Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study

The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5933
Acceso en línea:
http://hdl.handle.net/11407/5933
Palabra clave:
coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_88253dff671574dfc01615d8f7772c8f
oai_identifier_str oai:repository.udem.edu.co:11407/5933
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
title Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
spellingShingle Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
title_short Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
title_full Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
title_fullStr Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
title_full_unstemmed Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
title_sort Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study
dc.subject.spa.fl_str_mv coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
topic coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
dc.subject.keyword.eng.fl_str_mv Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
description The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:04Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:04Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 21555435
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5933
dc.identifier.doi.none.fl_str_mv 10.1021/acscatal.0c00144
identifier_str_mv 21555435
10.1021/acscatal.0c00144
url http://hdl.handle.net/11407/5933
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087976763&doi=10.1021%2facscatal.0c00144&partnerID=40&md5=7539fe98fdb978451bc04e9a8020bc1f
dc.relation.citationvolume.none.fl_str_mv 10
dc.relation.citationissue.none.fl_str_mv 11
dc.relation.citationstartpage.none.fl_str_mv 6213
dc.relation.citationendpage.none.fl_str_mv 6222
dc.relation.references.none.fl_str_mv Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487
Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228
Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.K
Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
Frauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70
Ardakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19
Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83
Rodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52
Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393
Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32
Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800
Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709
Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916
Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949
Rekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888
Cortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353
Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166
Mei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15
Molero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149
Stacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604
Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342
Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135
Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521
Jimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540
Zaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293
Jimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003
Zaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003
Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020
Reuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406
Reuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407
Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144
Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427
Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112
Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617
Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104
Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192
Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002
Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904
Chorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim
Nørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, Inc
Plata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311
Heard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003
Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286
Jørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549
Shi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49
Vasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379
Sabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422
Meemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv American Chemical Society
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv ACS Catalysis
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159178478911488
spelling 20202021-02-05T14:58:04Z2021-02-05T14:58:04Z21555435http://hdl.handle.net/11407/593310.1021/acscatal.0c00144The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087976763&doi=10.1021%2facscatal.0c00144&partnerID=40&md5=7539fe98fdb978451bc04e9a8020bc1f101162136222Wilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., Hydrogenation of Olefins over Metals (1953) Ind. Eng. Chem., 45, pp. 1480-1487Dhandapani, B., St. Clair, T., Oyama, S.T., Simultaneous Hydrodesulfurization, Hydrodeoxygenation, and Hydrogenation with Molybdenum Carbide (1998) Appl. Catal., A, 168, pp. 219-228Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212Levy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549Oyama, S.T., (1996) The Chemistry of Transition Metal Carbide and Nitrides, p. 1. , 1 st ed. Blackie academic & professional: Glasgow, U.KPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921Frauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene Hydrogenation at Low Temperature Using a Molybdenum Carbide Catalyst (2011) Appl. Catal., A, 394, pp. 62-70Ardakani, S.J., Liu, X., Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts (2007) Appl. Catal., A, 324, pp. 9-19Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Ma, D., Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts (2017) Nature, 544, pp. 80-83Rodriguez, J.A., Ramírez, P.J., Gutierrez, R.A., Highly Active Pt/MoC and Pt/TiC Catalysts for the Low-Temperature Water-Gas Shift Reaction: Effects of the Carbide Metal/Carbon Ratio on the Catalyst Performance (2017) Catal. Today, 289, pp. 47-52Posada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Ma, D., Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction (2017) Science, 357, pp. 389-393Posada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and Dissociation of Molecular Hydrogen on Orthorhombic β-Mo2C and Cubic δ-MoC (001) Surfaces (2017) Surf. Sci., 656, pp. 24-32Prats, H., Piñero, J.J., Viñes, F., Bromley, S.T., Sayós, R., Illas, F., Assessing the Usefulness of Transition Metal Carbides for Hydrogenation Reactions (2019) Chem. Commun., 55, pp. 12797-12800Viñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A Systematic Density Functional Theory Study of the Electronic Structure of Bulk and (001) Surface of Transition-Metals Carbides (2005) J. Chem. Phys., 122, p. 174709Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916Cremer, P.S., Su, X.C., Shen, Y.R., Somorjai, G.A., Ethylene Hydrogenation on Pt(111) Monitored in Situ at High Pressures Using Sum Frequency Generation (1996) J. Am. Chem. Soc., 118, pp. 2942-2949Rekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., Microkinetic Analysis of Diverse Experimental Data for Ethylene Hydrogenation on Platinum (1992) J. Phys. Chem., 96, pp. 1880-1888Cortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., Kinetic Study of Ethylene Hydrogenation (1991) J. Catal., 127, pp. 342-353Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A., Hydrogenation of Chemisorbed Ethylene on Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces (1986) Surf. Sci., 167, pp. 150-166Mei, D., Sheth, P.A., Neurock, M., Smith, C.M., First-Principles-Based Kinetic Monte Carlo Simulation of the Selective Hydrogenation of Acetylene over Pd(111) (2006) J. Catal., 242, pp. 1-15Molero, H., Stacchiola, D., Tysoe, W.T., The Kinetics of Ethylene Hydrogenation Catalyzed by Metallic Palladium (2005) Catal. Lett., 101, pp. 145-149Stacchiola, D., Tysoe, W.T., The Effect of Subsurface Hydrogen on the Adsorption of Ethylene on Pd(1 1 1) (2003) Surf. Sci., 540, pp. L600-L604Jimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and Activation of Ethylene on Tungsten Carbide and Platinum Surfaces (2019) Phys. Chem. Chem. Phys., 21, pp. 17332-17342Kojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalysis by Transition Metal Carbides: IV. Mechanism of Ethylene Hydrogenation and the Nature of Active Sites on Tantalum Monocarbide (1982) J. Catal., 73, pp. 128-135Cui, X., Zhou, X., Chen, H., Hua, Z., Wu, H., He, Q., Zhang, L., Shi, J., In-Situ Carbonization Synthesis and Ethylene Hydrogenation Activity of Ordered Mesoporous Tungsten Carbide (2011) Int. J. Hydrogen Energy, 36, pp. 10513-10521Jimenez-Orozco, C., Flórez, E., Moreno, A., Liu, P., Rodriguez, J.A., Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces (2016) J. Phys. Chem. C, 120, pp. 13531-13540Zaera, F., Somorjai, G.A., Hydrogenation of Ethylene over Platinum (111) Single-Crystal Surfaces (1984) J. Am. Chem. Soc., 106, pp. 2288-2293Jimenez-Orozco, C., Flórez, E., Moreno, A., Rodriguez, J.A., Platinum vs Transition Metal Carbide Surfaces as Catalysts for Olefin and Alkyne Conversion: Binding and Hydrogenation of Ethylidyne (2019) J. Phys.: Conf. Ser., 1247, p. 012003Zaera, F., Key Unanswered Questions about the Mechanism of Olefin Hydrogenation Catalysis by Transition-Metal Surfaces: A Surface-Science Perspective (2013) Phys. Chem. Chem. Phys., 15, pp. 11988-12003Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020Reuter, K., Scheffler, M., Composition, Structure, and Stability of RuO2(110) as a Function of Oxygen Pressure (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 65, p. 035406Reuter, K., Scheffler, M., Composition and Structure of the RuO2(110) Surface in an O2 and CO Environment: Implications for the Catalytic Formation of CO2 (2003) Phys. Rev. B: Condens. Matter Mater. Phys., 68, p. 045407Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144Rodriguez, J.A., Liu, P., Gomes, J., Nakamura, K., Viñes, F., Sousa, C., Illas, F., Interaction of Oxygen with ZrC(001) and VC(001): Photoemission and First-Principles Studies (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 075427Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst Size Matters: Tuning the Molecular Mechanism of the Water-Gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112Kresse, G., Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Politi, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, p. 12617Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu (2010) J. Chem. Phys., 132, p. 154104Blöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775Monkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13 (12), pp. 5188-5192Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Hargus, C., The Atomic Simulation Environment - a Python Library for Working with Atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002Henkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904Chorkendorff, I., Niemantsverdriet, J., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH Verlag GmbH & Co. KGaA: WeinheimNørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley & Sons, IncPlata, J.J., Collico, V., Márquez, A.M., Sanz, J.F., Analysis of the Origin of Lateral Interactions in the Adsorption of Small Organic Molecules on Oxide Surfaces (2013) Theor. Chem. Acc., 132, p. 1311Heard, C.J., Siahrostami, S., Grönbeck, H., Structural and Energetic Trends of Ethylene Hydrogenation over Transition Metal Surfaces (2016) J. Phys. Chem. C, 120, pp. 995-1003Heard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catal., 6, pp. 3277-3286Jørgensen, M., Grönbeck, H., Selective Acetylene Hydrogenation over Single-Atom Alloy Nanoparticles by Kinetic Monte Carlo (2019) J. Am. Chem. Soc., 141, pp. 8541-8549Shi, Q., Sun, R., Adsorption Manners of Hydrogen on Pt(100), (110) and (111) Surfaces at High Coverage (2017) Comput. Theor. Chem., 1106, pp. 43-49Vasić, D., Ristanović, Z., Pašti, I., Mentus, S., Systematic DFT-GGA Study of Hydrogen Adsorption on Transition Metals (2011) Russ. J. Phys. Chem. A, 85, pp. 2373-2379Sabbe, M.K., Canduela-Rodriguez, G., Reyniers, M.-F., Marin, G.B., DFT-Based Modeling of Benzene Hydrogenation on Pt at Industrially Relevant Coverage (2015) J. Catal., 330, pp. 406-422Meemken, F., Baiker, A., Dupré, J., Hungerbühler, K., Asymmetric Catalysis on Cinchonidine-Modified Pt/Al2O3: Kinetics and Isotope Effect in the Hydrogenation of Trifluoroacetophenone (2014) ACS Catal., 4, pp. 344-354ACS Catalysiscoveragedensity functional calculationsethylenehydrogenationδ-MoCAliphatic compoundsCarbidesCatalystsDensity functional theoryDesorptionEnergy barriersEthyleneHydrogenationMonolayersReaction intermediatesReaction ratesSurface reactionsThermodynamicsAb initio thermodynamicsAdsorption energiesElementary reactionHydrogenation reactionsMolecular mechanismPeriodic density functional theoryRate-limiting stepsSurface intermediatesActivation energyCritical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic StudyArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Orozco, C., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, ColombiaFlórez, E., Grupo de Materiales con Impacto (Matandmpac), Facultad de Ciencias Básicas, Universidad de Medellĺn, Matandmpac, Carrera 87 No 30-65, Medellín, ColombiaViñes, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, SpainRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United StatesIllas, F., Departament de Ciència de Materials i Quĺmica Fĺsica, Institut de Quĺmica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona, 08028, Spainhttp://purl.org/coar/access_right/c_16ecJimenez-Orozco C.Flórez E.Viñes F.Rodriguez J.A.Illas F.11407/5933oai:repository.udem.edu.co:11407/59332021-02-05 09:58:04.352Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co