Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study

The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5933
Acceso en línea:
http://hdl.handle.net/11407/5933
Palabra clave:
coverage
density functional calculations
ethylene
hydrogenation
δ-MoC
Aliphatic compounds
Carbides
Catalysts
Density functional theory
Desorption
Energy barriers
Ethylene
Hydrogenation
Monolayers
Reaction intermediates
Reaction rates
Surface reactions
Thermodynamics
Ab initio thermodynamics
Adsorption energies
Elementary reaction
Hydrogenation reactions
Molecular mechanism
Periodic density functional theory
Rate-limiting steps
Surface intermediates
Activation energy
Rights
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:The molecular mechanism of ethylene (C2H4) hydrogenation on a δ-MoC(001) surface has been studied by periodic density functional theory methods. Activation energy barriers and elementary reaction rates have been calculated as a function of the hydrogen surface coverage, θH, with relevant properties derived from ab initio thermodynamics and kinetic rate estimates. The hydrogen coverage has a very strong effect on the adsorption energy and the second hydrogenation step of ethylene. A relatively low energy barrier favors the dissociation of H2 on δ-MoC(001) leading to medium H coverages (>0.4 of a monolayer) where the energy barrier for the full hydrogenation of ethylene is already below the corresponding barriers seen on Pt(111) and Pd(111). At a high H coverage of ∼0.85 of a monolayer, the C2H4 adsorbs at 1 atm and 300 K over a system having as-formed CH3 moiety species, which critically favors the C2H4 second hydrogenation, typically a rate limiting step, by reducing its activation energy to a negligible value of 0.08 eV, significantly lower than the equivalent values of ∼0.5 eV reported for Pt(111) and Pd(111) catalyst surfaces. The ethane desorption rate is larger than the surface intermediate elementary reaction rates, pointing to its desorption upon formation, closing the catalytic cycle. The present results put δ-MoC under the spotlight as an economic and improved replacement catalyst for Pt and Pd, with significant improvements in enthalpy and activation energy barriers. Here, we provide a detailed study for the C2H4 hydrogenation reaction mechanism over a carbide showing characteristics or features not seen on metal catalysts. These can be exploited when dealing with technical or industrial applications. © 2020 American Chemical Society.