Improving cross-docking operations for consumer goods sector using metaheuristics
This paper aims to model a consumer goods cross-docking problem, which is solved using metaheuristics to minimize makespan and determine the capacity in terms of inbound and outbound docks. The consumer-goods cross-docking problem is represented through inbound and outbound docks, customer orders (p...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5888
- Acceso en línea:
- http://hdl.handle.net/11407/5888
- Palabra clave:
- Consumer goods sector
Cross-docking
Distribution center
Particle swarm optimization
Simulated annealing
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_8e1c98403ccc7daa3cddfcbe81cb9669 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5888 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Improving cross-docking operations for consumer goods sector using metaheuristics |
title |
Improving cross-docking operations for consumer goods sector using metaheuristics |
spellingShingle |
Improving cross-docking operations for consumer goods sector using metaheuristics Consumer goods sector Cross-docking Distribution center Particle swarm optimization Simulated annealing |
title_short |
Improving cross-docking operations for consumer goods sector using metaheuristics |
title_full |
Improving cross-docking operations for consumer goods sector using metaheuristics |
title_fullStr |
Improving cross-docking operations for consumer goods sector using metaheuristics |
title_full_unstemmed |
Improving cross-docking operations for consumer goods sector using metaheuristics |
title_sort |
Improving cross-docking operations for consumer goods sector using metaheuristics |
dc.subject.spa.fl_str_mv |
Consumer goods sector Cross-docking Distribution center Particle swarm optimization Simulated annealing |
topic |
Consumer goods sector Cross-docking Distribution center Particle swarm optimization Simulated annealing |
description |
This paper aims to model a consumer goods cross-docking problem, which is solved using metaheuristics to minimize makespan and determine the capacity in terms of inbound and outbound docks. The consumer-goods cross-docking problem is represented through inbound and outbound docks, customer orders (products to be delivered to customers), and metaheuristics as a solution method. Simulated annealing (SA) and particle swarm optimization (PSO) are implemented to solve the cross-docking problem. Based on the results of statistical analysis, it was identified that the two-way interaction effect between inbound and outbound docks, outbound docks and items, and items and metaheuristics are the most statistically significant on the response variable. The best solution provides the minimum makespan of 973.42 minutes considering nine inbound docks and twelve outbound docks. However, this study detected that the combination of six inbound docks and nine outbound docks represents the most efficient solution for a crossdocking design since it reduces the requirement of docks by 28.6% and increases the makespan by only 4.2% when compared to the best solution, representing a favorable trade-off for the cross-docking platform design. © 2021, Institute of Advanced Engineering and Science. All rights reserved. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:33Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:33Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20893191 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5888 |
dc.identifier.doi.none.fl_str_mv |
10.11591/eei.v10i1.2710 |
identifier_str_mv |
20893191 10.11591/eei.v10i1.2710 |
url |
http://hdl.handle.net/11407/5888 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095776438&doi=10.11591%2feei.v10i1.2710&partnerID=40&md5=8dd0205401ca0b07f630ae46a6e6251e |
dc.relation.citationvolume.none.fl_str_mv |
10 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
524 |
dc.relation.citationendpage.none.fl_str_mv |
532 |
dc.relation.references.none.fl_str_mv |
Chandriah, K. K., Raghavendra, N. V, Multi-objective optimization for preemptive and predictive supply chain operation (2020) Int. J. Electr. Comput. Eng, 10 (2), pp. 1533-1543 Mezouar, H., El Afia, A., Proposal for an approach to evaluate continuity in service supply chains: case of the Moroccan electricity supply chain (2019) Int. J. Electr. Comput. Eng, 9 (6), pp. 5552-5559 Rijal, A., Bijvank, M., De Koster, R., Integrated scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service mode dock doors (2019) Eur. J. Oper. Res, 278 (3), pp. 752-771 Monaco, M. F., Sammarra, M., Managing loading and discharging operations at cross-docking terminals (2020) Procedia Manuf, 42, pp. 475-482 Gaudioso, M., Flavia, M., Sammarra, M., A Lagrangian heuristics for the truck scheduling problem in multidoor, multi-product Cross-Docking with constant processing time (2020) Omega, , press Nogueira, T. H., Coutinho, F. P., Ribeiro, R. P., Ravetti, M. G., Parallel-machine scheduling methodology for a multi-dock truck sequencing problem in a cross-docking center (2020) Comput. Ind. Eng, 143, p. 106391. , March Fonseca, G. B., Nogueira, T. H., Ravetti, M. G., A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem (2019) Eur. J. Oper. Res, 275 (1), pp. 139-154 Assadi, M. T., Bagheri, M., Engineering differential evolution and population-based simulated annealing for truck scheduling problem in multiple door cross-docking systems (2016) Comput. Ind. Eng, 96, pp. 149-161 Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D., Zachariadis, E. E., Moving products between location pairs: Cross-docking versus (2017) Eur. J. Oper. Res, 256 (3), pp. 803-819 Wisittipanich, W., Hengmeechai, P., Truck scheduling in multi-door cross docking terminal by modified particle swarm optimization (2017) Comput. Ind. Eng, 113, pp. 793-802 Goodarzi, A. H., Zegordi, S. H., A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm (2016) Comput. Ind. Eng, 102, pp. 132-146 Maknoon, M. Y., Soumis, F., Baptiste, P., Optimizing transshipment workloads in less-than-truckload (2016) Intern. J. Prod. Econ, 179, pp. 90-100 Kusolpuchong, S., Chusap, K., Alhawari, O., Suer, G., A Genetic Algorithm Approach for Multi Objective Cross Dock Scheduling in Supply Chains (2019) Procedia Manuf, 39, pp. 1139-1148 Aziz, M. A., Ninggal, I. H., Scalable workflow scheduling algorithm for minimizing makespan and failure probability (2019) Bull. Electr. Eng. Informatics, 8 (1), pp. 283-290 Golshahi-roudbaneh, A., Hajiaghaei-keshteli, M., Paydar, M. M., Developing a lower bound and strong heuristics for a truck scheduling problem in a cross-docking center (2017) Knowl.-Based Syst, 129, pp. 17-38 Correa, A. A., Gómez, R. A., Cano, J. A., Warehouse management and information and communication technology (2010) Estud. Gerenciales, 26 (117), pp. 145-171 Van Belle, J., Valckenaers, P., Cattrysse, D., Cross-docking: State of the art (2012) Omega, 40 (6), pp. 827-846 Cano, J. A., Order picking optimization based on a picker routing heuristic: minimizing total traveled distance in warehouses (2020) Handbook of Research on the Applications of International Transportation and Logistics for World Trade, pp. 74-96. , G. Ç. Ceyhun, Ed. PA, USA: IGI Global Cano, J. A., Baena, J. J., Trends in the use of information and communication technologies for international negotiation (2015) Estud. Gerenciales, 31 (136), pp. 335-346 Cano, J. A., Baena, J. J., Impact of information and communication technologies in international negotiation performance (2015) Revista Brasileira de Gestão de Negócios, 17 (54), pp. 751-768 Amini, A., Tavakkoli-moghaddam, R., Omidvar, A., Cross-docking truck scheduling with the arrival times for inbound trucks and the learning effect for unloading/loading processes (2014) Prod. Manuf. Res, 2 (1), pp. 784-804 Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., Todosijevic, R., A comparative study of formulations for a cross-dock door assignment problem (2020) Omega, 91, p. 102015 Cano, J. A., Formulations for joint order picking problems in low-level picker-to-part systems (2020) Bull. Electr. Eng. Informatics, 9 (2), pp. 836-844 Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems (2019) J. King Saud Univ.-Eng. Sci, 32 (3), pp. 219-228 Baizal, Z. K. A., Lhaksmana, K. M., Rahmawati, A. A., Kirom, M., Mubarok, Z., Travel route scheduling based on user’s preferences using simulated annealing (2019) Int. J. Electr. Comput. Eng, 9 (2), pp. 1275-1287 Shahmardan, A., Sajadieh, M. S., Truck scheduling in a multi-door cross-docking center with partial unloading – Reinforcement learning-based simulated annealing approaches (2020) Comput. Ind. Eng, 139, p. 106134 Mousavi, S. M., Tavakkoli-Moghaddam, R., Siadat, A., Optimal design of the cross-docking in distribution networks: Heuristic solution approach (2014) Int. J. Eng. Trans. A Basics, 27 (4), pp. 533-544 Abdul-Adheem, W. R., An enhanced particle swarm optimization algorithm (2019) Int. J. Electr. Comput. Eng, 9 (6), pp. 4904-4907 Shin, T. M., Adam, A., Abidin, A. F. Z., A comparative study of PSO, GSA and SCA in parameters optimization of surface grinding process (2019) Bull. Electr. Eng. Informatics, 8 (3), pp. 1117-1127 Montgomery, D. C., (2019) Design and analysis of experiments, , 10th ed. Massachusetts: John Wiley & Sons Inc |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.publisher.program.spa.fl_str_mv |
Administración de Empresas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Económicas y Administrativas |
publisher.none.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.source.none.fl_str_mv |
Bulletin of Electrical Engineering and Informatics |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159121682792448 |
spelling |
20212021-02-05T14:57:33Z2021-02-05T14:57:33Z20893191http://hdl.handle.net/11407/588810.11591/eei.v10i1.2710This paper aims to model a consumer goods cross-docking problem, which is solved using metaheuristics to minimize makespan and determine the capacity in terms of inbound and outbound docks. The consumer-goods cross-docking problem is represented through inbound and outbound docks, customer orders (products to be delivered to customers), and metaheuristics as a solution method. Simulated annealing (SA) and particle swarm optimization (PSO) are implemented to solve the cross-docking problem. Based on the results of statistical analysis, it was identified that the two-way interaction effect between inbound and outbound docks, outbound docks and items, and items and metaheuristics are the most statistically significant on the response variable. The best solution provides the minimum makespan of 973.42 minutes considering nine inbound docks and twelve outbound docks. However, this study detected that the combination of six inbound docks and nine outbound docks represents the most efficient solution for a crossdocking design since it reduces the requirement of docks by 28.6% and increases the makespan by only 4.2% when compared to the best solution, representing a favorable trade-off for the cross-docking platform design. © 2021, Institute of Advanced Engineering and Science. All rights reserved.engInstitute of Advanced Engineering and ScienceAdministración de EmpresasFacultad de Ciencias Económicas y Administrativashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85095776438&doi=10.11591%2feei.v10i1.2710&partnerID=40&md5=8dd0205401ca0b07f630ae46a6e6251e101524532Chandriah, K. K., Raghavendra, N. V, Multi-objective optimization for preemptive and predictive supply chain operation (2020) Int. J. Electr. Comput. Eng, 10 (2), pp. 1533-1543Mezouar, H., El Afia, A., Proposal for an approach to evaluate continuity in service supply chains: case of the Moroccan electricity supply chain (2019) Int. J. Electr. Comput. Eng, 9 (6), pp. 5552-5559Rijal, A., Bijvank, M., De Koster, R., Integrated scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service mode dock doors (2019) Eur. J. Oper. Res, 278 (3), pp. 752-771Monaco, M. F., Sammarra, M., Managing loading and discharging operations at cross-docking terminals (2020) Procedia Manuf, 42, pp. 475-482Gaudioso, M., Flavia, M., Sammarra, M., A Lagrangian heuristics for the truck scheduling problem in multidoor, multi-product Cross-Docking with constant processing time (2020) Omega, , pressNogueira, T. H., Coutinho, F. P., Ribeiro, R. P., Ravetti, M. G., Parallel-machine scheduling methodology for a multi-dock truck sequencing problem in a cross-docking center (2020) Comput. Ind. Eng, 143, p. 106391. , MarchFonseca, G. B., Nogueira, T. H., Ravetti, M. G., A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem (2019) Eur. J. Oper. Res, 275 (1), pp. 139-154Assadi, M. T., Bagheri, M., Engineering differential evolution and population-based simulated annealing for truck scheduling problem in multiple door cross-docking systems (2016) Comput. Ind. Eng, 96, pp. 149-161Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D., Zachariadis, E. E., Moving products between location pairs: Cross-docking versus (2017) Eur. J. Oper. Res, 256 (3), pp. 803-819Wisittipanich, W., Hengmeechai, P., Truck scheduling in multi-door cross docking terminal by modified particle swarm optimization (2017) Comput. Ind. Eng, 113, pp. 793-802Goodarzi, A. H., Zegordi, S. H., A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm (2016) Comput. Ind. Eng, 102, pp. 132-146Maknoon, M. Y., Soumis, F., Baptiste, P., Optimizing transshipment workloads in less-than-truckload (2016) Intern. J. Prod. Econ, 179, pp. 90-100Kusolpuchong, S., Chusap, K., Alhawari, O., Suer, G., A Genetic Algorithm Approach for Multi Objective Cross Dock Scheduling in Supply Chains (2019) Procedia Manuf, 39, pp. 1139-1148Aziz, M. A., Ninggal, I. H., Scalable workflow scheduling algorithm for minimizing makespan and failure probability (2019) Bull. Electr. Eng. Informatics, 8 (1), pp. 283-290Golshahi-roudbaneh, A., Hajiaghaei-keshteli, M., Paydar, M. M., Developing a lower bound and strong heuristics for a truck scheduling problem in a cross-docking center (2017) Knowl.-Based Syst, 129, pp. 17-38Correa, A. A., Gómez, R. A., Cano, J. A., Warehouse management and information and communication technology (2010) Estud. Gerenciales, 26 (117), pp. 145-171Van Belle, J., Valckenaers, P., Cattrysse, D., Cross-docking: State of the art (2012) Omega, 40 (6), pp. 827-846Cano, J. A., Order picking optimization based on a picker routing heuristic: minimizing total traveled distance in warehouses (2020) Handbook of Research on the Applications of International Transportation and Logistics for World Trade, pp. 74-96. , G. Ç. Ceyhun, Ed. PA, USA: IGI GlobalCano, J. A., Baena, J. J., Trends in the use of information and communication technologies for international negotiation (2015) Estud. Gerenciales, 31 (136), pp. 335-346Cano, J. A., Baena, J. J., Impact of information and communication technologies in international negotiation performance (2015) Revista Brasileira de Gestão de Negócios, 17 (54), pp. 751-768Amini, A., Tavakkoli-moghaddam, R., Omidvar, A., Cross-docking truck scheduling with the arrival times for inbound trucks and the learning effect for unloading/loading processes (2014) Prod. Manuf. Res, 2 (1), pp. 784-804Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., Todosijevic, R., A comparative study of formulations for a cross-dock door assignment problem (2020) Omega, 91, p. 102015Cano, J. A., Formulations for joint order picking problems in low-level picker-to-part systems (2020) Bull. Electr. Eng. Informatics, 9 (2), pp. 836-844Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems (2019) J. King Saud Univ.-Eng. Sci, 32 (3), pp. 219-228Baizal, Z. K. A., Lhaksmana, K. M., Rahmawati, A. A., Kirom, M., Mubarok, Z., Travel route scheduling based on user’s preferences using simulated annealing (2019) Int. J. Electr. Comput. Eng, 9 (2), pp. 1275-1287Shahmardan, A., Sajadieh, M. S., Truck scheduling in a multi-door cross-docking center with partial unloading – Reinforcement learning-based simulated annealing approaches (2020) Comput. Ind. Eng, 139, p. 106134Mousavi, S. M., Tavakkoli-Moghaddam, R., Siadat, A., Optimal design of the cross-docking in distribution networks: Heuristic solution approach (2014) Int. J. Eng. Trans. A Basics, 27 (4), pp. 533-544Abdul-Adheem, W. R., An enhanced particle swarm optimization algorithm (2019) Int. J. Electr. Comput. Eng, 9 (6), pp. 4904-4907Shin, T. M., Adam, A., Abidin, A. F. Z., A comparative study of PSO, GSA and SCA in parameters optimization of surface grinding process (2019) Bull. Electr. Eng. Informatics, 8 (3), pp. 1117-1127Montgomery, D. C., (2019) Design and analysis of experiments, , 10th ed. Massachusetts: John Wiley & Sons IncBulletin of Electrical Engineering and InformaticsConsumer goods sectorCross-dockingDistribution centerParticle swarm optimizationSimulated annealingImproving cross-docking operations for consumer goods sector using metaheuristicsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Gómez-Montoya, R.A., Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, ColombiaCano, J.A., Faculty of Economics and Administrative Sciences, Universidad de Medellín, ColombiaCampo, E.A., ESACS-Escuela Superior en Administración de Cadena de Suministro, ColombiaSalazar, F., Faculty of Economics and Administrative Sciences, Pontificia Universidad Javeriana, Colombiahttp://purl.org/coar/access_right/c_16ecGómez-Montoya R.A.Cano J.A.Campo E.A.Salazar F.11407/5888oai:repository.udem.edu.co:11407/58882021-02-05 09:57:33.9Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |