Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5933
- Acceso en línea:
- http://hdl.handle.net/11407/5933
- Palabra clave:
- coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_88253dff671574dfc01615d8f7772c8f |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5933 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
title |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
spellingShingle |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study coverage density functional calculations ethylene hydrogenation δ-MoC Aliphatic compounds Carbides Catalysts Density functional theory Desorption Energy barriers Ethylene Hydrogenation Monolayers Reaction intermediates Reaction rates Surface reactions Thermodynamics Ab initio thermodynamics Adsorption energies Elementary reaction Hydrogenation reactions Molecular mechanism Periodic density functional theory Rate-limiting steps Surface intermediates Activation energy |
title_short |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
title_full |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
title_fullStr |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
title_full_unstemmed |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
title_sort |
Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study |
dc.subject.spa.fl_str_mv |
coverage density functional calculations ethylene hydrogenation δ-MoC |
topic |
coverage density functional calculations ethylene hydrogenation δ-MoC Aliphatic compounds Carbides Catalysts Density functional theory Desorption Energy barriers Ethylene Hydrogenation Monolayers Reaction intermediates Reaction rates Surface reactions Thermodynamics Ab initio thermodynamics Adsorption energies Elementary reaction Hydrogenation reactions Molecular mechanism Periodic density functional theory Rate-limiting steps Surface intermediates Activation energy |
dc.subject.keyword.eng.fl_str_mv |
Aliphatic compounds Carbides Catalysts Density functional theory Desorption Energy barriers Ethylene Hydrogenation Monolayers Reaction intermediates Reaction rates Surface reactions Thermodynamics Ab initio thermodynamics Adsorption energies Elementary reaction Hydrogenation reactions Molecular mechanism Periodic density functional theory Rate-limiting steps Surface intermediates Activation energy |
description |
The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:04Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:04Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
21555435 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5933 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acscatal.0c00144 |
identifier_str_mv |
21555435 10.1021/acscatal.0c00144 |
url |
http://hdl.handle.net/11407/5933 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087976763&doi=10.1021%2facscatal.0c00144&partnerID=40&md5=7539fe98fdb978451bc04e9a8020bc1f |
dc.relation.citationvolume.none.fl_str_mv |
10 |
dc.relation.citationissue.none.fl_str_mv |
11 |
dc.relation.citationstartpage.none.fl_str_mv |
6213 |
dc.relation.citationendpage.none.fl_str_mv |
6222 |
dc.relation.references.none.fl_str_mv |
Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487 Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228 Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212 Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549 Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.K Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921 Frauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70 Ardakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19 Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83 Rodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52 Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278 Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393 Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32 Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800 Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709 Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916 Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949 Rekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888 Cortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353 Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166 Mei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15 Molero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149 Stacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604 Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342 Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135 Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521 Jimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540 Zaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293 Jimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003 Zaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003 Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020 Reuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406 Reuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407 Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144 Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427 Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112 Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617 Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104 Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979 Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775 Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192 Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002 Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904 Chorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim Nørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, Inc Plata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311 Heard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003 Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286 Jørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549 Shi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49 Vasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379 Sabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422 Meemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Chemical Society |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
ACS Catalysis |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159178478911488 |
spelling |
20202021-02-05T14:58:04Z2021-02-05T14:58:04Z21555435http://hdl.handle.net/11407/593310.1021/acscatal.0c00144The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087976763&doi=10.1021%2facscatal.0c00144&partnerID=40&md5=7539fe98fdb978451bc04e9a8020bc1f101162136222Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.KPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Frauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70Ardakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83Rodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949Rekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888Cortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166Mei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15Molero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149Stacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521Jimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540Zaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293Jimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003Zaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020Reuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406Reuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904Chorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: WeinheimNørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, IncPlata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311Heard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286Jørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549Shi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49Vasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379Sabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422Meemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354ACS Catalysiscoveragedensity functional calculationsethylenehydrogenationδ-MoCAliphatic compoundsCarbidesCatalystsDensity functional theoryDesorptionEnergy barriersEthyleneHydrogenationMonolayersReaction intermediatesReaction ratesSurface reactionsThermodynamicsAb initio thermodynamicsAdsorption energiesElementary reactionHydrogenation reactionsMolecular mechanismPeriodic density functional theoryRate-limiting stepsSurface intermediatesActivation energyCritical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic StudyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, ColombiaFlórez, E., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, ColombiaViñes, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, SpainRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United StatesIllas, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spainhttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Flórez E.Viñes F.Rodriguez J.A.Illas F.11407/5933oai:repository.udem.edu.co:11407/59332021-02-05 09:58:04.352Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |