiting the mechanism with first-principles calculations.Journal of Physical Chemistry C, 113(6), 2512-2520. doi:10.1021/jp8082562Nechaev, M. S., Rayon, V. M., & Frenking, G. (2004). Energy partitioning analysis of the bonding in ethylene and acetylene complexes of group 6, 8, and 11 metals: (CO)5TM-C2H x and Cl4TM-C2Hx (TM = cr, mo, W), (CO)4TM-C2Hx (TM = fe, ru, os), and TM +-C2Hx (TM = cu, ag, au). Journal of Physical Chemistry A, 108(15), 3134-3142. doi:10.1021/jp031185+Neyman, K. M., & Schauermann, S. (2010). Hydrogen diffusion into palladium nanoparticles: Pivotal promotion by carbon. Angewandte Chemie - International Edition, 49(28), 4743-4746. doi:10.1002/anie.200904688Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865Politi, J. R. D. S., Viñes, F., Rodriguez, J. A., & Illas, F. (2013). Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Physical Chemistry Chemical Physics, 15(30), 12617-12625. doi:10.1039/c3cp51389kPosada-Pérez, S., Dos Santos Politi, J. R., Viñes, F., & Illas, F. (2015). Methane capture at room temperature: Adsorption on cubic δ-MoC and orthorhombic β-Mo2C molybdenum carbide (001) surfaces. RSC Advances, 5(43), 33737-33746. doi:10.1039/c4ra17225fPosada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., & Illas, F. (2014). The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Physical Chemistry Chemical Physics, 16(28), 14912-14921. doi:10.1039/c4cp01943aPosada-Pérez, S., Viñes, F., Rodriguez, J. A., & Illas, F. (2015). Fundamentals of methanol synthesis on metal carbide based catalysts: Activation of CO2 and H2. Topics in Catalysis, 58(2-3), 159-173. doi:10.1007/s11244-014-0355-8Rocha, A. S., Rocha, A. B., & da Silva, V. T. (2010). Benzene adsorption on Mo2C: A theoretical and experimental study. Applied Catalysis A: General, 379(1-2), 54-60. doi:10.1016/j.apcata.2010.02.032Sautet, P., & Paul, J. -. (1991). Low temperature adsorption of ethylene and butadiene on platinum and palladium surfaces: A theoretical study of the diσ/π competition. Catalysis Letters, 9(3-4), 245-260. doi:10.1007/BF00773183Sheth, P. A., Neurock, M., & Smith, C. M. (2003). A first-principles analysis of acetylene hydrogenation over pd(111). Journal of Physical Chemistry B, 107(9), 2009-2017. doi:10.1021/jp021342pSorescu, D. C., & Jordan, K. D. (2000). Theoretical study of the adsorption of acetylene on the si(001) surface. Journal of Physical Chemistry B, 104(34), 8259-8267. doi:10.1021/jp001353nSpiewak, B. E., Cortright, R. D., & Dumesic, J. A. (1998). Microcalorimetric studies of H2, C2H4, and C2H2 adsorption on pt powder. Journal of Catalysis, 176(2), 405-414. doi:10.1006/jcat.1998.2047Stachurski, J., & Fra̧ckiewicz, A. (1985). A new phase in the pd-C system formed during the catalytic hydrogenation of acetylene. Journal of the Less-Common Metals, 108(2), 249-256. doi:10.1016/0022-5088(85)90219-XStudt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R. Z., Christensen, C. H., & Nørskov, J. K. (2008). Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 320(5881), 1320-1322. doi:10.1126/science.1156660Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. doi:10.1103/PhysRevB.41.7892Vértes, G., Horányi, G., & Szakács, S. (1973). Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (10), 1400-1402.Viñes, F., Sousa, C., Illas, F., Liu, P., & Rodriguez, J. A. (2007). A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV-VI transition metal carbides. Journal of Physical Chemistry C, 111(45), 16982-16989. doi:10.1021/jp0754987Viñes, F., Sousa, C., Liu, P., Rodriguez, J. A., & Illas, F. (2005). J.Chem.Phys., 122.Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 73.Wieferink, J., Krüger, P., & Pollmann, J. (2006). Phys.Rev.B: Condens.Matter Mater.Phys., 74.Xu, W., Ramirez, P. J., Stacchiola, D., & Rodriguez, J. A. (2014). Synthesis of α-MoC1-x and β-MoCy catalysts for CO2 hydrogenation by thermal carburization of mo-oxide in hydrocarbon and hydrogen mixtures. Catalysis Letters, 144(8), 1418-1424. doi:10.1007/s10562-014-1278-5Yang, B., Burch, R., Hardacre, C., Hu, P., & Hughes, P. (2016). Importance of surface carbide formation on the activity and selectivity of pd surfaces in the selective hydrogenation of acetylene. Surface Science, 646, 45-49. doi:10.1016/j.susc.2015.07.015ScopusAcetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT studyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaFlorez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaMoreno, A., Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaLiu, P., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesJimenez-Orozco C.Florez E.Moreno A.Liu P.Rodriguez J.A.Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, ColombiaChemistry Department, Brookhaven National Laboratory, Upton, NY, United StatesA comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.http://purl.org/coar/access_right/c_16ec11407/4285oai:repository.udem.edu.co:11407/42852020-05-27 16:36:29.481Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co