A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays

Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this resear...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6054
Acceso en línea:
http://hdl.handle.net/11407/6054
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_91bfbd3484c14e64e37ff83033b21fa6
oai_identifier_str oai:repository.udem.edu.co:11407/6054
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
spellingShingle A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title_short A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title_full A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title_fullStr A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title_full_unstemmed A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
title_sort A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
description Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this research, the effects of cadmium and mercury on germination time and emergence as toxicity markers of Lolium perenne plants were determined. Seeds were exposed to increasing concentrations in the range of 0 to 25 mg/L of cadmium (Cd2+) and mercury (Hg2+) in Petri dishes, by independent experiments carried out for 14 d. Emergence, root and shot length were assessed and kinetic parameters of growth were calculated. After 14 d, the maximum germination index of control seeds was 78.7 ± 4.8 %. The treatment of 25 mg/L Cd2+ posed an inhibitory effect on the seeds emergence of 24.7 %, and reduced the velocity germination Index (VGI). The maximum germination index of Hg2+ treated seeds had not significant differences to control. Toxic effects of Cd2+ and Hg2+ were found on the development of stem and roots of Lolium perenne, however, the range of concentrations which the plant grows well, is considered a suitable condition to potentially act as a phytoremediator. The kinetic parameters of growth are useful to perform toxicity tests and phytoremediation protocols of Lolium perenne. Copyright © 2019, AIDIC Servizi S.r.l.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:59:01Z
dc.date.available.none.fl_str_mv 2021-02-05T14:59:01Z
dc.date.none.fl_str_mv 2019
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22839216
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6054
dc.identifier.doi.none.fl_str_mv 10.3303/CET1974241
identifier_str_mv 22839216
10.3303/CET1974241
url http://hdl.handle.net/11407/6054
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067004931&doi=10.3303%2fCET1974241&partnerID=40&md5=5c539645ee0c1fa9c32b6a351402e01e
dc.relation.citationvolume.none.fl_str_mv 74
dc.relation.citationstartpage.none.fl_str_mv 1441
dc.relation.citationendpage.none.fl_str_mv 1446
dc.relation.references.none.fl_str_mv Al-Ansari, F., Ksiksi, T., A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea (2016) The Open Ecology Journal, 91
Al-Helal, A.A., Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa (1995) Journal-univeRsity of Kuwait Science, 22, p. 76
Ali, H., Khan, E., Sajad, M.A., Phytoremediation of heavy metals—concepts and applications (2013) Chemosphere, 917, pp. 869-881
Beltrán Pineda, M.E., Gómez Rodríguez, A.M., (2016) Biorremediación De Metales Pesados Cadmio Cd, Cromo Cr Y Mercurio Hg Mecanismos Bioquímicos E Ingeniería genéticA: Una Revisión, pp. 172-197. , Facultad de Ciencias Básicas de la Universidad MIlitar Nueva Granada
Guerrero, B., Llugany, M., Palacios, O., Valiente, M., Dual effects of different selenium species on wheat (2014) Plant Physiology and Biochemistry, 83, pp. 300-307
Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Hu, Z., Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne (2018) Ecotoxicology and Environmental Safety, 153, pp. 229-237
Inostroza-Blancheteau, C., Reyes-Díaz, M., Berríos, G., Rodrigues-Salvador, A., Nunes-Nesi, A., Deppe, M., Alberdi, M., Physiological and biochemical responses to manganese toxicity in ryegrass Lolium perenne L. Genotypes (2017) Plant Physiology and Biochemistry, 113, pp. 89-97
Kumar, R., Kumar, R., Mishra, V., Qidwai, A., Pandey, A., Kant, S., Chapter 13 - Detoxification and tolerance of heavy metals in plants (2016) Plant Metal Interaction, pp. 335-359
Londoño Franco, L.F., Londoño Muñoz, T., Muñoz García, G., Los riesgos de los metales pesados en la salud humana y animal (2016) Biotecnología En El Sector, pp. 145-153
Lyu, J., Park, J., Pandey, L.K., Choi, S., Lee, H., De Saeger, J., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L (2018) Ecotoxicology and Environmental Safety, 149, pp. 225-232
Mithöfer, A., Schulze, B., Boland, W., Biotic and heavy metal stress response in plants: Evidence for common signals (2004) FEBS Letters, 5661-3, pp. 1-5
Morales, G.E., Gallego, J.L., Determinación de los efectos tóxicos del mercurio en la especie Brachiaria dictyoneura Fig (2013) De Not. Stapf. Avances En Ciencias E Ingeniería, 41, pp. 1-17
Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., Barceló, J., Do toxic ions induce hormesis in plants? (2013) Plant Science, 212, pp. 15-25
Prieto Méndez, J., González Ramírez, C., Román Gutiérrez, A., Prieto García, F., Contaminación y fitotoxicidad en plantas por metales pesados provenientes de sueño y agua (2009) Tropical and Subtropical Agroecosystems, pp. 29-44
Qi, N., Zhang, X., Research on soil heavy metal accumulation and chemical environmental quality evaluation based on environment law (2017) Chemical Engineering Transactions, 62, pp. 493-498
Rahman, M.A., Reichman, S.M., De Filippis, L., Sany, S.B.T., Hasegawa, H., Phytoremediation of toxic metals in soils and wetlands: Concepts and applications (2016) Environmental Remediation Technologies for Metal-Contaminated Soils, pp. 161-195. , Springer, Tokyo
Rana, M.N., Tangpong, J., Rahman, M.M., Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review (2018) Toxicology Reports
Reyes, Y., Vergara, I., Torres, O., Díaz, M., González, E., Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria (2016) Revista Ingeniería, Investigación Y Desarrollo, pp. 66-77
Rufino, R.D., Luna, J.M., Campos-Takaki, G.M., Ferreira, S.R., Sarubbo, L.A., Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals (2012) Chem. Eng, 27, pp. 61-66
Shah, F., Ahmad, N., Masood, K., Peralta-Videa, J., Ahmad, F., Heavy metal toxicity in plants (2010) Plant Adaptation and Phytoremediation, pp. 71-97
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Italian Association of Chemical Engineering - AIDIC
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv Italian Association of Chemical Engineering - AIDIC
dc.source.none.fl_str_mv Chemical Engineering Transactions
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159136720420864
spelling 20192021-02-05T14:59:01Z2021-02-05T14:59:01Z22839216http://hdl.handle.net/11407/605410.3303/CET1974241Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this research, the effects of cadmium and mercury on germination time and emergence as toxicity markers of Lolium perenne plants were determined. Seeds were exposed to increasing concentrations in the range of 0 to 25 mg/L of cadmium (Cd2+) and mercury (Hg2+) in Petri dishes, by independent experiments carried out for 14 d. Emergence, root and shot length were assessed and kinetic parameters of growth were calculated. After 14 d, the maximum germination index of control seeds was 78.7 ± 4.8 %. The treatment of 25 mg/L Cd2+ posed an inhibitory effect on the seeds emergence of 24.7 %, and reduced the velocity germination Index (VGI). The maximum germination index of Hg2+ treated seeds had not significant differences to control. Toxic effects of Cd2+ and Hg2+ were found on the development of stem and roots of Lolium perenne, however, the range of concentrations which the plant grows well, is considered a suitable condition to potentially act as a phytoremediator. The kinetic parameters of growth are useful to perform toxicity tests and phytoremediation protocols of Lolium perenne. Copyright © 2019, AIDIC Servizi S.r.l.engItalian Association of Chemical Engineering - AIDICIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067004931&doi=10.3303%2fCET1974241&partnerID=40&md5=5c539645ee0c1fa9c32b6a351402e01e7414411446Al-Ansari, F., Ksiksi, T., A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea (2016) The Open Ecology Journal, 91Al-Helal, A.A., Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa (1995) Journal-univeRsity of Kuwait Science, 22, p. 76Ali, H., Khan, E., Sajad, M.A., Phytoremediation of heavy metals—concepts and applications (2013) Chemosphere, 917, pp. 869-881Beltrán Pineda, M.E., Gómez Rodríguez, A.M., (2016) Biorremediación De Metales Pesados Cadmio Cd, Cromo Cr Y Mercurio Hg Mecanismos Bioquímicos E Ingeniería genéticA: Una Revisión, pp. 172-197. , Facultad de Ciencias Básicas de la Universidad MIlitar Nueva GranadaGuerrero, B., Llugany, M., Palacios, O., Valiente, M., Dual effects of different selenium species on wheat (2014) Plant Physiology and Biochemistry, 83, pp. 300-307Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Hu, Z., Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne (2018) Ecotoxicology and Environmental Safety, 153, pp. 229-237Inostroza-Blancheteau, C., Reyes-Díaz, M., Berríos, G., Rodrigues-Salvador, A., Nunes-Nesi, A., Deppe, M., Alberdi, M., Physiological and biochemical responses to manganese toxicity in ryegrass Lolium perenne L. Genotypes (2017) Plant Physiology and Biochemistry, 113, pp. 89-97Kumar, R., Kumar, R., Mishra, V., Qidwai, A., Pandey, A., Kant, S., Chapter 13 - Detoxification and tolerance of heavy metals in plants (2016) Plant Metal Interaction, pp. 335-359Londoño Franco, L.F., Londoño Muñoz, T., Muñoz García, G., Los riesgos de los metales pesados en la salud humana y animal (2016) Biotecnología En El Sector, pp. 145-153Lyu, J., Park, J., Pandey, L.K., Choi, S., Lee, H., De Saeger, J., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L (2018) Ecotoxicology and Environmental Safety, 149, pp. 225-232Mithöfer, A., Schulze, B., Boland, W., Biotic and heavy metal stress response in plants: Evidence for common signals (2004) FEBS Letters, 5661-3, pp. 1-5Morales, G.E., Gallego, J.L., Determinación de los efectos tóxicos del mercurio en la especie Brachiaria dictyoneura Fig (2013) De Not. Stapf. Avances En Ciencias E Ingeniería, 41, pp. 1-17Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., Barceló, J., Do toxic ions induce hormesis in plants? (2013) Plant Science, 212, pp. 15-25Prieto Méndez, J., González Ramírez, C., Román Gutiérrez, A., Prieto García, F., Contaminación y fitotoxicidad en plantas por metales pesados provenientes de sueño y agua (2009) Tropical and Subtropical Agroecosystems, pp. 29-44Qi, N., Zhang, X., Research on soil heavy metal accumulation and chemical environmental quality evaluation based on environment law (2017) Chemical Engineering Transactions, 62, pp. 493-498Rahman, M.A., Reichman, S.M., De Filippis, L., Sany, S.B.T., Hasegawa, H., Phytoremediation of toxic metals in soils and wetlands: Concepts and applications (2016) Environmental Remediation Technologies for Metal-Contaminated Soils, pp. 161-195. , Springer, TokyoRana, M.N., Tangpong, J., Rahman, M.M., Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review (2018) Toxicology ReportsReyes, Y., Vergara, I., Torres, O., Díaz, M., González, E., Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria (2016) Revista Ingeniería, Investigación Y Desarrollo, pp. 66-77Rufino, R.D., Luna, J.M., Campos-Takaki, G.M., Ferreira, S.R., Sarubbo, L.A., Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals (2012) Chem. Eng, 27, pp. 61-66Shah, F., Ahmad, N., Masood, K., Peralta-Videa, J., Ahmad, F., Heavy metal toxicity in plants (2010) Plant Adaptation and Phytoremediation, pp. 71-97Chemical Engineering TransactionsA Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity BioassaysArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Cruz, Y., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, ColombiaCarmago, G., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, ColombiaGallego, J.L., Deparment of Environmental Engineering, Universidad de Medellin, Carrera 87 #30-65, Medellín, ColombiaSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombiahttp://purl.org/coar/access_right/c_16ecCruz Y.Carmago G.Gallego J.L.Saldarriaga J.F.11407/6054oai:repository.udem.edu.co:11407/60542021-02-05 09:59:01.274Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co