Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality

Sterilization in hospitals is performed due to the need of attacking and killing bacteria that can be dangerous for patients when intervened with medical instrumentation. In that sense, sterilization autoclaves are used, and controlling both temperature and pressure, bacteria are killed. Nonetheless...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4873
Acceso en línea:
http://hdl.handle.net/11407/4873
Palabra clave:
Hospital
Instrumentation
Internet of Things
Steam quality
Sterilization
Bacteria
Boilers
Cost effectiveness
Hospitals
Information systems
Information use
Instrument errors
Quality control
Statistical mechanics
Steam
Sterilization (cleaning)
Chemical instruments
Electronic instrumentation
Instrumentation
Medical instrumentation
Periodic maintenance
Single board computers
Steam quality
Temperature and pressures
Internet of things
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_97b6da5fadc1b893c46b6223d6593f73
oai_identifier_str oai:repository.udem.edu.co:11407/4873
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
title Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
spellingShingle Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
Hospital
Instrumentation
Internet of Things
Steam quality
Sterilization
Bacteria
Boilers
Cost effectiveness
Hospitals
Information systems
Information use
Instrument errors
Quality control
Statistical mechanics
Steam
Sterilization (cleaning)
Chemical instruments
Electronic instrumentation
Instrumentation
Medical instrumentation
Periodic maintenance
Single board computers
Steam quality
Temperature and pressures
Internet of things
title_short Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
title_full Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
title_fullStr Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
title_full_unstemmed Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
title_sort Internet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam quality
dc.contributor.affiliation.spa.fl_str_mv Gonzalez-Palacio, M., Universidad de Medellín;Moncada, S.V., Universidad de Medellín;Luna-Delrisco, M., EUniversidad de Medellín; Gonzalez-Palacio, L., Universidad de Medellín;Montealegre, J.J.Q., Universidad de Medellín;Orozco, C.A.A., Universidad de Medellín;Diaz-Forero, I., Servicio Nacional de Aprendizaje - SENA;Velasquez, J.-P., NetuxLab;Marin, S.-A., NetuxLab
dc.subject.spa.fl_str_mv Hospital
Instrumentation
Internet of Things
Steam quality
Sterilization
Bacteria
Boilers
Cost effectiveness
Hospitals
Information systems
Information use
Instrument errors
Quality control
Statistical mechanics
Steam
Sterilization (cleaning)
Chemical instruments
Electronic instrumentation
Instrumentation
Medical instrumentation
Periodic maintenance
Single board computers
Steam quality
Temperature and pressures
Internet of things
topic Hospital
Instrumentation
Internet of Things
Steam quality
Sterilization
Bacteria
Boilers
Cost effectiveness
Hospitals
Information systems
Information use
Instrument errors
Quality control
Statistical mechanics
Steam
Sterilization (cleaning)
Chemical instruments
Electronic instrumentation
Instrumentation
Medical instrumentation
Periodic maintenance
Single board computers
Steam quality
Temperature and pressures
Internet of things
description Sterilization in hospitals is performed due to the need of attacking and killing bacteria that can be dangerous for patients when intervened with medical instrumentation. In that sense, sterilization autoclaves are used, and controlling both temperature and pressure, bacteria are killed. Nonetheless, in some cases the level of humidity in the internal atmosphere is highly relevant to guarantee the success of the process. This variable is controlled by knowing the steam quality, however, it is not monitored online, but sampling is performed a few times a year, so pertinent adjustments are carried out into the boiler when needed. This periodic maintenance does not guarantee that the process is effective. On the other hand, instruments for monitoring steam quality are expensive, and cannot be afforded by many hospitals. As a result, a cheaper determination of steam quality is carried out by using chemical instruments like test tubes, adding critical errors in the measurements. In this paper a cost-effective measuring and processing method by implementing Internet of Things - IoT-techniques is proposed, based on strangulation calorimeter. All the calculations are performed in a Single Board Computer which is connected to an IoT platform for logging data, supervise in pseudo real time and use statistical tools to inference or predict. As a result, the IoT node can achieve measurement errors up to 0.25% FS, against 5.6% FS of traditional method. Furthermore, the inclusion of pseudo real time monitoring, allows maintenance staff to fix problems even in a predictive way. © 2018 AISTI.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-31T13:44:20Z
dc.date.available.none.fl_str_mv 2018-10-31T13:44:20Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.identifier.isbn.none.fl_str_mv 9789899843486
dc.identifier.issn.none.fl_str_mv 21660727
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4873
dc.identifier.doi.none.fl_str_mv 10.23919/CISTI.2018.8399370
identifier_str_mv 9789899843486
21660727
10.23919/CISTI.2018.8399370
url http://hdl.handle.net/11407/4873
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049876062&doi=10.23919%2fCISTI.2018.8399370&partnerID=40&md5=7bcce25be57ba9c17f1b57e5d99ec206
dc.relation.citationvolume.spa.fl_str_mv 2018-June
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.ispartofes.spa.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.relation.references.spa.fl_str_mv Nash, A.A., Dalziel, R.G., Fitzgerald, J.R., (2015) Mims' Pathogenesis of Infectious Disease: Academic Press;De Zoysa, H., Morecroft, E., Cleaning, disinfection and sterilization of equipment (2007) Anaesthesia &Intensive Care Medicine, 8, pp. 453-456;Tata, A., Beone, F., Hospital waste sterilization: A technical and economic comparison between radiation and microwaves treatments (1995) Radiation Physics and Chemistry, 46, pp. 1153-1157;(2002) Steam Sterilization and Sterility Assurance in Health Care Facilities: Association for the Advancement of Medical Instrumentation (AAMI), , A. f. t. A. o. M. Instrumentation and A. N. S. Institute;Basu, D., Bhattacharya, S., Mahajan, A., Ramanan, V.R., Chandy, M., Sterilization indicators in central sterile supply department: Quality assurance and cost implications (2015) Infection Control &Hospital Epidemiology, 36, pp. 484-486;(2015) Hospital Sterilization Problems, , Freemont;Ganapathy, V., (2002) Industrial Boilers and Heat Recovery Steam Generators: Design, Applications, and Calculations, , CRC Press;Kleven, L.A., Hedtke, R.C., Wiklund, D.E., (2002) Vortex Flowmeter with Signal Processing, , ed: Google Patents;Miller, C.E., Schlatter, G.L., Yoshida, L.T., (1987) Method and Apparatus for Measuring Steam Quality, , ed: Google Patents;(2015) EN 285:2015: Sterilization-Steam Sterilizers-Large Sterilizers, , BSI;Salazar Orozco, L.E., López, A.P., (2011) Diseño, Construcción y Pruebas de un Calorímetro de Estrangulamiento para El Laboratorio de Termodinámica de la Facultad de Mecánica de la ESPOCH;Atzori, L., Iera, A., Morabito, G., The internet of things: A survey (2010) Computer Networks, 54, pp. 2787-2805;Tremaine, P., Hill, P., Irish, D., Balakrishnan, P., Steam, water, and hydrothermal systems: Physics and chemistry meeting the needs of industry (2000) Proceedings of the 13th International Conference on the Properties of Water and Steam (NRC Press, Ottawa, 2000);Webster, J.G., Eren, H., (2014) Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, 1. , CRC press;Hauser, E., (2018) Steam Quality Measurement with Proline Prowirl 200, , https://www.endress.com/en/Field-instrumentsoverview/measurement-technologies/Steam-quality-measurement;(2018) Thermophysical Properties of Fluid Systems, , http://webbook.nist.gov/chemistry/fluid/;Spakovszky, Z.S., (2018) Unified: Thermodynamics and Propulsion, , http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/fig6VaporDomePVSchematic_web.jpg;Martin, G., Zurawski, R., Trends in embedded systems (2006) ABB Rev, 2, pp. 9-13;Molano, J.I.R., Medina, V.H., Sánchez, J.F.M., Industrial internet of things: An architecture prototype for monitoring in confined spaces using a raspberry pi (2016) International Conference on Data Mining and Big Data, pp. 521-528;Ferdoush, S., Li, X., Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications (2014) Procedia Computer Science, 34, pp. 103-110;Prasad, S., Mahalakshmi, P., Sunder, A.J.C., Swathi, R., Smart surveillance monitoring system using raspberry pi and pir sensor (2014) Int. J. Comput. Sci. Inf. Technol, 5, pp. 7107-7109;Suresh, N., Balaji, E., Anto, K.J., Jenith, J., Raspberry PI based liquid flow monitoring and control (2014) International Journal of Research in Engineering and Technology, 3, pp. 122-125;Sandeep, V., Gopal, K.L., Naveen, S., Amudhan, A., Kumar, L., Globally accessible machine automation using Raspberry pi based on Internet of Things (2015) Advances in Computing, Communications and Informatics (ICACCI), 2015 International Conference on, pp. 1144-1147;Durkop, L., Trsek, H., Otto, J., Jasperneite, J., A field level architecture for reconfigurable real-time automation systems (2014) Factory Communication Systems (WFCS), 2014 10th IEEE Workshop on, pp. 1-10;Almada-Lobo, F., The Industry 4.0 revolution and the future of manufacturing execution systems (MES) (2016) Journal of Innovation Management, 3, pp. 16-21;Cengel, Y.A., Boles, M.A., Thermodynamics: An engineering approach (2002) Sea, 1000, p. 8862;Sensortech, B., (2018) BME280, , https://www.boschsensortec.com/bst/products/all_products/bme280;Upton, E., Halfacree, G., (2013) Raspberry Pi User Guide, , John Wiley &Sons;Palacio, M.G., Palacio, L.G., Montealegre, J.J.Q., Pabón, H.J.O., Del Risco, M.A.L., Roldán, D., Salgarriaga, S., Martínez, C., A novel ubiquitous system to monitor medicinal cold chains in transportation (2017) Information Systems and Technologies (CISTI), 2017 12th Iberian Conference on, pp. 1-6;Chapra, S.C., Canale, R.P., (1988) Numerical Methods for Engineers, 2. , McGraw-Hill New York
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv IEEE Computer Society
dc.publisher.program.spa.fl_str_mv Ingeniería en Energía;Ingeniería de Sistemas;Ingeniería de Telecomunicaciones
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159127624024064
spelling 2018-10-31T13:44:20Z2018-10-31T13:44:20Z2018978989984348621660727http://hdl.handle.net/11407/487310.23919/CISTI.2018.8399370Sterilization in hospitals is performed due to the need of attacking and killing bacteria that can be dangerous for patients when intervened with medical instrumentation. In that sense, sterilization autoclaves are used, and controlling both temperature and pressure, bacteria are killed. Nonetheless, in some cases the level of humidity in the internal atmosphere is highly relevant to guarantee the success of the process. This variable is controlled by knowing the steam quality, however, it is not monitored online, but sampling is performed a few times a year, so pertinent adjustments are carried out into the boiler when needed. This periodic maintenance does not guarantee that the process is effective. On the other hand, instruments for monitoring steam quality are expensive, and cannot be afforded by many hospitals. As a result, a cheaper determination of steam quality is carried out by using chemical instruments like test tubes, adding critical errors in the measurements. In this paper a cost-effective measuring and processing method by implementing Internet of Things - IoT-techniques is proposed, based on strangulation calorimeter. All the calculations are performed in a Single Board Computer which is connected to an IoT platform for logging data, supervise in pseudo real time and use statistical tools to inference or predict. As a result, the IoT node can achieve measurement errors up to 0.25% FS, against 5.6% FS of traditional method. Furthermore, the inclusion of pseudo real time monitoring, allows maintenance staff to fix problems even in a predictive way. © 2018 AISTI.engIEEE Computer SocietyIngeniería en Energía;Ingeniería de Sistemas;Ingeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049876062&doi=10.23919%2fCISTI.2018.8399370&partnerID=40&md5=7bcce25be57ba9c17f1b57e5d99ec2062018-June16Iberian Conference on Information Systems and Technologies, CISTINash, A.A., Dalziel, R.G., Fitzgerald, J.R., (2015) Mims' Pathogenesis of Infectious Disease: Academic Press;De Zoysa, H., Morecroft, E., Cleaning, disinfection and sterilization of equipment (2007) Anaesthesia &Intensive Care Medicine, 8, pp. 453-456;Tata, A., Beone, F., Hospital waste sterilization: A technical and economic comparison between radiation and microwaves treatments (1995) Radiation Physics and Chemistry, 46, pp. 1153-1157;(2002) Steam Sterilization and Sterility Assurance in Health Care Facilities: Association for the Advancement of Medical Instrumentation (AAMI), , A. f. t. A. o. M. Instrumentation and A. N. S. Institute;Basu, D., Bhattacharya, S., Mahajan, A., Ramanan, V.R., Chandy, M., Sterilization indicators in central sterile supply department: Quality assurance and cost implications (2015) Infection Control &Hospital Epidemiology, 36, pp. 484-486;(2015) Hospital Sterilization Problems, , Freemont;Ganapathy, V., (2002) Industrial Boilers and Heat Recovery Steam Generators: Design, Applications, and Calculations, , CRC Press;Kleven, L.A., Hedtke, R.C., Wiklund, D.E., (2002) Vortex Flowmeter with Signal Processing, , ed: Google Patents;Miller, C.E., Schlatter, G.L., Yoshida, L.T., (1987) Method and Apparatus for Measuring Steam Quality, , ed: Google Patents;(2015) EN 285:2015: Sterilization-Steam Sterilizers-Large Sterilizers, , BSI;Salazar Orozco, L.E., López, A.P., (2011) Diseño, Construcción y Pruebas de un Calorímetro de Estrangulamiento para El Laboratorio de Termodinámica de la Facultad de Mecánica de la ESPOCH;Atzori, L., Iera, A., Morabito, G., The internet of things: A survey (2010) Computer Networks, 54, pp. 2787-2805;Tremaine, P., Hill, P., Irish, D., Balakrishnan, P., Steam, water, and hydrothermal systems: Physics and chemistry meeting the needs of industry (2000) Proceedings of the 13th International Conference on the Properties of Water and Steam (NRC Press, Ottawa, 2000);Webster, J.G., Eren, H., (2014) Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, 1. , CRC press;Hauser, E., (2018) Steam Quality Measurement with Proline Prowirl 200, , https://www.endress.com/en/Field-instrumentsoverview/measurement-technologies/Steam-quality-measurement;(2018) Thermophysical Properties of Fluid Systems, , http://webbook.nist.gov/chemistry/fluid/;Spakovszky, Z.S., (2018) Unified: Thermodynamics and Propulsion, , http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/fig6VaporDomePVSchematic_web.jpg;Martin, G., Zurawski, R., Trends in embedded systems (2006) ABB Rev, 2, pp. 9-13;Molano, J.I.R., Medina, V.H., Sánchez, J.F.M., Industrial internet of things: An architecture prototype for monitoring in confined spaces using a raspberry pi (2016) International Conference on Data Mining and Big Data, pp. 521-528;Ferdoush, S., Li, X., Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications (2014) Procedia Computer Science, 34, pp. 103-110;Prasad, S., Mahalakshmi, P., Sunder, A.J.C., Swathi, R., Smart surveillance monitoring system using raspberry pi and pir sensor (2014) Int. J. Comput. Sci. Inf. Technol, 5, pp. 7107-7109;Suresh, N., Balaji, E., Anto, K.J., Jenith, J., Raspberry PI based liquid flow monitoring and control (2014) International Journal of Research in Engineering and Technology, 3, pp. 122-125;Sandeep, V., Gopal, K.L., Naveen, S., Amudhan, A., Kumar, L., Globally accessible machine automation using Raspberry pi based on Internet of Things (2015) Advances in Computing, Communications and Informatics (ICACCI), 2015 International Conference on, pp. 1144-1147;Durkop, L., Trsek, H., Otto, J., Jasperneite, J., A field level architecture for reconfigurable real-time automation systems (2014) Factory Communication Systems (WFCS), 2014 10th IEEE Workshop on, pp. 1-10;Almada-Lobo, F., The Industry 4.0 revolution and the future of manufacturing execution systems (MES) (2016) Journal of Innovation Management, 3, pp. 16-21;Cengel, Y.A., Boles, M.A., Thermodynamics: An engineering approach (2002) Sea, 1000, p. 8862;Sensortech, B., (2018) BME280, , https://www.boschsensortec.com/bst/products/all_products/bme280;Upton, E., Halfacree, G., (2013) Raspberry Pi User Guide, , John Wiley &Sons;Palacio, M.G., Palacio, L.G., Montealegre, J.J.Q., Pabón, H.J.O., Del Risco, M.A.L., Roldán, D., Salgarriaga, S., Martínez, C., A novel ubiquitous system to monitor medicinal cold chains in transportation (2017) Information Systems and Technologies (CISTI), 2017 12th Iberian Conference on, pp. 1-6;Chapra, S.C., Canale, R.P., (1988) Numerical Methods for Engineers, 2. , McGraw-Hill New YorkScopusHospitalInstrumentationInternet of ThingsSteam qualitySterilizationBacteriaBoilersCost effectivenessHospitalsInformation systemsInformation useInstrument errorsQuality controlStatistical mechanicsSteamSterilization (cleaning)Chemical instrumentsElectronic instrumentationInstrumentationMedical instrumentationPeriodic maintenanceSingle board computersSteam qualityTemperature and pressuresInternet of thingsInternet of things baseline method to improve health sterilization in hospitals: An approach from electronic instrumentation and processing of steam qualityConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fGonzalez-Palacio, M., Universidad de Medellín;Moncada, S.V., Universidad de Medellín;Luna-Delrisco, M., EUniversidad de Medellín; Gonzalez-Palacio, L., Universidad de Medellín;Montealegre, J.J.Q., Universidad de Medellín;Orozco, C.A.A., Universidad de Medellín;Diaz-Forero, I., Servicio Nacional de Aprendizaje - SENA;Velasquez, J.-P., NetuxLab;Marin, S.-A., NetuxLabGonzalez-Palacio M.Moncada S.V.Luna-Delrisco M.Gonzalez-Palacio L.Montealegre J.J.Q.Orozco C.A.A.Diaz-Forero I.Velasquez J.-P.Marin S.-A.http://purl.org/coar/access_right/c_16ec11407/4873oai:repository.udem.edu.co:11407/48732020-05-27 15:58:11.654Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co