Production and characterization of activated carbon from wood wastes
Cedarwood (Cedrela Angustifolia) and teak (Tectona Grandis) woods are typically used for furniture manufacture because they have high durability, are light and easy to work. During these manufacturing process, large amount of these wastes is generated causing disposal environmental problems. In this...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4565
- Acceso en línea:
- http://hdl.handle.net/11407/4565
- Palabra clave:
- Activated carbon; Adsorption; Aromatic compounds; Azo dyes; Carbon; Characterization; Chemical analysis; Dyes; Fourier transform infrared spectroscopy; Furniture manufacture; Manufacture; Scanning electron microscopy; Solutions; Waste disposal; Activated materials; Adsorption capacities; Chemical compositions; Environmental problems; High durability; Manufacturing process; Residual wastes; Tectona grandis; Thermogravimetric analysis
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_88deae3350dfcbd500994e44709f7690 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4565 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Production and characterization of activated carbon from wood wastes |
title |
Production and characterization of activated carbon from wood wastes |
spellingShingle |
Production and characterization of activated carbon from wood wastes Activated carbon; Adsorption; Aromatic compounds; Azo dyes; Carbon; Characterization; Chemical analysis; Dyes; Fourier transform infrared spectroscopy; Furniture manufacture; Manufacture; Scanning electron microscopy; Solutions; Waste disposal; Activated materials; Adsorption capacities; Chemical compositions; Environmental problems; High durability; Manufacturing process; Residual wastes; Tectona grandis; Thermogravimetric analysis |
title_short |
Production and characterization of activated carbon from wood wastes |
title_full |
Production and characterization of activated carbon from wood wastes |
title_fullStr |
Production and characterization of activated carbon from wood wastes |
title_full_unstemmed |
Production and characterization of activated carbon from wood wastes |
title_sort |
Production and characterization of activated carbon from wood wastes |
dc.contributor.affiliation.spa.fl_str_mv |
Universidad de Medellin, Medellin, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Activated carbon; Adsorption; Aromatic compounds; Azo dyes; Carbon; Characterization; Chemical analysis; Dyes; Fourier transform infrared spectroscopy; Furniture manufacture; Manufacture; Scanning electron microscopy; Solutions; Waste disposal; Activated materials; Adsorption capacities; Chemical compositions; Environmental problems; High durability; Manufacturing process; Residual wastes; Tectona grandis; Thermogravimetric analysis |
topic |
Activated carbon; Adsorption; Aromatic compounds; Azo dyes; Carbon; Characterization; Chemical analysis; Dyes; Fourier transform infrared spectroscopy; Furniture manufacture; Manufacture; Scanning electron microscopy; Solutions; Waste disposal; Activated materials; Adsorption capacities; Chemical compositions; Environmental problems; High durability; Manufacturing process; Residual wastes; Tectona grandis; Thermogravimetric analysis |
description |
Cedarwood (Cedrela Angustifolia) and teak (Tectona Grandis) woods are typically used for furniture manufacture because they have high durability, are light and easy to work. During these manufacturing process, large amount of these wastes is generated causing disposal environmental problems. In this paper, the residual wastes (sawdust) of Cedar (C) and Teak (T) are transformed into an activated material. The chemical composition of both biomass (C and T) was determinate by TGA (Thermogravimetric Analysis). Activated materials were characterized in surface area following the BET (Brunauer, Emmett and Teller) method, morphology using SEM (Scanning Electron Microscopy) and to know their functional groups a FTIR (Fourier Transform Infrared Spectroscopy) analysis was done. Their adsorption capacity was evaluated by removal of Methylene Blue (MB) and Congo Red (CR) from aqueous solutions. © Published under licence by IOP Publishing Ltd. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:34:32Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:34:32Z |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.issn.none.fl_str_mv |
17426588 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4565 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/935/1/012012 |
identifier_str_mv |
17426588 10.1088/1742-6596/935/1/012012 |
url |
http://hdl.handle.net/11407/4565 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041483989&doi=10.1088%2f1742-6596%2f935%2f1%2f012012&partnerID=40&md5=fb7b73620331bc38a939dd98c662a58d |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Physics: Conference Series |
dc.relation.references.spa.fl_str_mv |
Petroleum, B., (2007) BP Statistical Review of World Energy, 66. , London: BP Energy; Ramirez, A., (2017) Rev. Colomb. Quím., 46 (1), pp. 33-41; Zhang, Z., (2015) J. Taiwan. Inst. Chem. Eng., 49, pp. 206-211; Botomé, M., (2017) Chem. Eng. J., 321, pp. 614-621; López, F., (2013) J. Anal. Appl. Pyrolysis, 104, pp. 551-558; Department, F., (1990) Energy Conservation in the Mechanical Forest Industries, , (Italy: Food and agriculture organization of the united nations) chapter 6; Li, Y., (2011) Appl. Surf. Sci., 257 (24), pp. 10621-10627; Nieto, C., Terrones, M., Rangel, J., (2011) Biomass Bioenergy, 35 (1), pp. 103-112; Ahmadpour, A., Do, D., (1996) Carbon, 34 (4), pp. 471-479; Mudoga, H., Yucel, H., Kincal, N., (2008) Bioresour. Technol., 99 (9), pp. 3528-3533; Gañán, J., (2006) Appl. Surf. Sci., 252 (17), pp. 5976-5979; Ojr, P., (2014) Ind. Eng. Chem. Res., 20 (6), pp. 4401-4407; Ahmed, M., Dhedan, S., (2012) Fluid Phase Equilib., 317, pp. 9-14; Luna, D., (2007) ContactoS, 64, pp. 39-48; Islam, M., (2015) J. Taiwan. Inst. Chem. Eng., 52, pp. 57-64; Yorgun, S., Yildiz, D., (2015) J. Taiwan. Inst. Chem. Eng., 53, pp. 122-131; Thue, P., (2016) J. Mol. Liq., 223, pp. 1067-1080; Vimonses, V., (2009) Chem. Eng. J., 148 (2-3), pp. 354-364; Mall, I., (2005) Chemosphere, 61 (4), pp. 492-501 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Institute of Physics Publishing |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/4565/2/7.%20Production%20and%20characterization%20of%20activated%20carbon%20from%20wood%20wastes.pdf.jpg http://repository.udem.edu.co/bitstream/11407/4565/1/7.%20Production%20and%20characterization%20of%20activated%20carbon%20from%20wood%20wastes.pdf |
bitstream.checksum.fl_str_mv |
5aa62742e6d2ca77b9a2f7b836b6bd41 670e842ebb8f1f156d339296360e8fe0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159210437410816 |
spelling |
2018-04-13T16:34:32Z2018-04-13T16:34:32Z201717426588http://hdl.handle.net/11407/456510.1088/1742-6596/935/1/012012Cedarwood (Cedrela Angustifolia) and teak (Tectona Grandis) woods are typically used for furniture manufacture because they have high durability, are light and easy to work. During these manufacturing process, large amount of these wastes is generated causing disposal environmental problems. In this paper, the residual wastes (sawdust) of Cedar (C) and Teak (T) are transformed into an activated material. The chemical composition of both biomass (C and T) was determinate by TGA (Thermogravimetric Analysis). Activated materials were characterized in surface area following the BET (Brunauer, Emmett and Teller) method, morphology using SEM (Scanning Electron Microscopy) and to know their functional groups a FTIR (Fourier Transform Infrared Spectroscopy) analysis was done. Their adsorption capacity was evaluated by removal of Methylene Blue (MB) and Congo Red (CR) from aqueous solutions. © Published under licence by IOP Publishing Ltd.engInstitute of Physics PublishingFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041483989&doi=10.1088%2f1742-6596%2f935%2f1%2f012012&partnerID=40&md5=fb7b73620331bc38a939dd98c662a58dJournal of Physics: Conference SeriesPetroleum, B., (2007) BP Statistical Review of World Energy, 66. , London: BP Energy; Ramirez, A., (2017) Rev. Colomb. Quím., 46 (1), pp. 33-41; Zhang, Z., (2015) J. Taiwan. Inst. Chem. Eng., 49, pp. 206-211; Botomé, M., (2017) Chem. Eng. J., 321, pp. 614-621; López, F., (2013) J. Anal. Appl. Pyrolysis, 104, pp. 551-558; Department, F., (1990) Energy Conservation in the Mechanical Forest Industries, , (Italy: Food and agriculture organization of the united nations) chapter 6; Li, Y., (2011) Appl. Surf. Sci., 257 (24), pp. 10621-10627; Nieto, C., Terrones, M., Rangel, J., (2011) Biomass Bioenergy, 35 (1), pp. 103-112; Ahmadpour, A., Do, D., (1996) Carbon, 34 (4), pp. 471-479; Mudoga, H., Yucel, H., Kincal, N., (2008) Bioresour. Technol., 99 (9), pp. 3528-3533; Gañán, J., (2006) Appl. Surf. Sci., 252 (17), pp. 5976-5979; Ojr, P., (2014) Ind. Eng. Chem. Res., 20 (6), pp. 4401-4407; Ahmed, M., Dhedan, S., (2012) Fluid Phase Equilib., 317, pp. 9-14; Luna, D., (2007) ContactoS, 64, pp. 39-48; Islam, M., (2015) J. Taiwan. Inst. Chem. Eng., 52, pp. 57-64; Yorgun, S., Yildiz, D., (2015) J. Taiwan. Inst. Chem. Eng., 53, pp. 122-131; Thue, P., (2016) J. Mol. Liq., 223, pp. 1067-1080; Vimonses, V., (2009) Chem. Eng. J., 148 (2-3), pp. 354-364; Mall, I., (2005) Chemosphere, 61 (4), pp. 492-501ScopusProduction and characterization of activated carbon from wood wastesConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fUniversidad de Medellin, Medellin, ColombiaRamirez A.P., Giraldo S., Ulloa M., Flórez E., Acelas N.Y.Ramirez, A.P., Universidad de Medellin, Medellin, Colombia; Giraldo, S., Universidad de Medellin, Medellin, Colombia; Ulloa, M., Universidad de Medellin, Medellin, Colombia; Flórez, E., Universidad de Medellin, Medellin, Colombia; Acelas, N.Y., Universidad de Medellin, Medellin, ColombiaActivated carbon; Adsorption; Aromatic compounds; Azo dyes; Carbon; Characterization; Chemical analysis; Dyes; Fourier transform infrared spectroscopy; Furniture manufacture; Manufacture; Scanning electron microscopy; Solutions; Waste disposal; Activated materials; Adsorption capacities; Chemical compositions; Environmental problems; High durability; Manufacturing process; Residual wastes; Tectona grandis; Thermogravimetric analysisCedarwood (Cedrela Angustifolia) and teak (Tectona Grandis) woods are typically used for furniture manufacture because they have high durability, are light and easy to work. During these manufacturing process, large amount of these wastes is generated causing disposal environmental problems. In this paper, the residual wastes (sawdust) of Cedar (C) and Teak (T) are transformed into an activated material. The chemical composition of both biomass (C and T) was determinate by TGA (Thermogravimetric Analysis). Activated materials were characterized in surface area following the BET (Brunauer, Emmett and Teller) method, morphology using SEM (Scanning Electron Microscopy) and to know their functional groups a FTIR (Fourier Transform Infrared Spectroscopy) analysis was done. Their adsorption capacity was evaluated by removal of Methylene Blue (MB) and Congo Red (CR) from aqueous solutions. © Published under licence by IOP Publishing Ltd.http://purl.org/coar/access_right/c_16ecTHUMBNAIL7. Production and characterization of activated carbon from wood wastes.pdf.jpg7. Production and characterization of activated carbon from wood wastes.pdf.jpgIM Thumbnailimage/jpeg3913http://repository.udem.edu.co/bitstream/11407/4565/2/7.%20Production%20and%20characterization%20of%20activated%20carbon%20from%20wood%20wastes.pdf.jpg5aa62742e6d2ca77b9a2f7b836b6bd41MD52ORIGINAL7. Production and characterization of activated carbon from wood wastes.pdf7. Production and characterization of activated carbon from wood wastes.pdfapplication/pdf785756http://repository.udem.edu.co/bitstream/11407/4565/1/7.%20Production%20and%20characterization%20of%20activated%20carbon%20from%20wood%20wastes.pdf670e842ebb8f1f156d339296360e8fe0MD5111407/4565oai:repository.udem.edu.co:11407/45652020-05-27 18:24:51.019Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |