Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights

A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic paramet...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/6038
Acceso en línea:
http://hdl.handle.net/11407/6038
Palabra clave:
adsorption
aqueous solution
carbonaceous material
mercury
water treatment
Atoms
Charge transfer
Design for testability
Esters
Ground state
Spectroscopy
Thermodynamics
Adsorption capability
Adsorption energies
Adsorption process
Carbonaceous materials
Carbonaceous matrix
State multiplicity
Surface functional groups
Thermodynamic parameter
Adsorption
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_90fe55f1e2127b1ac57c354c2c077bbe
oai_identifier_str oai:repository.udem.edu.co:11407/6038
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
title Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
spellingShingle Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
adsorption
aqueous solution
carbonaceous material
mercury
water treatment
Atoms
Charge transfer
Design for testability
Esters
Ground state
Spectroscopy
Thermodynamics
Adsorption capability
Adsorption energies
Adsorption process
Carbonaceous materials
Carbonaceous matrix
State multiplicity
Surface functional groups
Thermodynamic parameter
Adsorption
title_short Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
title_full Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
title_fullStr Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
title_full_unstemmed Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
title_sort Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
dc.subject.spa.fl_str_mv adsorption
aqueous solution
carbonaceous material
mercury
water treatment
topic adsorption
aqueous solution
carbonaceous material
mercury
water treatment
Atoms
Charge transfer
Design for testability
Esters
Ground state
Spectroscopy
Thermodynamics
Adsorption capability
Adsorption energies
Adsorption process
Carbonaceous materials
Carbonaceous matrix
State multiplicity
Surface functional groups
Thermodynamic parameter
Adsorption
dc.subject.keyword.eng.fl_str_mv Atoms
Charge transfer
Design for testability
Esters
Ground state
Spectroscopy
Thermodynamics
Adsorption capability
Adsorption energies
Adsorption process
Carbonaceous materials
Carbonaceous matrix
State multiplicity
Surface functional groups
Thermodynamic parameter
Adsorption
description A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic parameters, atomic charge transfer, and modeling of infrared spectra. In addition, two carbonaceous models were studied to account for both the effect of the carbonaceous matrix and the oxygenated functional groups on the Hg2+ binding. Adsorption energies indicated that Hg2+ adsorption on the unsaturated model is favored in the following order: phenol > lactone > semiquinone > carboxyl, whereas for the saturated model, the Hg2+ adsorption energy decrease order is: carboxyl > semiquinone > lactone. Thermodynamic parameters confirmed that the adsorption process is spontaneous (unsaturated model), while the infrared spectra provided an insight at the atomic level about the experimentally reported bands. Our results contributed to a deeper understanding of the current experimental information on the effect of the surface functional groups on the Hg2+ adsorption over carbonaceous materials as different active sites can be present on oxygenated carbonaceous materials for metal adsorption. The results also create new ways to improve the performance of adsorption capability of mercury and other pollutants. © 2020 Wiley Periodicals, Inc.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:56Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:56Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 207608
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/6038
dc.identifier.doi.none.fl_str_mv 10.1002/qua.26258
identifier_str_mv 207608
10.1002/qua.26258
url http://hdl.handle.net/11407/6038
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084308339&doi=10.1002%2fqua.26258&partnerID=40&md5=82dbd6da8f9243b6cbaf3d4072eb5319
dc.relation.references.none.fl_str_mv Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in Water Treatment, , Elsevier Inc., Amsterdam
Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., (2018) Ecotoxicol. Environ. Saf., 148, p. 702
Hegazi, H.A., (2013) Hous. Build. Natl. Res. Cent. HBRC J., 9, p. 276
Mendoza-castillo, D.I., Ávila, H.E.R., (2017) Adsorption Processes for Water Treatment and Purication, , Eds.,, Springer, Cham, Switzerland
Dimpe, K.M., Nomngongo, P.N., (2017) Trends Environ. Anal. Chem., 16, p. 24
Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., (2015) Chem. Eng. J., 270, p. 244
Ali, I., Gupta, V.K., (2007) Nat. Protoc., 1, p. 2661
Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D., (2019) Chem. Eng. J., 372, p. 1019
Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., (2015) Enviromental Sci. Technol., 49, p. 4255
Li, H., Dong, X., Evandro, B., De Oliveira, L.M., Chen, Y., Ma, L.Q., (2017) Chemosphere, 178, p. 466
Xu, X., Schierz, A., Xu, N., Cao, X., (2016) J. Colloid Interface Sci., 463, p. 55
Hadi, P., To, M., Hui, C., Sze, C., Lin, K., Mckay, G., (2015) Water Res., 3, p. 37
Hong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., Qin, Q., (2019) Fuel, 235, p. 326
María, N., Alvarez, M., Marcelo, J., Lagos, Y., José, J., (2018) Sustain. Chem. Pharm., 10, p. 60
Ganguly, M., Dib, S., Ariya, P.A., (2018) Nat. Sci. Reports, 8, p. 1
Li, B., Li, K., (2019) Chemosphere, 220, p. 28
Asiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M., (2018) J. Hazard. Mater., 357, p. 217
González, P.G., Pliego-cuervo, Y.B., (2014) Chem. Eng. Res. Des., 2, p. 2715
Mahmoud, M.E., Osman, M.M., Abdel-aal, H., Nabil, G.M., (2020) J. Alloy. Compd. J., 823, p. 1
Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., (2016) Crit. Rev. Environ. Sci. Technol., 46, p. 406
Mohan, D., Sarswat, A., Sik, Y., Pittman, C.U., (2014) Bioresour. Technol., 160, p. 191
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Gao, B., (2019) Chem. Eng. J., 366, p. 608
Shtepliuk, I., Caffr, N.M., Iakimov, T., Khranovskyy, V., Igor, A., (2017) Sci. Rep., 7, p. 1
Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., Wang, X., (2019) Sci. Total Environ., 668, p. 1298
Zhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., Lv, Y., (2020) J. Hazard. Mater., 382. , 121002
Zhang, Y., Xu, X., Cao, L., Ok, Y.S., Cao, X., (2018) Chemosphere, 211, p. 1073
Khaloo, S.S., Hossein Matin, A., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., (2012) Water Sci. Technol., 65, p. 1341
Ismaiel, A.A., Aroua, M.K., Yusoff, R., (2013) Chem. Eng. J., 225, p. 306
Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S., (2001) Colloids Surfaces A Physicochem. Eng. Asp., 177, p. 169
Mondal, D.K., Nandi, B.K., Purkait, M.K., (2013) J. Environ. Chem. Eng., 1, p. 891
Sima, S., Hadavifar, M., Maleki, B., Mohammadnia, E., (2019) J. Water Process Eng., 32. , 100965
Syafiqah, M.S.I., Yussof, H.W., (2018) Mater. Today Proc., 5, p. 21690
Raji, F., Pakizeh, M., (2014) Appl. Surf. Sci., 301, p. 568
Li, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R., (2017) Chemosphere, 175, p. 332
Saleh, T.A., Gupta, V.K., Al-saadi, A.A., (2013) J. Colloid Interface Sci., 396, p. 264
Al-saadi, A.A., Saleh, A., Kumar, V., (2013) J. Mol. Liq., 188, pp. 136-142
Huang, Y., Hu, H., (2020) Chem. Eng. J., 381. , 122647
Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., (2020) J. Environ. Chem. Eng., 8. , 103702
Liu, J., Cheney, M.A., Wu, F., Li, M., (2011) J. Hazard. Mater., 186, p. 108
Padak, B., Wilcox, J., Carbon, N.Y., (2009), 47, pp. 2855-2864
He, P., Zhang, X., Peng, X., Jiang, X., Wu, J., Chen, N., (2015) J. Hazard. Mater., 300, p. 289
Zhang, B., Liu, J., Zheng, C., Chang, M., (2013) Proc. Combust. Inst., 34, p. 2811
Rungnim, C., Promarak, V., Hannongbua, S., Kungwan, N., Namuangruk, S., (2016) J. Hazard. Mater., 310, p. 253
Qu, W., Liu, J., Shen, F., Wei, P., Lei, Y., (2016) Chem. Eng. J., 306, p. 704
Yang, Y., Liu, J., Liu, F., Wang, Z., Miao, S., (2018) J. Hazard. Mater., 344, p. 104
Padak, B., Brunetti, M., Lewis, A., Wilcox, J., (2006) Environ. Prog., 25, p. 319
Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Ben Lamine, A., (2019) Chem. Eng. J., 365, p. 305
Zhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., (2019) Chemosphere, 222, p. 184
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009), Gaussian, Inc, Wallingford, CT
Perry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., Pugmire, R.J., (2000) Proc. Combust. Inst., 28, p. 2313
Espinal, J.F., Montoya, A., Mondragón, F., Truong, T.N., (2004) J. Phys. Chem. B, 108, p. 1003
Acelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., (2013) Comput. Theor. Chem., 1005, p. 16
Keith, T.A., Frisch, M.J., Modeling the hydrogen bond, ed. American Chemical Society, Washington, ACS Symp., 2009, 22
Acelas, N.Y.A., Flórez, E., (2017) Desalin. Water Treat., 60, p. 66
Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., (2017) Inorg. Chem., 56, p. 5455
Paul, K.W., Kubicki, J.D., Sparks, D.L., (2006) Environ. Sci. Technol., 40, p. 7717
Park, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., (2016) Chemosphere, 142, p. 77
Li, Y.H., Lee, C.W., Gullett, B.K., Carbon, N.Y., (2002), 40, pp. 65-72
Valladares-Cisneros, M.G., Cárdenas, C.V., Burelo, P.D.L.C., Alemán, R.M.M., (2017) Rem. Ing. Univ., 16, p. 55
Selvaraju, G., Kartini, N., Bakar, A., (2016) J. Clean. Prod., 141, p. 989
Demiral, H., Demiral, H., (2018) J. Clean. Prod., 189, p. 602
Tzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., Spassov, T., (2016) Powder Technol., 299, p. 41
Díaz-muñoz, L.L., Bonilla-petriciolet, A., Reynel-ávila, H.E., Mendoza-castillo, D.I., De México, T.N., De Aguascalientes, I.T., (2016) J. Mol. Liq., 215, p. 555
Arminda, M., Fabiana, S.M., Marianela, G., Cristina, D., (2018) Biochem. Pharmacol., 7, p. 1
Scott, A.P., Radom, L., (1996) J. Phys. Chem., 3654. , 16502
Dong, X., Zhu, Y., Li, Y., Gu, B., (2013) Environ. Sci. Technol., 47. , 12156
Mohammadnia, E., Hadavifar, M., Veisi, H., (2019) Polyhedron, 173. , 114139
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv John Wiley and Sons Inc.
dc.source.none.fl_str_mv International Journal of Quantum Chemistry
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159136564183040
spelling 20202021-02-05T14:58:56Z2021-02-05T14:58:56Z207608http://hdl.handle.net/11407/603810.1002/qua.26258A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic parameters, atomic charge transfer, and modeling of infrared spectra. In addition, two carbonaceous models were studied to account for both the effect of the carbonaceous matrix and the oxygenated functional groups on the Hg2+ binding. Adsorption energies indicated that Hg2+ adsorption on the unsaturated model is favored in the following order: phenol > lactone > semiquinone > carboxyl, whereas for the saturated model, the Hg2+ adsorption energy decrease order is: carboxyl > semiquinone > lactone. Thermodynamic parameters confirmed that the adsorption process is spontaneous (unsaturated model), while the infrared spectra provided an insight at the atomic level about the experimentally reported bands. Our results contributed to a deeper understanding of the current experimental information on the effect of the surface functional groups on the Hg2+ adsorption over carbonaceous materials as different active sites can be present on oxygenated carbonaceous materials for metal adsorption. The results also create new ways to improve the performance of adsorption capability of mercury and other pollutants. © 2020 Wiley Periodicals, Inc.engJohn Wiley and Sons Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084308339&doi=10.1002%2fqua.26258&partnerID=40&md5=82dbd6da8f9243b6cbaf3d4072eb5319Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in Water Treatment, , Elsevier Inc., AmsterdamBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., (2018) Ecotoxicol. Environ. Saf., 148, p. 702Hegazi, H.A., (2013) Hous. Build. Natl. Res. Cent. HBRC J., 9, p. 276Mendoza-castillo, D.I., Ávila, H.E.R., (2017) Adsorption Processes for Water Treatment and Purication, , Eds.,, Springer, Cham, SwitzerlandDimpe, K.M., Nomngongo, P.N., (2017) Trends Environ. Anal. Chem., 16, p. 24Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., (2015) Chem. Eng. J., 270, p. 244Ali, I., Gupta, V.K., (2007) Nat. Protoc., 1, p. 2661Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D., (2019) Chem. Eng. J., 372, p. 1019Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., (2015) Enviromental Sci. Technol., 49, p. 4255Li, H., Dong, X., Evandro, B., De Oliveira, L.M., Chen, Y., Ma, L.Q., (2017) Chemosphere, 178, p. 466Xu, X., Schierz, A., Xu, N., Cao, X., (2016) J. Colloid Interface Sci., 463, p. 55Hadi, P., To, M., Hui, C., Sze, C., Lin, K., Mckay, G., (2015) Water Res., 3, p. 37Hong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., Qin, Q., (2019) Fuel, 235, p. 326María, N., Alvarez, M., Marcelo, J., Lagos, Y., José, J., (2018) Sustain. Chem. Pharm., 10, p. 60Ganguly, M., Dib, S., Ariya, P.A., (2018) Nat. Sci. Reports, 8, p. 1Li, B., Li, K., (2019) Chemosphere, 220, p. 28Asiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M., (2018) J. Hazard. Mater., 357, p. 217González, P.G., Pliego-cuervo, Y.B., (2014) Chem. Eng. Res. Des., 2, p. 2715Mahmoud, M.E., Osman, M.M., Abdel-aal, H., Nabil, G.M., (2020) J. Alloy. Compd. J., 823, p. 1Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., (2016) Crit. Rev. Environ. Sci. Technol., 46, p. 406Mohan, D., Sarswat, A., Sik, Y., Pittman, C.U., (2014) Bioresour. Technol., 160, p. 191Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Gao, B., (2019) Chem. Eng. J., 366, p. 608Shtepliuk, I., Caffr, N.M., Iakimov, T., Khranovskyy, V., Igor, A., (2017) Sci. Rep., 7, p. 1Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., Wang, X., (2019) Sci. Total Environ., 668, p. 1298Zhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., Lv, Y., (2020) J. Hazard. Mater., 382. , 121002Zhang, Y., Xu, X., Cao, L., Ok, Y.S., Cao, X., (2018) Chemosphere, 211, p. 1073Khaloo, S.S., Hossein Matin, A., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., (2012) Water Sci. Technol., 65, p. 1341Ismaiel, A.A., Aroua, M.K., Yusoff, R., (2013) Chem. Eng. J., 225, p. 306Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S., (2001) Colloids Surfaces A Physicochem. Eng. Asp., 177, p. 169Mondal, D.K., Nandi, B.K., Purkait, M.K., (2013) J. Environ. Chem. Eng., 1, p. 891Sima, S., Hadavifar, M., Maleki, B., Mohammadnia, E., (2019) J. Water Process Eng., 32. , 100965Syafiqah, M.S.I., Yussof, H.W., (2018) Mater. Today Proc., 5, p. 21690Raji, F., Pakizeh, M., (2014) Appl. Surf. Sci., 301, p. 568Li, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R., (2017) Chemosphere, 175, p. 332Saleh, T.A., Gupta, V.K., Al-saadi, A.A., (2013) J. Colloid Interface Sci., 396, p. 264Al-saadi, A.A., Saleh, A., Kumar, V., (2013) J. Mol. Liq., 188, pp. 136-142Huang, Y., Hu, H., (2020) Chem. Eng. J., 381. , 122647Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., (2020) J. Environ. Chem. Eng., 8. , 103702Liu, J., Cheney, M.A., Wu, F., Li, M., (2011) J. Hazard. Mater., 186, p. 108Padak, B., Wilcox, J., Carbon, N.Y., (2009), 47, pp. 2855-2864He, P., Zhang, X., Peng, X., Jiang, X., Wu, J., Chen, N., (2015) J. Hazard. Mater., 300, p. 289Zhang, B., Liu, J., Zheng, C., Chang, M., (2013) Proc. Combust. Inst., 34, p. 2811Rungnim, C., Promarak, V., Hannongbua, S., Kungwan, N., Namuangruk, S., (2016) J. Hazard. Mater., 310, p. 253Qu, W., Liu, J., Shen, F., Wei, P., Lei, Y., (2016) Chem. Eng. J., 306, p. 704Yang, Y., Liu, J., Liu, F., Wang, Z., Miao, S., (2018) J. Hazard. Mater., 344, p. 104Padak, B., Brunetti, M., Lewis, A., Wilcox, J., (2006) Environ. Prog., 25, p. 319Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Ben Lamine, A., (2019) Chem. Eng. J., 365, p. 305Zhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., (2019) Chemosphere, 222, p. 184Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009), Gaussian, Inc, Wallingford, CTPerry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., Pugmire, R.J., (2000) Proc. Combust. Inst., 28, p. 2313Espinal, J.F., Montoya, A., Mondragón, F., Truong, T.N., (2004) J. Phys. Chem. B, 108, p. 1003Acelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., (2013) Comput. Theor. Chem., 1005, p. 16Keith, T.A., Frisch, M.J., Modeling the hydrogen bond, ed. American Chemical Society, Washington, ACS Symp., 2009, 22Acelas, N.Y.A., Flórez, E., (2017) Desalin. Water Treat., 60, p. 66Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., (2017) Inorg. Chem., 56, p. 5455Paul, K.W., Kubicki, J.D., Sparks, D.L., (2006) Environ. Sci. Technol., 40, p. 7717Park, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., (2016) Chemosphere, 142, p. 77Li, Y.H., Lee, C.W., Gullett, B.K., Carbon, N.Y., (2002), 40, pp. 65-72Valladares-Cisneros, M.G., Cárdenas, C.V., Burelo, P.D.L.C., Alemán, R.M.M., (2017) Rem. Ing. Univ., 16, p. 55Selvaraju, G., Kartini, N., Bakar, A., (2016) J. Clean. Prod., 141, p. 989Demiral, H., Demiral, H., (2018) J. Clean. Prod., 189, p. 602Tzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., Spassov, T., (2016) Powder Technol., 299, p. 41Díaz-muñoz, L.L., Bonilla-petriciolet, A., Reynel-ávila, H.E., Mendoza-castillo, D.I., De México, T.N., De Aguascalientes, I.T., (2016) J. Mol. Liq., 215, p. 555Arminda, M., Fabiana, S.M., Marianela, G., Cristina, D., (2018) Biochem. Pharmacol., 7, p. 1Scott, A.P., Radom, L., (1996) J. Phys. Chem., 3654. , 16502Dong, X., Zhu, Y., Li, Y., Gu, B., (2013) Environ. Sci. Technol., 47. , 12156Mohammadnia, E., Hadavifar, M., Veisi, H., (2019) Polyhedron, 173. , 114139International Journal of Quantum Chemistryadsorptionaqueous solutioncarbonaceous materialmercurywater treatmentAtomsCharge transferDesign for testabilityEstersGround stateSpectroscopyThermodynamicsAdsorption capabilityAdsorption energiesAdsorption processCarbonaceous materialsCarbonaceous matrixState multiplicitySurface functional groupsThermodynamic parameterAdsorptionToward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insightsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Forgionny, A., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaAcelas, N.Y., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaJimenez-Orozco, C., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecForgionny A.Acelas N.Y.Jimenez-Orozco C.Flórez E.11407/6038oai:repository.udem.edu.co:11407/60382021-02-05 09:58:56.252Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co