Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights
A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic paramet...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6038
- Acceso en línea:
- http://hdl.handle.net/11407/6038
- Palabra clave:
- adsorption
aqueous solution
carbonaceous material
mercury
water treatment
Atoms
Charge transfer
Design for testability
Esters
Ground state
Spectroscopy
Thermodynamics
Adsorption capability
Adsorption energies
Adsorption process
Carbonaceous materials
Carbonaceous matrix
State multiplicity
Surface functional groups
Thermodynamic parameter
Adsorption
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_90fe55f1e2127b1ac57c354c2c077bbe |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6038 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
title |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
spellingShingle |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights adsorption aqueous solution carbonaceous material mercury water treatment Atoms Charge transfer Design for testability Esters Ground state Spectroscopy Thermodynamics Adsorption capability Adsorption energies Adsorption process Carbonaceous materials Carbonaceous matrix State multiplicity Surface functional groups Thermodynamic parameter Adsorption |
title_short |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
title_full |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
title_fullStr |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
title_full_unstemmed |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
title_sort |
Toward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insights |
dc.subject.spa.fl_str_mv |
adsorption aqueous solution carbonaceous material mercury water treatment |
topic |
adsorption aqueous solution carbonaceous material mercury water treatment Atoms Charge transfer Design for testability Esters Ground state Spectroscopy Thermodynamics Adsorption capability Adsorption energies Adsorption process Carbonaceous materials Carbonaceous matrix State multiplicity Surface functional groups Thermodynamic parameter Adsorption |
dc.subject.keyword.eng.fl_str_mv |
Atoms Charge transfer Design for testability Esters Ground state Spectroscopy Thermodynamics Adsorption capability Adsorption energies Adsorption process Carbonaceous materials Carbonaceous matrix State multiplicity Surface functional groups Thermodynamic parameter Adsorption |
description |
A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic parameters, atomic charge transfer, and modeling of infrared spectra. In addition, two carbonaceous models were studied to account for both the effect of the carbonaceous matrix and the oxygenated functional groups on the Hg2+ binding. Adsorption energies indicated that Hg2+ adsorption on the unsaturated model is favored in the following order: phenol > lactone > semiquinone > carboxyl, whereas for the saturated model, the Hg2+ adsorption energy decrease order is: carboxyl > semiquinone > lactone. Thermodynamic parameters confirmed that the adsorption process is spontaneous (unsaturated model), while the infrared spectra provided an insight at the atomic level about the experimentally reported bands. Our results contributed to a deeper understanding of the current experimental information on the effect of the surface functional groups on the Hg2+ adsorption over carbonaceous materials as different active sites can be present on oxygenated carbonaceous materials for metal adsorption. The results also create new ways to improve the performance of adsorption capability of mercury and other pollutants. © 2020 Wiley Periodicals, Inc. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:56Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:56Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
207608 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6038 |
dc.identifier.doi.none.fl_str_mv |
10.1002/qua.26258 |
identifier_str_mv |
207608 10.1002/qua.26258 |
url |
http://hdl.handle.net/11407/6038 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084308339&doi=10.1002%2fqua.26258&partnerID=40&md5=82dbd6da8f9243b6cbaf3d4072eb5319 |
dc.relation.references.none.fl_str_mv |
Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in Water Treatment, , Elsevier Inc., Amsterdam Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., (2018) Ecotoxicol. Environ. Saf., 148, p. 702 Hegazi, H.A., (2013) Hous. Build. Natl. Res. Cent. HBRC J., 9, p. 276 Mendoza-castillo, D.I., Ávila, H.E.R., (2017) Adsorption Processes for Water Treatment and Purication, , Eds.,, Springer, Cham, Switzerland Dimpe, K.M., Nomngongo, P.N., (2017) Trends Environ. Anal. Chem., 16, p. 24 Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., (2015) Chem. Eng. J., 270, p. 244 Ali, I., Gupta, V.K., (2007) Nat. Protoc., 1, p. 2661 Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D., (2019) Chem. Eng. J., 372, p. 1019 Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., (2015) Enviromental Sci. Technol., 49, p. 4255 Li, H., Dong, X., Evandro, B., De Oliveira, L.M., Chen, Y., Ma, L.Q., (2017) Chemosphere, 178, p. 466 Xu, X., Schierz, A., Xu, N., Cao, X., (2016) J. Colloid Interface Sci., 463, p. 55 Hadi, P., To, M., Hui, C., Sze, C., Lin, K., Mckay, G., (2015) Water Res., 3, p. 37 Hong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., Qin, Q., (2019) Fuel, 235, p. 326 María, N., Alvarez, M., Marcelo, J., Lagos, Y., José, J., (2018) Sustain. Chem. Pharm., 10, p. 60 Ganguly, M., Dib, S., Ariya, P.A., (2018) Nat. Sci. Reports, 8, p. 1 Li, B., Li, K., (2019) Chemosphere, 220, p. 28 Asiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M., (2018) J. Hazard. Mater., 357, p. 217 González, P.G., Pliego-cuervo, Y.B., (2014) Chem. Eng. Res. Des., 2, p. 2715 Mahmoud, M.E., Osman, M.M., Abdel-aal, H., Nabil, G.M., (2020) J. Alloy. Compd. J., 823, p. 1 Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., (2016) Crit. Rev. Environ. Sci. Technol., 46, p. 406 Mohan, D., Sarswat, A., Sik, Y., Pittman, C.U., (2014) Bioresour. Technol., 160, p. 191 Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Gao, B., (2019) Chem. Eng. J., 366, p. 608 Shtepliuk, I., Caffr, N.M., Iakimov, T., Khranovskyy, V., Igor, A., (2017) Sci. Rep., 7, p. 1 Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., Wang, X., (2019) Sci. Total Environ., 668, p. 1298 Zhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., Lv, Y., (2020) J. Hazard. Mater., 382. , 121002 Zhang, Y., Xu, X., Cao, L., Ok, Y.S., Cao, X., (2018) Chemosphere, 211, p. 1073 Khaloo, S.S., Hossein Matin, A., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., (2012) Water Sci. Technol., 65, p. 1341 Ismaiel, A.A., Aroua, M.K., Yusoff, R., (2013) Chem. Eng. J., 225, p. 306 Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S., (2001) Colloids Surfaces A Physicochem. Eng. Asp., 177, p. 169 Mondal, D.K., Nandi, B.K., Purkait, M.K., (2013) J. Environ. Chem. Eng., 1, p. 891 Sima, S., Hadavifar, M., Maleki, B., Mohammadnia, E., (2019) J. Water Process Eng., 32. , 100965 Syafiqah, M.S.I., Yussof, H.W., (2018) Mater. Today Proc., 5, p. 21690 Raji, F., Pakizeh, M., (2014) Appl. Surf. Sci., 301, p. 568 Li, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R., (2017) Chemosphere, 175, p. 332 Saleh, T.A., Gupta, V.K., Al-saadi, A.A., (2013) J. Colloid Interface Sci., 396, p. 264 Al-saadi, A.A., Saleh, A., Kumar, V., (2013) J. Mol. Liq., 188, pp. 136-142 Huang, Y., Hu, H., (2020) Chem. Eng. J., 381. , 122647 Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., (2020) J. Environ. Chem. Eng., 8. , 103702 Liu, J., Cheney, M.A., Wu, F., Li, M., (2011) J. Hazard. Mater., 186, p. 108 Padak, B., Wilcox, J., Carbon, N.Y., (2009), 47, pp. 2855-2864 He, P., Zhang, X., Peng, X., Jiang, X., Wu, J., Chen, N., (2015) J. Hazard. Mater., 300, p. 289 Zhang, B., Liu, J., Zheng, C., Chang, M., (2013) Proc. Combust. Inst., 34, p. 2811 Rungnim, C., Promarak, V., Hannongbua, S., Kungwan, N., Namuangruk, S., (2016) J. Hazard. Mater., 310, p. 253 Qu, W., Liu, J., Shen, F., Wei, P., Lei, Y., (2016) Chem. Eng. J., 306, p. 704 Yang, Y., Liu, J., Liu, F., Wang, Z., Miao, S., (2018) J. Hazard. Mater., 344, p. 104 Padak, B., Brunetti, M., Lewis, A., Wilcox, J., (2006) Environ. Prog., 25, p. 319 Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Ben Lamine, A., (2019) Chem. Eng. J., 365, p. 305 Zhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., (2019) Chemosphere, 222, p. 184 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009), Gaussian, Inc, Wallingford, CT Perry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., Pugmire, R.J., (2000) Proc. Combust. Inst., 28, p. 2313 Espinal, J.F., Montoya, A., Mondragón, F., Truong, T.N., (2004) J. Phys. Chem. B, 108, p. 1003 Acelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., (2013) Comput. Theor. Chem., 1005, p. 16 Keith, T.A., Frisch, M.J., Modeling the hydrogen bond, ed. American Chemical Society, Washington, ACS Symp., 2009, 22 Acelas, N.Y.A., Flórez, E., (2017) Desalin. Water Treat., 60, p. 66 Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., (2017) Inorg. Chem., 56, p. 5455 Paul, K.W., Kubicki, J.D., Sparks, D.L., (2006) Environ. Sci. Technol., 40, p. 7717 Park, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., (2016) Chemosphere, 142, p. 77 Li, Y.H., Lee, C.W., Gullett, B.K., Carbon, N.Y., (2002), 40, pp. 65-72 Valladares-Cisneros, M.G., Cárdenas, C.V., Burelo, P.D.L.C., Alemán, R.M.M., (2017) Rem. Ing. Univ., 16, p. 55 Selvaraju, G., Kartini, N., Bakar, A., (2016) J. Clean. Prod., 141, p. 989 Demiral, H., Demiral, H., (2018) J. Clean. Prod., 189, p. 602 Tzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., Spassov, T., (2016) Powder Technol., 299, p. 41 Díaz-muñoz, L.L., Bonilla-petriciolet, A., Reynel-ávila, H.E., Mendoza-castillo, D.I., De México, T.N., De Aguascalientes, I.T., (2016) J. Mol. Liq., 215, p. 555 Arminda, M., Fabiana, S.M., Marianela, G., Cristina, D., (2018) Biochem. Pharmacol., 7, p. 1 Scott, A.P., Radom, L., (1996) J. Phys. Chem., 3654. , 16502 Dong, X., Zhu, Y., Li, Y., Gu, B., (2013) Environ. Sci. Technol., 47. , 12156 Mohammadnia, E., Hadavifar, M., Veisi, H., (2019) Polyhedron, 173. , 114139 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.none.fl_str_mv |
International Journal of Quantum Chemistry |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159136564183040 |
spelling |
20202021-02-05T14:58:56Z2021-02-05T14:58:56Z207608http://hdl.handle.net/11407/603810.1002/qua.26258A systematic DFT study was performed to evaluate the effect of oxygenated functional groups for Hg2+ adsorption in aqueous systems. This work includes several aspects usually neglected in many current works, namely, ground-state multiplicity, solvation effects, establishment of thermodynamic parameters, atomic charge transfer, and modeling of infrared spectra. In addition, two carbonaceous models were studied to account for both the effect of the carbonaceous matrix and the oxygenated functional groups on the Hg2+ binding. Adsorption energies indicated that Hg2+ adsorption on the unsaturated model is favored in the following order: phenol > lactone > semiquinone > carboxyl, whereas for the saturated model, the Hg2+ adsorption energy decrease order is: carboxyl > semiquinone > lactone. Thermodynamic parameters confirmed that the adsorption process is spontaneous (unsaturated model), while the infrared spectra provided an insight at the atomic level about the experimentally reported bands. Our results contributed to a deeper understanding of the current experimental information on the effect of the surface functional groups on the Hg2+ adsorption over carbonaceous materials as different active sites can be present on oxygenated carbonaceous materials for metal adsorption. The results also create new ways to improve the performance of adsorption capability of mercury and other pollutants. © 2020 Wiley Periodicals, Inc.engJohn Wiley and Sons Inc.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084308339&doi=10.1002%2fqua.26258&partnerID=40&md5=82dbd6da8f9243b6cbaf3d4072eb5319Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Dotto, G.L., Duran-Valle, C.J., (2019) Adsorption in Water Treatment, , Elsevier Inc., AmsterdamBurakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K., (2018) Ecotoxicol. Environ. Saf., 148, p. 702Hegazi, H.A., (2013) Hous. Build. Natl. Res. Cent. HBRC J., 9, p. 276Mendoza-castillo, D.I., Ávila, H.E.R., (2017) Adsorption Processes for Water Treatment and Purication, , Eds.,, Springer, Cham, SwitzerlandDimpe, K.M., Nomngongo, P.N., (2017) Trends Environ. Anal. Chem., 16, p. 24Bhatnagar, A., Sillanpää, M., Witek-krowiak, A., (2015) Chem. Eng. J., 270, p. 244Ali, I., Gupta, V.K., (2007) Nat. Protoc., 1, p. 2661Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., Morgen, D., (2019) Chem. Eng. J., 372, p. 1019Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X., (2015) Enviromental Sci. Technol., 49, p. 4255Li, H., Dong, X., Evandro, B., De Oliveira, L.M., Chen, Y., Ma, L.Q., (2017) Chemosphere, 178, p. 466Xu, X., Schierz, A., Xu, N., Cao, X., (2016) J. Colloid Interface Sci., 463, p. 55Hadi, P., To, M., Hui, C., Sze, C., Lin, K., Mckay, G., (2015) Water Res., 3, p. 37Hong, D., Zhou, J., Hu, C., Zhou, Q., Mao, J., Qin, Q., (2019) Fuel, 235, p. 326María, N., Alvarez, M., Marcelo, J., Lagos, Y., José, J., (2018) Sustain. Chem. Pharm., 10, p. 60Ganguly, M., Dib, S., Ariya, P.A., (2018) Nat. Sci. Reports, 8, p. 1Li, B., Li, K., (2019) Chemosphere, 220, p. 28Asiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M., (2018) J. Hazard. Mater., 357, p. 217González, P.G., Pliego-cuervo, Y.B., (2014) Chem. Eng. Res. Des., 2, p. 2715Mahmoud, M.E., Osman, M.M., Abdel-aal, H., Nabil, G.M., (2020) J. Alloy. Compd. J., 823, p. 1Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Cao, X., (2016) Crit. Rev. Environ. Sci. Technol., 46, p. 406Mohan, D., Sarswat, A., Sik, Y., Pittman, C.U., (2014) Bioresour. Technol., 160, p. 191Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Gao, B., (2019) Chem. Eng. J., 366, p. 608Shtepliuk, I., Caffr, N.M., Iakimov, T., Khranovskyy, V., Igor, A., (2017) Sci. Rep., 7, p. 1Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., Wang, X., (2019) Sci. Total Environ., 668, p. 1298Zhu, L., Tong, L., Zhao, N., Wang, X., Yang, X., Lv, Y., (2020) J. Hazard. Mater., 382. , 121002Zhang, Y., Xu, X., Cao, L., Ok, Y.S., Cao, X., (2018) Chemosphere, 211, p. 1073Khaloo, S.S., Hossein Matin, A., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., (2012) Water Sci. Technol., 65, p. 1341Ismaiel, A.A., Aroua, M.K., Yusoff, R., (2013) Chem. Eng. J., 225, p. 306Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S., (2001) Colloids Surfaces A Physicochem. Eng. Asp., 177, p. 169Mondal, D.K., Nandi, B.K., Purkait, M.K., (2013) J. Environ. Chem. Eng., 1, p. 891Sima, S., Hadavifar, M., Maleki, B., Mohammadnia, E., (2019) J. Water Process Eng., 32. , 100965Syafiqah, M.S.I., Yussof, H.W., (2018) Mater. Today Proc., 5, p. 21690Raji, F., Pakizeh, M., (2014) Appl. Surf. Sci., 301, p. 568Li, B., Yang, L., Wang, C.Q., Zhang, Q.P., Liu, Q.C., Li, Y.D., Xiao, R., (2017) Chemosphere, 175, p. 332Saleh, T.A., Gupta, V.K., Al-saadi, A.A., (2013) J. Colloid Interface Sci., 396, p. 264Al-saadi, A.A., Saleh, A., Kumar, V., (2013) J. Mol. Liq., 188, pp. 136-142Huang, Y., Hu, H., (2020) Chem. Eng. J., 381. , 122647Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., (2020) J. Environ. Chem. Eng., 8. , 103702Liu, J., Cheney, M.A., Wu, F., Li, M., (2011) J. Hazard. Mater., 186, p. 108Padak, B., Wilcox, J., Carbon, N.Y., (2009), 47, pp. 2855-2864He, P., Zhang, X., Peng, X., Jiang, X., Wu, J., Chen, N., (2015) J. Hazard. Mater., 300, p. 289Zhang, B., Liu, J., Zheng, C., Chang, M., (2013) Proc. Combust. Inst., 34, p. 2811Rungnim, C., Promarak, V., Hannongbua, S., Kungwan, N., Namuangruk, S., (2016) J. Hazard. Mater., 310, p. 253Qu, W., Liu, J., Shen, F., Wei, P., Lei, Y., (2016) Chem. Eng. J., 306, p. 704Yang, Y., Liu, J., Liu, F., Wang, Z., Miao, S., (2018) J. Hazard. Mater., 344, p. 104Padak, B., Brunetti, M., Lewis, A., Wilcox, J., (2006) Environ. Prog., 25, p. 319Sellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Bonilla-Petriciolet, A., Ben Lamine, A., (2019) Chem. Eng. J., 365, p. 305Zhang, C., Wang, W., Duan, A., Zeng, G., Huang, D., Lai, C., Tan, X., Yang, Y., (2019) Chemosphere, 222, p. 184Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009), Gaussian, Inc, Wallingford, CTPerry, S.T., Hambly, E.M., Fletcher, T.H., Solum, M.S., Pugmire, R.J., (2000) Proc. Combust. Inst., 28, p. 2313Espinal, J.F., Montoya, A., Mondragón, F., Truong, T.N., (2004) J. Phys. Chem. B, 108, p. 1003Acelas, N.Y., Mejia, S.M., Mondragón, F., Flórez, E., (2013) Comput. Theor. Chem., 1005, p. 16Keith, T.A., Frisch, M.J., Modeling the hydrogen bond, ed. American Chemical Society, Washington, ACS Symp., 2009, 22Acelas, N.Y.A., Flórez, E., (2017) Desalin. Water Treat., 60, p. 66Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., (2017) Inorg. Chem., 56, p. 5455Paul, K.W., Kubicki, J.D., Sparks, D.L., (2006) Environ. Sci. Technol., 40, p. 7717Park, J., Sik, Y., Kim, S., Cho, J., Heo, J., Delaune, R.D., Seo, D., (2016) Chemosphere, 142, p. 77Li, Y.H., Lee, C.W., Gullett, B.K., Carbon, N.Y., (2002), 40, pp. 65-72Valladares-Cisneros, M.G., Cárdenas, C.V., Burelo, P.D.L.C., Alemán, R.M.M., (2017) Rem. Ing. Univ., 16, p. 55Selvaraju, G., Kartini, N., Bakar, A., (2016) J. Clean. Prod., 141, p. 989Demiral, H., Demiral, H., (2018) J. Clean. Prod., 189, p. 602Tzvetkov, G., Mihaylova, S., Stoitchkova, K., Tzvetkov, P., Spassov, T., (2016) Powder Technol., 299, p. 41Díaz-muñoz, L.L., Bonilla-petriciolet, A., Reynel-ávila, H.E., Mendoza-castillo, D.I., De México, T.N., De Aguascalientes, I.T., (2016) J. Mol. Liq., 215, p. 555Arminda, M., Fabiana, S.M., Marianela, G., Cristina, D., (2018) Biochem. Pharmacol., 7, p. 1Scott, A.P., Radom, L., (1996) J. Phys. Chem., 3654. , 16502Dong, X., Zhu, Y., Li, Y., Gu, B., (2013) Environ. Sci. Technol., 47. , 12156Mohammadnia, E., Hadavifar, M., Veisi, H., (2019) Polyhedron, 173. , 114139International Journal of Quantum Chemistryadsorptionaqueous solutioncarbonaceous materialmercurywater treatmentAtomsCharge transferDesign for testabilityEstersGround stateSpectroscopyThermodynamicsAdsorption capabilityAdsorption energiesAdsorption processCarbonaceous materialsCarbonaceous matrixState multiplicitySurface functional groupsThermodynamic parameterAdsorptionToward the design of efficient adsorbents for Hg2+ removal: Molecular and thermodynamic insightsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Forgionny, A., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaAcelas, N.Y., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaJimenez-Orozco, C., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaFlórez, E., Grupo de Materiales con Impacto, Mat&mpac. Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecForgionny A.Acelas N.Y.Jimenez-Orozco C.Flórez E.11407/6038oai:repository.udem.edu.co:11407/60382021-02-05 09:58:56.252Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |