A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this resear...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6054
- Acceso en línea:
- http://hdl.handle.net/11407/6054
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_91bfbd3484c14e64e37ff83033b21fa6 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6054 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
spellingShingle |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title_short |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title_full |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title_fullStr |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title_full_unstemmed |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
title_sort |
A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays |
description |
Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this research, the effects of cadmium and mercury on germination time and emergence as toxicity markers of Lolium perenne plants were determined. Seeds were exposed to increasing concentrations in the range of 0 to 25 mg/L of cadmium (Cd2+) and mercury (Hg2+) in Petri dishes, by independent experiments carried out for 14 d. Emergence, root and shot length were assessed and kinetic parameters of growth were calculated. After 14 d, the maximum germination index of control seeds was 78.7 ± 4.8 %. The treatment of 25 mg/L Cd2+ posed an inhibitory effect on the seeds emergence of 24.7 %, and reduced the velocity germination Index (VGI). The maximum germination index of Hg2+ treated seeds had not significant differences to control. Toxic effects of Cd2+ and Hg2+ were found on the development of stem and roots of Lolium perenne, however, the range of concentrations which the plant grows well, is considered a suitable condition to potentially act as a phytoremediator. The kinetic parameters of growth are useful to perform toxicity tests and phytoremediation protocols of Lolium perenne. Copyright © 2019, AIDIC Servizi S.r.l. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:01Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:01Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
22839216 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6054 |
dc.identifier.doi.none.fl_str_mv |
10.3303/CET1974241 |
identifier_str_mv |
22839216 10.3303/CET1974241 |
url |
http://hdl.handle.net/11407/6054 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067004931&doi=10.3303%2fCET1974241&partnerID=40&md5=5c539645ee0c1fa9c32b6a351402e01e |
dc.relation.citationvolume.none.fl_str_mv |
74 |
dc.relation.citationstartpage.none.fl_str_mv |
1441 |
dc.relation.citationendpage.none.fl_str_mv |
1446 |
dc.relation.references.none.fl_str_mv |
Al-Ansari, F., Ksiksi, T., A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea (2016) The Open Ecology Journal, 91 Al-Helal, A.A., Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa (1995) Journal-univeRsity of Kuwait Science, 22, p. 76 Ali, H., Khan, E., Sajad, M.A., Phytoremediation of heavy metals—concepts and applications (2013) Chemosphere, 917, pp. 869-881 Beltrán Pineda, M.E., Gómez Rodríguez, A.M., (2016) Biorremediación De Metales Pesados Cadmio Cd, Cromo Cr Y Mercurio Hg Mecanismos Bioquímicos E Ingeniería genéticA: Una Revisión, pp. 172-197. , Facultad de Ciencias Básicas de la Universidad MIlitar Nueva Granada Guerrero, B., Llugany, M., Palacios, O., Valiente, M., Dual effects of different selenium species on wheat (2014) Plant Physiology and Biochemistry, 83, pp. 300-307 Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Hu, Z., Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne (2018) Ecotoxicology and Environmental Safety, 153, pp. 229-237 Inostroza-Blancheteau, C., Reyes-Díaz, M., Berríos, G., Rodrigues-Salvador, A., Nunes-Nesi, A., Deppe, M., Alberdi, M., Physiological and biochemical responses to manganese toxicity in ryegrass Lolium perenne L. Genotypes (2017) Plant Physiology and Biochemistry, 113, pp. 89-97 Kumar, R., Kumar, R., Mishra, V., Qidwai, A., Pandey, A., Kant, S., Chapter 13 - Detoxification and tolerance of heavy metals in plants (2016) Plant Metal Interaction, pp. 335-359 Londoño Franco, L.F., Londoño Muñoz, T., Muñoz García, G., Los riesgos de los metales pesados en la salud humana y animal (2016) Biotecnología En El Sector, pp. 145-153 Lyu, J., Park, J., Pandey, L.K., Choi, S., Lee, H., De Saeger, J., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L (2018) Ecotoxicology and Environmental Safety, 149, pp. 225-232 Mithöfer, A., Schulze, B., Boland, W., Biotic and heavy metal stress response in plants: Evidence for common signals (2004) FEBS Letters, 5661-3, pp. 1-5 Morales, G.E., Gallego, J.L., Determinación de los efectos tóxicos del mercurio en la especie Brachiaria dictyoneura Fig (2013) De Not. Stapf. Avances En Ciencias E Ingeniería, 41, pp. 1-17 Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., Barceló, J., Do toxic ions induce hormesis in plants? (2013) Plant Science, 212, pp. 15-25 Prieto Méndez, J., González Ramírez, C., Román Gutiérrez, A., Prieto García, F., Contaminación y fitotoxicidad en plantas por metales pesados provenientes de sueño y agua (2009) Tropical and Subtropical Agroecosystems, pp. 29-44 Qi, N., Zhang, X., Research on soil heavy metal accumulation and chemical environmental quality evaluation based on environment law (2017) Chemical Engineering Transactions, 62, pp. 493-498 Rahman, M.A., Reichman, S.M., De Filippis, L., Sany, S.B.T., Hasegawa, H., Phytoremediation of toxic metals in soils and wetlands: Concepts and applications (2016) Environmental Remediation Technologies for Metal-Contaminated Soils, pp. 161-195. , Springer, Tokyo Rana, M.N., Tangpong, J., Rahman, M.M., Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review (2018) Toxicology Reports Reyes, Y., Vergara, I., Torres, O., Díaz, M., González, E., Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria (2016) Revista Ingeniería, Investigación Y Desarrollo, pp. 66-77 Rufino, R.D., Luna, J.M., Campos-Takaki, G.M., Ferreira, S.R., Sarubbo, L.A., Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals (2012) Chem. Eng, 27, pp. 61-66 Shah, F., Ahmad, N., Masood, K., Peralta-Videa, J., Ahmad, F., Heavy metal toxicity in plants (2010) Plant Adaptation and Phytoremediation, pp. 71-97 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Italian Association of Chemical Engineering - AIDIC |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
Italian Association of Chemical Engineering - AIDIC |
dc.source.none.fl_str_mv |
Chemical Engineering Transactions |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159136720420864 |
spelling |
20192021-02-05T14:59:01Z2021-02-05T14:59:01Z22839216http://hdl.handle.net/11407/605410.3303/CET1974241Plant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this research, the effects of cadmium and mercury on germination time and emergence as toxicity markers of Lolium perenne plants were determined. Seeds were exposed to increasing concentrations in the range of 0 to 25 mg/L of cadmium (Cd2+) and mercury (Hg2+) in Petri dishes, by independent experiments carried out for 14 d. Emergence, root and shot length were assessed and kinetic parameters of growth were calculated. After 14 d, the maximum germination index of control seeds was 78.7 ± 4.8 %. The treatment of 25 mg/L Cd2+ posed an inhibitory effect on the seeds emergence of 24.7 %, and reduced the velocity germination Index (VGI). The maximum germination index of Hg2+ treated seeds had not significant differences to control. Toxic effects of Cd2+ and Hg2+ were found on the development of stem and roots of Lolium perenne, however, the range of concentrations which the plant grows well, is considered a suitable condition to potentially act as a phytoremediator. The kinetic parameters of growth are useful to perform toxicity tests and phytoremediation protocols of Lolium perenne. Copyright © 2019, AIDIC Servizi S.r.l.engItalian Association of Chemical Engineering - AIDICIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067004931&doi=10.3303%2fCET1974241&partnerID=40&md5=5c539645ee0c1fa9c32b6a351402e01e7414411446Al-Ansari, F., Ksiksi, T., A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea (2016) The Open Ecology Journal, 91Al-Helal, A.A., Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa (1995) Journal-univeRsity of Kuwait Science, 22, p. 76Ali, H., Khan, E., Sajad, M.A., Phytoremediation of heavy metals—concepts and applications (2013) Chemosphere, 917, pp. 869-881Beltrán Pineda, M.E., Gómez Rodríguez, A.M., (2016) Biorremediación De Metales Pesados Cadmio Cd, Cromo Cr Y Mercurio Hg Mecanismos Bioquímicos E Ingeniería genéticA: Una Revisión, pp. 172-197. , Facultad de Ciencias Básicas de la Universidad MIlitar Nueva GranadaGuerrero, B., Llugany, M., Palacios, O., Valiente, M., Dual effects of different selenium species on wheat (2014) Plant Physiology and Biochemistry, 83, pp. 300-307Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Hu, Z., Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne (2018) Ecotoxicology and Environmental Safety, 153, pp. 229-237Inostroza-Blancheteau, C., Reyes-Díaz, M., Berríos, G., Rodrigues-Salvador, A., Nunes-Nesi, A., Deppe, M., Alberdi, M., Physiological and biochemical responses to manganese toxicity in ryegrass Lolium perenne L. Genotypes (2017) Plant Physiology and Biochemistry, 113, pp. 89-97Kumar, R., Kumar, R., Mishra, V., Qidwai, A., Pandey, A., Kant, S., Chapter 13 - Detoxification and tolerance of heavy metals in plants (2016) Plant Metal Interaction, pp. 335-359Londoño Franco, L.F., Londoño Muñoz, T., Muñoz García, G., Los riesgos de los metales pesados en la salud humana y animal (2016) Biotecnología En El Sector, pp. 145-153Lyu, J., Park, J., Pandey, L.K., Choi, S., Lee, H., De Saeger, J., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L (2018) Ecotoxicology and Environmental Safety, 149, pp. 225-232Mithöfer, A., Schulze, B., Boland, W., Biotic and heavy metal stress response in plants: Evidence for common signals (2004) FEBS Letters, 5661-3, pp. 1-5Morales, G.E., Gallego, J.L., Determinación de los efectos tóxicos del mercurio en la especie Brachiaria dictyoneura Fig (2013) De Not. Stapf. Avances En Ciencias E Ingeniería, 41, pp. 1-17Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., Barceló, J., Do toxic ions induce hormesis in plants? (2013) Plant Science, 212, pp. 15-25Prieto Méndez, J., González Ramírez, C., Román Gutiérrez, A., Prieto García, F., Contaminación y fitotoxicidad en plantas por metales pesados provenientes de sueño y agua (2009) Tropical and Subtropical Agroecosystems, pp. 29-44Qi, N., Zhang, X., Research on soil heavy metal accumulation and chemical environmental quality evaluation based on environment law (2017) Chemical Engineering Transactions, 62, pp. 493-498Rahman, M.A., Reichman, S.M., De Filippis, L., Sany, S.B.T., Hasegawa, H., Phytoremediation of toxic metals in soils and wetlands: Concepts and applications (2016) Environmental Remediation Technologies for Metal-Contaminated Soils, pp. 161-195. , Springer, TokyoRana, M.N., Tangpong, J., Rahman, M.M., Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review (2018) Toxicology ReportsReyes, Y., Vergara, I., Torres, O., Díaz, M., González, E., Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria (2016) Revista Ingeniería, Investigación Y Desarrollo, pp. 66-77Rufino, R.D., Luna, J.M., Campos-Takaki, G.M., Ferreira, S.R., Sarubbo, L.A., Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals (2012) Chem. Eng, 27, pp. 61-66Shah, F., Ahmad, N., Masood, K., Peralta-Videa, J., Ahmad, F., Heavy metal toxicity in plants (2010) Plant Adaptation and Phytoremediation, pp. 71-97Chemical Engineering TransactionsA Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity BioassaysArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Cruz, Y., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, ColombiaCarmago, G., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, ColombiaGallego, J.L., Deparment of Environmental Engineering, Universidad de Medellin, Carrera 87 #30-65, Medellín, ColombiaSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombiahttp://purl.org/coar/access_right/c_16ecCruz Y.Carmago G.Gallego J.L.Saldarriaga J.F.11407/6054oai:repository.udem.edu.co:11407/60542021-02-05 09:59:01.274Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |