Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy

In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4323
Acceso en línea:
http://hdl.handle.net/11407/4323
Palabra clave:
Coatings grown
Electroless coatings
Magnesium
Surface morphology
Alkalinity
Chromium compounds
Coatings
Magnesium alloys
Nickel
Rutherford backscattering spectroscopy
Scanning electron microscopy
Substrates
Surface morphology
X ray diffraction
AZ31B magnesium alloys
Electroless coating
Electroless Ni-P coating
Electroless Ni-P depositions
Electroless ni-p plating
Gravimetric measurements
Open circuit potential measurements
Rutherford backscattering spectrometry
Magnesium
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_8ecc8d0466bddfef722706a022df76d1
oai_identifier_str oai:repository.udem.edu.co:11407/4323
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
title Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
spellingShingle Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
Coatings grown
Electroless coatings
Magnesium
Surface morphology
Alkalinity
Chromium compounds
Coatings
Magnesium alloys
Nickel
Rutherford backscattering spectroscopy
Scanning electron microscopy
Substrates
Surface morphology
X ray diffraction
AZ31B magnesium alloys
Electroless coating
Electroless Ni-P coating
Electroless Ni-P depositions
Electroless ni-p plating
Gravimetric measurements
Open circuit potential measurements
Rutherford backscattering spectrometry
Magnesium
title_short Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
title_full Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
title_fullStr Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
title_full_unstemmed Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
title_sort Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy
dc.contributor.affiliation.spa.fl_str_mv Zuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, Colombia
Correa, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia
Castaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombia
Echeverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, Colombia
Baron-Wiecheć, A., UK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United Kingdom
Skeldon, P., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdom
Thompson, G.E., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United Kingdom
dc.subject.keyword.eng.fl_str_mv Coatings grown
Electroless coatings
Magnesium
Surface morphology
Alkalinity
Chromium compounds
Coatings
Magnesium alloys
Nickel
Rutherford backscattering spectroscopy
Scanning electron microscopy
Substrates
Surface morphology
X ray diffraction
AZ31B magnesium alloys
Electroless coating
Electroless Ni-P coating
Electroless Ni-P depositions
Electroless ni-p plating
Gravimetric measurements
Open circuit potential measurements
Rutherford backscattering spectrometry
Magnesium
topic Coatings grown
Electroless coatings
Magnesium
Surface morphology
Alkalinity
Chromium compounds
Coatings
Magnesium alloys
Nickel
Rutherford backscattering spectroscopy
Scanning electron microscopy
Substrates
Surface morphology
X ray diffraction
AZ31B magnesium alloys
Electroless coating
Electroless Ni-P coating
Electroless Ni-P depositions
Electroless ni-p plating
Gravimetric measurements
Open circuit potential measurements
Rutherford backscattering spectrometry
Magnesium
description In this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-19T19:36:48Z
dc.date.available.none.fl_str_mv 2017-12-19T19:36:48Z
dc.date.created.none.fl_str_mv 2017
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 2578972
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4323
dc.identifier.doi.none.fl_str_mv 10.1016/j.surfcoat.2017.04.059
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 2578972
10.1016/j.surfcoat.2017.04.059
reponame:Repositorio Institucional Universidad de Medellín
instname:Universidad de Medellín
url http://hdl.handle.net/11407/4323
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019001282&doi=10.1016%2fj.surfcoat.2017.04.059&partnerID=40&md5=7978d2474257b32cbaecfe7d7fd134d1
dc.relation.ispartofes.spa.fl_str_mv Surface and Coatings Technology
dc.relation.references.spa.fl_str_mv Cao, F., Song, G.L., Atrens, A., Corrosion and passivation of magnesium alloys Corros. Sci., 111, pp. 835-845
Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution Corros. Sci., 111, pp. 288-301
Atrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., Dargusch, M.S., Review of recent developments in the field of magnesium corrosion Adv. Eng. Mater., 17, pp. 400-453
Esmaily, M., Blücher, D.B., Svensson, J.E., Halvarsson, M., Johansson, L.G., New insights into the corrosion of magnesium alloys — the role of aluminum Scr. Mater., 115, pp. 91-95
Shu, X., Wang, Y., Liu, C., Aljaafari, A., Gao, W., Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance Surf. Coat. Technol., 261, pp. 161-166
Lee, J., Chung, W., Jung, U., Kim, Y., Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte Surf. Coat. Technol., 205, pp. 4018-4023
Selvi, V.E., Chatterji, P., Subramanian, S., Balaraju, J.N., Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy Surf. Coat. Technol., 240, pp. 103-109
Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings Surf. Coat. Technol., 304, pp. 167-178
Correa, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., Coating development during electroless Ni-B plating on magnesium and AZ91D alloy Surf. Coat. Technol., 232, pp. 784-794
Zuleta, A.A., Correa, E., Sepúlveda, M., Guerra, L., Castaño, J.G., Echeverría, F., Skeldon, P., Thompson, G.E., Effect of NH4HF2 on deposition of alkaline electroless Ni-P coatings as a chromium-free pre-treatment for magnesium Corros. Sci., 55, pp. 194-200
Liu, Z., Electroless Nickel-Phosphorus (EN) Coatings on Magnesium and Magnesium Alloys (Doctoral thesis) University of AucklandHu, R., Su, Y., Liu, H., Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath J. Alloys Compd., 658, pp. 555-560
Dong, X., Handbook of Manufacturing Engineering and Technology, pp. 1-21. , A. Nee Springer London London
Yang, X., Wang, G., Dong, G., Gong, F., Zhang, M., Rare earth conversion coating on Mg–8.5Li alloys J. Alloys Compd., 487, pp. 64-68
Wang, G., Zhang, M., Wu, R., Molybdate and molybdate/permanganate conversion coatings on Mg–8.5Li alloy Appl. Surf. Sci., 258, pp. 2648-2654
Jiang, B.L., Ge, Y.F., 7 - Micro-arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys , pp. 163-196. , Woodhead Publishing Series in Metals and Surface Engineering, edited by Guang-Ling Song, Woodhead Publishing Series in Metals and Surface Engineering, Corrosion Prevention of Magnesium AlloysWhite, L., Koo, Y., Neralla, S., Sankar, J., Yun, Y., Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO) Mater. Sci. Eng. B, 208, pp. 39-46
Hoche, H., Groß, S., Oechsner, M., Development of new PVD coatings for magnesium alloys with improved corrosion properties Surf. Coat. Technol., 259, pp. 102-108. , (Part A)
Sivapragash, M., Kumaradhas, P., Stanly Jones Retnam, B., Felix Joseph, X., Pillai, U.T.S., Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy Mater. Des., 90, pp. 713-722
Cui, Z., Shi, H., Wang, W., Xu, B., Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling Trans. Nonferrous Metals Soc. China, 25, pp. 1446-1453
Mallory, G.O., Hajdu, J.B., Electroless Plating -Fundamentals and Applications William Andrew Publishing/NoyesZuleta, A.A., Correa, E., Villada, C., Sepúlveda, M., Castaño, J.G., Echeverría, F., Comparative study of different environmentally friendly (chromium-free) methods for surface modification of pure magnesium Surf. Coat. Technol., 205, pp. 5254-5259
Wu, L., Zhao, J., Xie, Y., Yang, Z., Progress of electroplating and electroless plating on magnesium alloy Trans. Nonferrous Metals Soc. China, 20, pp. s630-s637
Shu, X., Wang, Y., Peng, J., Yan, P., Yan, B., Fang, X., Xu, Y., Recent progress in electroless ni coatings for magnesium alloys Int. J. Electrochem. Sci., 10, pp. 1261-1273
Liu, Z., Gao, W., The effect of substrate on the electroless nickel plating of Mg and Mg alloys Surf. Coat. Technol., 200, pp. 3553-3560
Liu, X., Liu, Z., Liu, P., Xiang, Y., Hu, W., Ding, W., Properties of fluoride film and its effect on electroless nickel deposition on magnesium alloys Trans. Nonferrous Metals Soc. China, 20, pp. 2185-2191
Qin, T., Ma, L., Yao, Y., Ni, C., Zhao, X., Ding, Y., An in situ measure method to study deposition mechanism of electroless Ni-P plating on AZ31 magnesium alloy Trans. Nonferrous Metals Soc. China, 21, pp. 2790-2797
Dhinakaran, R., Elansezhian, R., Lalitha, A.A., Effect of nanoadditives with surfactant on the surface characteristics of electroless nickel coating on magnesium-based composites reinforced with MWCNT Adv. Tribol., 2013
Sahoo, P., Optimization of electroless Ni-P coatings based on multiple roughness characteristics Surf. Interface Anal., 40, pp. 1552-1561
Vitry, V., Sens, A., Kanta, A.F., Delaunois, F., Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel Appl. Surf. Sci., 263, pp. 640-647
Xavior, M.A., Yarlagadda, P.K.D.V., Gadhari, P., Sahoo, P., Influence of process parameters on multiple roughness characteristics of Ni–P–TiO2 composite coatings Procedia Eng., 97, pp. 439-448
Doolittle, L.R., Algorithms for the rapid simulation of Rutherford backscattering spectra Nucl. Instrum. Methods Phys. Res., Sect. B, 9, pp. 344-351
Vitry, V., Kanta, A.-F., Delaunois, F., Initiation and formation of electroless nickel–boron coatings on mild steel: effect of substrate roughness Mater. Sci. Eng. B, 175, pp. 266-273
Ambat, R., Zhou, W., Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters Surf. Coat. Technol., 179, pp. 124-134
Song, G., Atrens, A., Understanding magnesium corrosion—a framework for improved alloy performance Adv. Eng. Mater., 5, pp. 837-858
Sevonkaev, I., Goia, D.V., Matijević, E., Formation and structure of cubic particles of sodium magnesium fluoride (neighborite) J. Colloid Interface Sci., 317, pp. 130-136
Zhao, D., Zhou, L., Du, Y., Wang, A., Peng, Y., Kong, Y., Sha, C., Zhang, W., Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations Calphad, 35, pp. 284-291
Lee, S.B., Kim, Y.M., Signature of surface energy dependence of partial dislocation slip in a gold nanometer-sized protrusion Scr. Mater., 64, pp. 1125-1128
Bagheri, S., Guagliano, M., Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys Surf. Eng., 25, pp. 3-14
Deendarlianto, Y.T., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., Kuntoro, H., Indarto, Widyaparaga, A., The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces Int. J. Heat Mass Transf., 101, pp. 1217-1226
Zhou, C., Yang, Y., Zhang, J., Xu, S., Wu, S., Hu, H., Chen, B., Zhao, X., Enhanced electrochemical performance of the counterelectrode of dye sensitized solar cells by sandblasting Electrochim. Acta, 54, pp. 5320-5325
Bradford, P.M., Case, B., Dearnaley, G., Turner, J.F., Woolsey, I.S., Papers presented at a conference on ion implantation and ion beam analysis techniques in corrosion studies: ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80) Corros. Sci., 16, pp. 747-766
Turhan, C.M., Surface Modification of mg and Mg Alloys https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2012/docId/2106, Erlangen-Nürnberg Universität Erlangen-NürnbergWhitten, K., Davis, R., Peck, L., Stanley, G., Chemistry, 10th Editi Brooks Cole BostonZhang, Z., Yu, G., Ouyang, Y., He, X., Hu, B., Zhang, J., Wu, Z., Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D Appl. Surf. Sci., 255, pp. 7773-7779
Makar, G.L., Kruger, J., Corrosion of magnesium Int. Mater. Rev., 38. , (138–)
Zhang, Y.Z., Wu, Y.Y., Yao, M., Characterization of electroless nickel with low phosphorus J. Mater. Sci. Lett., 17, pp. 37-40
Wang, L., Li, J., Liu, H., A simple process for electroless plating nickel—phosphorus film on wood veneer Wood Sci. Technol., 45, pp. 161-167
El-Taib Heakal, F., Fekry, A.M., Fatayerji, M.Z., Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions Electrochim. Acta, 54, pp. 1545-1557
Verdier, S., van der Laak, N., Delalande, S., Metson, J., Dalard, F., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS Appl. Surf. Sci., 235, pp. 513-524
Schlesinger, M., Meng, X., Snyder, D.D., The microstructure and electrochemical properties of electroless zinc-nickel-phosphorus alloy J. Electrochem. Soc., 138, pp. 406-410
Lian, J.S., Li, G.Y., Niu, L.Y., Gu, C.D., Jiang, Z.H., Jiang, Q., Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy Surf. Coat. Technol., 200, pp. 5956-5962
Chen, J., Yu, G., Hu, B., Liu, Z., Ye, L., Wang, Z., A zinc transition layer in electroless nickel plating Surf. Coat. Technol., 201, pp. 686-690
Abulsain, M., Berkani, A., Bonilla, F.A., Liu, Y., Arenas, M.A., Skeldon, P., Anodic oxidation of Mg–Cu and Mg–Zn alloys Electrochim. Acta, 49, pp. 899-904
Němcová, A., Galal, O., Skeldon, P., Kuběna, I., Šmíd, M., Briand, E., Vickridge, I., Habazaki, H., Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents Electrochim. Acta, 219, pp. 28-37
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159154038702080
spelling 2017-12-19T19:36:48Z2017-12-19T19:36:48Z20172578972http://hdl.handle.net/11407/432310.1016/j.surfcoat.2017.04.059reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínIn this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V.engElsevier B.V.Facultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85019001282&doi=10.1016%2fj.surfcoat.2017.04.059&partnerID=40&md5=7978d2474257b32cbaecfe7d7fd134d1Surface and Coatings TechnologyCao, F., Song, G.L., Atrens, A., Corrosion and passivation of magnesium alloys Corros. Sci., 111, pp. 835-845Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution Corros. Sci., 111, pp. 288-301Atrens, A., Song, G.L., Liu, M., Shi, Z., Cao, F., Dargusch, M.S., Review of recent developments in the field of magnesium corrosion Adv. Eng. Mater., 17, pp. 400-453Esmaily, M., Blücher, D.B., Svensson, J.E., Halvarsson, M., Johansson, L.G., New insights into the corrosion of magnesium alloys — the role of aluminum Scr. Mater., 115, pp. 91-95Shu, X., Wang, Y., Liu, C., Aljaafari, A., Gao, W., Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance Surf. Coat. Technol., 261, pp. 161-166Lee, J., Chung, W., Jung, U., Kim, Y., Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte Surf. Coat. Technol., 205, pp. 4018-4023Selvi, V.E., Chatterji, P., Subramanian, S., Balaraju, J.N., Autocatalytic duplex Ni–P/Ni–W–P coatings on AZ31B magnesium alloy Surf. Coat. Technol., 240, pp. 103-109Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings Surf. Coat. Technol., 304, pp. 167-178Correa, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., Coating development during electroless Ni-B plating on magnesium and AZ91D alloy Surf. Coat. Technol., 232, pp. 784-794Zuleta, A.A., Correa, E., Sepúlveda, M., Guerra, L., Castaño, J.G., Echeverría, F., Skeldon, P., Thompson, G.E., Effect of NH4HF2 on deposition of alkaline electroless Ni-P coatings as a chromium-free pre-treatment for magnesium Corros. Sci., 55, pp. 194-200Liu, Z., Electroless Nickel-Phosphorus (EN) Coatings on Magnesium and Magnesium Alloys (Doctoral thesis) University of AucklandHu, R., Su, Y., Liu, H., Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath J. Alloys Compd., 658, pp. 555-560Dong, X., Handbook of Manufacturing Engineering and Technology, pp. 1-21. , A. Nee Springer London LondonYang, X., Wang, G., Dong, G., Gong, F., Zhang, M., Rare earth conversion coating on Mg–8.5Li alloys J. Alloys Compd., 487, pp. 64-68Wang, G., Zhang, M., Wu, R., Molybdate and molybdate/permanganate conversion coatings on Mg–8.5Li alloy Appl. Surf. Sci., 258, pp. 2648-2654Jiang, B.L., Ge, Y.F., 7 - Micro-arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys , pp. 163-196. , Woodhead Publishing Series in Metals and Surface Engineering, edited by Guang-Ling Song, Woodhead Publishing Series in Metals and Surface Engineering, Corrosion Prevention of Magnesium AlloysWhite, L., Koo, Y., Neralla, S., Sankar, J., Yun, Y., Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO) Mater. Sci. Eng. B, 208, pp. 39-46Hoche, H., Groß, S., Oechsner, M., Development of new PVD coatings for magnesium alloys with improved corrosion properties Surf. Coat. Technol., 259, pp. 102-108. , (Part A)Sivapragash, M., Kumaradhas, P., Stanly Jones Retnam, B., Felix Joseph, X., Pillai, U.T.S., Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy Mater. Des., 90, pp. 713-722Cui, Z., Shi, H., Wang, W., Xu, B., Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling Trans. Nonferrous Metals Soc. China, 25, pp. 1446-1453Mallory, G.O., Hajdu, J.B., Electroless Plating -Fundamentals and Applications William Andrew Publishing/NoyesZuleta, A.A., Correa, E., Villada, C., Sepúlveda, M., Castaño, J.G., Echeverría, F., Comparative study of different environmentally friendly (chromium-free) methods for surface modification of pure magnesium Surf. Coat. Technol., 205, pp. 5254-5259Wu, L., Zhao, J., Xie, Y., Yang, Z., Progress of electroplating and electroless plating on magnesium alloy Trans. Nonferrous Metals Soc. China, 20, pp. s630-s637Shu, X., Wang, Y., Peng, J., Yan, P., Yan, B., Fang, X., Xu, Y., Recent progress in electroless ni coatings for magnesium alloys Int. J. Electrochem. Sci., 10, pp. 1261-1273Liu, Z., Gao, W., The effect of substrate on the electroless nickel plating of Mg and Mg alloys Surf. Coat. Technol., 200, pp. 3553-3560Liu, X., Liu, Z., Liu, P., Xiang, Y., Hu, W., Ding, W., Properties of fluoride film and its effect on electroless nickel deposition on magnesium alloys Trans. Nonferrous Metals Soc. China, 20, pp. 2185-2191Qin, T., Ma, L., Yao, Y., Ni, C., Zhao, X., Ding, Y., An in situ measure method to study deposition mechanism of electroless Ni-P plating on AZ31 magnesium alloy Trans. Nonferrous Metals Soc. China, 21, pp. 2790-2797Dhinakaran, R., Elansezhian, R., Lalitha, A.A., Effect of nanoadditives with surfactant on the surface characteristics of electroless nickel coating on magnesium-based composites reinforced with MWCNT Adv. Tribol., 2013Sahoo, P., Optimization of electroless Ni-P coatings based on multiple roughness characteristics Surf. Interface Anal., 40, pp. 1552-1561Vitry, V., Sens, A., Kanta, A.F., Delaunois, F., Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel Appl. Surf. Sci., 263, pp. 640-647Xavior, M.A., Yarlagadda, P.K.D.V., Gadhari, P., Sahoo, P., Influence of process parameters on multiple roughness characteristics of Ni–P–TiO2 composite coatings Procedia Eng., 97, pp. 439-448Doolittle, L.R., Algorithms for the rapid simulation of Rutherford backscattering spectra Nucl. Instrum. Methods Phys. Res., Sect. B, 9, pp. 344-351Vitry, V., Kanta, A.-F., Delaunois, F., Initiation and formation of electroless nickel–boron coatings on mild steel: effect of substrate roughness Mater. Sci. Eng. B, 175, pp. 266-273Ambat, R., Zhou, W., Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters Surf. Coat. Technol., 179, pp. 124-134Song, G., Atrens, A., Understanding magnesium corrosion—a framework for improved alloy performance Adv. Eng. Mater., 5, pp. 837-858Sevonkaev, I., Goia, D.V., Matijević, E., Formation and structure of cubic particles of sodium magnesium fluoride (neighborite) J. Colloid Interface Sci., 317, pp. 130-136Zhao, D., Zhou, L., Du, Y., Wang, A., Peng, Y., Kong, Y., Sha, C., Zhang, W., Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations Calphad, 35, pp. 284-291Lee, S.B., Kim, Y.M., Signature of surface energy dependence of partial dislocation slip in a gold nanometer-sized protrusion Scr. Mater., 64, pp. 1125-1128Bagheri, S., Guagliano, M., Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys Surf. Eng., 25, pp. 3-14Deendarlianto, Y.T., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., Kuntoro, H., Indarto, Widyaparaga, A., The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces Int. J. Heat Mass Transf., 101, pp. 1217-1226Zhou, C., Yang, Y., Zhang, J., Xu, S., Wu, S., Hu, H., Chen, B., Zhao, X., Enhanced electrochemical performance of the counterelectrode of dye sensitized solar cells by sandblasting Electrochim. Acta, 54, pp. 5320-5325Bradford, P.M., Case, B., Dearnaley, G., Turner, J.F., Woolsey, I.S., Papers presented at a conference on ion implantation and ion beam analysis techniques in corrosion studies: ion beam analysis of corrosion films on a high magnesium alloy (Magnox Al 80) Corros. Sci., 16, pp. 747-766Turhan, C.M., Surface Modification of mg and Mg Alloys https://opus4.kobv.de/opus4-fau/frontdoor/index/index/year/2012/docId/2106, Erlangen-Nürnberg Universität Erlangen-NürnbergWhitten, K., Davis, R., Peck, L., Stanley, G., Chemistry, 10th Editi Brooks Cole BostonZhang, Z., Yu, G., Ouyang, Y., He, X., Hu, B., Zhang, J., Wu, Z., Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D Appl. Surf. Sci., 255, pp. 7773-7779Makar, G.L., Kruger, J., Corrosion of magnesium Int. Mater. Rev., 38. , (138–)Zhang, Y.Z., Wu, Y.Y., Yao, M., Characterization of electroless nickel with low phosphorus J. Mater. Sci. Lett., 17, pp. 37-40Wang, L., Li, J., Liu, H., A simple process for electroless plating nickel—phosphorus film on wood veneer Wood Sci. Technol., 45, pp. 161-167El-Taib Heakal, F., Fekry, A.M., Fatayerji, M.Z., Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions Electrochim. Acta, 54, pp. 1545-1557Verdier, S., van der Laak, N., Delalande, S., Metson, J., Dalard, F., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS Appl. Surf. Sci., 235, pp. 513-524Schlesinger, M., Meng, X., Snyder, D.D., The microstructure and electrochemical properties of electroless zinc-nickel-phosphorus alloy J. Electrochem. Soc., 138, pp. 406-410Lian, J.S., Li, G.Y., Niu, L.Y., Gu, C.D., Jiang, Z.H., Jiang, Q., Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy Surf. Coat. Technol., 200, pp. 5956-5962Chen, J., Yu, G., Hu, B., Liu, Z., Ye, L., Wang, Z., A zinc transition layer in electroless nickel plating Surf. Coat. Technol., 201, pp. 686-690Abulsain, M., Berkani, A., Bonilla, F.A., Liu, Y., Arenas, M.A., Skeldon, P., Anodic oxidation of Mg–Cu and Mg–Zn alloys Electrochim. Acta, 49, pp. 899-904Němcová, A., Galal, O., Skeldon, P., Kuběna, I., Šmíd, M., Briand, E., Vickridge, I., Habazaki, H., Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents Electrochim. Acta, 219, pp. 28-37ScopusStudy of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Zuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, ColombiaCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, ColombiaCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, ColombiaEcheverría, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, ColombiaBaron-Wiecheć, A., UK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United KingdomSkeldon, P., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United KingdomThompson, G.E., Corrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United KingdomZuleta A.A.Correa E.Castaño J.G.Echeverría F.Baron-Wiecheć A.Skeldon P.Thompson G.E.Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70-01, Medellín, ColombiaGrupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, ColombiaCentro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Carrera 53 No 61-30, Medellín, ColombiaUK Atomic Energy Authority, Culham Centre for Fusion Energy, Abingdon, United KingdomCorrosion and Protection Group, School of Materials, The University of Manchester, Oxford Rd., Manchester, United KingdomCoatings grownElectroless coatingsMagnesiumSurface morphologyAlkalinityChromium compoundsCoatingsMagnesium alloysNickelRutherford backscattering spectroscopyScanning electron microscopySubstratesSurface morphologyX ray diffractionAZ31B magnesium alloysElectroless coatingElectroless Ni-P coatingElectroless Ni-P depositionsElectroless ni-p platingGravimetric measurementsOpen circuit potential measurementsRutherford backscattering spectrometryMagnesiumIn this work, alkaline electroless Ni-P coatings were directly formed on commercial purity magnesium and AZ31B magnesium alloy substrates using a process that avoided the use of Cr(VI) compounds. The study focused on two aspects of coating formation: (i) the effect of the substrate roughness on the kinetics of the electroless Ni-P deposition process on magnesium; (ii) the morphological and chemical evolution of the coating on both magnesium and the AZ31B alloy. For these purposes, gravimetric measurements, scanning electron microscopy (SEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and open-circuit potential (OCP) measurements were employed. It is shown that a relatively rough substrate promotes the rapid formation of the Ni-P coating on the substrate surface in comparison with smoother substrates. Furthermore, the presence of fluoride ions derived from the NH4HF2 reagent in the electroless Ni-P plating bath leads to formation of MgF2 a few seconds after immersion in the bath. Subsequently, crystals of NaMgF3, with a cubic morphology, are developed, which later become embedded in the Ni-P matrix. The presence of fluorine species passivates the substrate during coating formation and hence restricts the decomposition of the electroless Ni-P plating bath, which can occur due to release of Mg2 + ions. Finally, according to gravimetric measurements, SEM and XRD, the plating process is initially faster on magnesium than on the alloy. © 2017 Elsevier B.V.http://purl.org/coar/access_right/c_16ec11407/4323oai:repository.udem.edu.co:11407/43232020-05-27 16:36:04.529Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co