Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia

Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco bio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5945
Acceso en línea:
http://hdl.handle.net/11407/5945
Palabra clave:
Biodiversity hotspot
Deforestation
Google earth engine
Landsat
Sentinel
Tropical humid forests
Biodiversity
Crops
Decision making
Decision trees
Deforestation
Satellite imagery
Broadleaf forest
Decision making process
Forest management policies
Land cover mapping
Optical satellite imagery
Random forest classifier
Restoration project
Tropical forest
Conservation
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_870a9e22dce20199b9c388116ea71da3
oai_identifier_str oai:repository.udem.edu.co:11407/5945
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
title Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
spellingShingle Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
Biodiversity hotspot
Deforestation
Google earth engine
Landsat
Sentinel
Tropical humid forests
Biodiversity
Crops
Decision making
Decision trees
Deforestation
Satellite imagery
Broadleaf forest
Decision making process
Forest management policies
Land cover mapping
Optical satellite imagery
Random forest classifier
Restoration project
Tropical forest
Conservation
title_short Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
title_full Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
title_fullStr Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
title_full_unstemmed Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
title_sort Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
dc.subject.spa.fl_str_mv Biodiversity hotspot
Deforestation
Google earth engine
Landsat
Sentinel
Tropical humid forests
topic Biodiversity hotspot
Deforestation
Google earth engine
Landsat
Sentinel
Tropical humid forests
Biodiversity
Crops
Decision making
Decision trees
Deforestation
Satellite imagery
Broadleaf forest
Decision making process
Forest management policies
Land cover mapping
Optical satellite imagery
Random forest classifier
Restoration project
Tropical forest
Conservation
dc.subject.keyword.eng.fl_str_mv Biodiversity
Crops
Decision making
Decision trees
Deforestation
Satellite imagery
Broadleaf forest
Decision making process
Forest management policies
Land cover mapping
Optical satellite imagery
Random forest classifier
Restoration project
Tropical forest
Conservation
description Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco biodiversity hotspot, which has not received much scientific attention despite its high levels of plant diversity and endemism. The climate is characterized by persistent cloud cover which is a challenge for land cover mapping from optical satellite imagery. By using Google Earth Engine to select pixels with minimal cloud content and applying a random forest classifier to Landsat and Sentinel data, we produced a wall-to-wall land cover map, enabling a diagnosis of the status and drivers of forest loss in the region. Analyses of these new maps together with information from illicit crops and alluvial mining uncovered the pressure over intact forests. According to Global Forest Change (GFC) data, 2324 km2 were deforested in this area from 2001 to 2018, reaching a maximum in 2016 and 2017. We found that 68% of the area is covered by broadleaf forests (67,473 km2) and 15% by shrublands (14,483 km2), the latter with enormous potential to promote restoration projects. This paper provides a new insight into the conservation of this exceptional forest with a discussion of the drivers of forest loss, where illicit crops and alluvial mining were found to be responsible for 60% of forest loss. © 2020 by the authors.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:12Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:12Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 20724292
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5945
dc.identifier.doi.none.fl_str_mv 10.3390/RS12081235
identifier_str_mv 20724292
10.3390/RS12081235
url http://hdl.handle.net/11407/5945
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084602080&doi=10.3390%2fRS12081235&partnerID=40&md5=0c57fde5a1d6920efa733b70df642985
dc.relation.citationvolume.none.fl_str_mv 12
dc.relation.citationissue.none.fl_str_mv 8
dc.relation.references.none.fl_str_mv Dinerstein, E., Olson, D.M., Graham, D.L., Webster, A.L., Primm, S.A., Bookbinder, M.P., Ledec, G., (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean, p. 135. , The World Bank: Washington, DC, USA
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, p. 853
Watson, R.T., Dixon, J.A., Hamburg, S.P., Janetos, A.C., Moss, R.H., Protecting our planet, securing our future (1998) Linkages Among Global Environmental Issues and Human Heeds, p. 95. , UNEP
NASA
The World Bank: Washington, DC, USA
Meyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colombia (2019) Carbon Balance Manag, 14, p. 2
Galeano, G., Suárez, S., Balslev, H., Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia (1998) Biodivers. Conserv, 7, pp. 1563-1575
Etter, A., McAlpine, C., Pullar, D., Possingham, H., Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates (2006) J. Environ. Manag, 79, pp. 74-87
Proença, V., Pereira, H.M., Ecosystem Changes, Biodiversity Loss and Human Well-Being (2015) Reference Module in Earth Systems and Environmental Sciences, , Elsevier: Amsterdam, The Netherlands
Sierra, C.A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V.H., Reu, B., Feilhauer, H., Benavides, A.M., Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era (2017) Environ. Sci. Policy, 76, pp. 40-49
Gill, M., Jongman, R.H.G., Luque, S., Mora, B., Paganini, M., Szantoi, Z., (2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing, , Land Cover Project Office: Edmonton, CA, USA
Álvarez, M.D., Environmental damage from illicit drug crops in Colombia (2007) Extreme Conflict and Tropical Forests, 5. , Jong, W.D., Donovan, D., Abe, K., Eds.
Springer: Dordrecht, The Netherlands
Landholm, D.M., Pradhan, P., Kropp, J.P., Diverging forest land use dynamics induced by armed conflict across the tropics (2019) Glob. Environ. Chang, 56, pp. 86-94
Santos, J.M., (2018) Letter to Next Colombian President, , Presidencia de la Republica: Bogota, Colombia
Armenteras, D., Schneider, L., Dávalos, L.M., Fires in protected areas reveal unforeseen costs of Colombian peace (2019) Nature Ecol. Evol, 3, pp. 20-23
Rincón-Ruiz, A., Correa, H.L., León, D.O., Williams, S., Coca cultivation and crop eradication in Colombia: The challenges of integrating rural reality into effective anti-drug policy (2016) Int. J. Drug Policy, 33, pp. 56-65
Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J.P., Forero-Medina, G., Ochoa, J., Lora, C., Deforestation in Colombian protected areas increased during post-conflict periods (2020) Sci. Rep, 10, p. 4971
Armenteras, D., Cabrera, E., Rodríguez, N., Retana, J., National and regional determinants of tropical deforestation in Colombia (2013) Reg. Environ. Change, 13, pp. 1181-1193
Furumo, P.R., Lambin, E.F., Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia (2020) Glob. Environ. Change, 62, p. 102055
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Loveland, T.R., High-Resolution Global Maps of 21st-Century Forest Cover Change (2013) Science, 342, pp. 850-853
Corlett, R., Primark, R., (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, , Blackwell Publishing: Hoboken, NJ, USA
Palomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmos. Res, 217, pp. 37-48
Alongi, D.M., Mukhopadhyay, S.K., Contribution of mangroves to coastal carbon cycling in low latitude seas (2015) Agric. For. Meteorol, 213, pp. 266-272
Lema, L.F., Hermelin, D., Fontecha, M.M., Urrego, D., Climate Change Communication in Colombia (2017) Oxf. Res. Encycl. Clim. Sci, pp. 1-41
Rangel, J.O., Lowy, C.P., Aguilar, P.M., Garzón, C.A., (1997) Tipos de Vegetación en Colombia, p. 389. , Instituto de Ciencias Naturales
Universidad Nacional de Colombia
IDEAM: Bogotá, Colombia
Bonilla-Mejía, L., Higuera-Mendieta, I., Protected Areas under Weak Institutions: Evidence from Colombia (2019) World Dev, 122, pp. 585-596
Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Sun, R., Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images (2016) Int. J. Appl. Earth Obs. Geoinf, 50, pp. 117-130
Oliver, C., Quegan, S., (2004) Understanding Synthetic Aperture Radar Images, , SciTech Publishing: Boston, MA, USA
Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery (2013) Remote Sens. Environ, 134, pp. 392-402
Breiman, L., Random Forests (2001) Mach. Learn, 45, pp. 5-32
Team, R.C., (2013) R: A Language and Environment for Statistical Computing, , Team RC: Vienna, Austria
Laurin, G.V., Liesenberg, V., Chen, Q., Guerriero, L., Del Frate, F., Bartolini, A., Coomes, D., Valentini, R., Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa (2012) Int. J. Appl. Earth Obs. Geoinf, 21, pp. 7-16
Anaya, J., Colditz, R., Valencia, G., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sens, 7, pp. 16274-16292
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sens. Environ, 202, pp. 18-27
Achard, F., Hansen, M.C., (2013) Global Forest Monitoring from Earth Observation, p. 316. , CRC Press
Taylor & Francis Group: Boca Raton, FL, USA
Flood, N., Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) (2013) Remote Sens, 5, pp. 6481-6500
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform (2018) Remote Sens, 11, p. 43
Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts (2018) Remote Sens, 10, p. 777
Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sens. Environ, 118, pp. 83-94
Chastain, R., Housman, I., Goldstein, J., Finco, M., Tenneson, K., Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States (2019) Remote Sens. Environ, 221, pp. 274-285
Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., The Harmonized Landsat and Sentinel-2 surface reflectance data set (2018) Remote Sens. Environ, 219, pp. 145-161
Zhang, H.K., Roy, D.P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J.-C., Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences (2018) Remote Sens. Environ, 215, pp. 482-494
Pahlevan, N., Balasubramanian, S.V., Sarkar, S., Franz, B.A., Toward Long-Term Aquatic Science Products from Heritage Landsat Missions (2018) Remote Sens, 10, p. 1337
Leyenda Nacional de Coberturas de la Tierra (2010) Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000, p. 72. , Martínez, N.J.A., Ed.
Instituto de Hidrología: Bogotá, Columbia
González-Martínez, M.D., Huguet, C., Pearse, J., McIntyre, N., Camacho, L.A., Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia (2019) Appl. Geochem, 108, p. 104382
Londoño, C., Cleef, A., Madriñán, S., Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes (2014) Flora Morphol. Distrib. Functi. Ecol. Plants, 209, pp. 81-87
Rivera, D., Rodríguez, C., (2011) Guía Divulgativa de Criterios para la Delimitación de Páramos de Colombia, , Alianza Ediprint Ltd.: Bogotá, Colombia
Gutiérrez-Vélez, V.H., DeFries, R., Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon (2013) Remote Sens. Environ, 129, pp. 154-167
Liaw, A., Wiener, M., Breiman and Cutler 's Random Forests for Classification and Regression (2018) R Package Vers 3.6.3, 4, pp. 6-14
Loveland, T.R., Belward, A.S., The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover) (1997) Acta Astronaut, 41, pp. 681-689
Rival, L., The meanings of forest governance in Esmeraldas, Ecuador (2003) Oxf. Dev. Stud, 31, pp. 479-501
Analysis of drug markets Opiates, cocaine, cannabis, synthetic drugs (2018) World Drug Report (WDR), p. 72. , Sales No. E.18. XI.9 UNODC Research: Vienna, Austria
Colombia Survey of territories affected by illicit crops-2016 (2017) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 216. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, Columbia
Cruz-Garcia, G.S., Vanegas Cubillos, M., Torres-Vitolas, C., Harvey, C.A., Shackleton, C.M., Schreckenberg, K., Willcock, S., Sachet, E., He says, she says: Ecosystem services and gender among indigenous communities in the Colombian Amazon (2019) Ecosyst. Serv, 37, p. 100921
Colombia Monitoreo de territorios afectados por cultivos ilícitos 2018 (2019) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 115. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia
Colombia Coca cultivation survey 2013 (2014) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 131. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, Columbia
Vallejo Toro, P.P., Vásquez Bedoya, L.F., Correa, I.D., Bernal Franco, G.R., Alcántara-Carrió, J., Palacio Baena, J.A., Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia (2016) Mar. Pollut. Bull, 111, pp. 311-320
Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Masson, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C., Montoya-Jaramillo, L.J., Palomino-Ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194
Müller-Hansen, F., Heitzig, J., Donges, J.F., Cardoso, M.F., Dalla-Nora, E.L., Andrade, P., Kurths, J., Thonicke, K., Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model (2019) Ecol. Econ, 159, pp. 198-211
Colombia Monitoreo de territorios afectados por cultivos ilícitos 2017 (2018) Sistema Integrado de Monitore de Cultivos Ilícitos, p. 168. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., Good practices for estimating area and assessing accuracy of land change (2014) Remote Sens. Environ, 148, pp. 42-57
Rodríguez-Piñeros, S., Martínez-Cortés, O., Villarraga-Flórez, L., Ruíz-Díaz, A., Timber market actors' values on forest legislation: A case study from Colombia (2018) Forest Policy Econ, 88, pp. 1-10
Colombia Monitoreo de territorios afectados por cultivos ilícitos 2015 (2016) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 143. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia
Colombia Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016 (2018) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 144. , Oficina de las Naciones Unidas contra la Droga y el Delito: Bogotá, Columbia
(2019) Luchan Contra la Minería Ilegal en Chocó, , https://sostenibilidad.semana.com/medio-ambiente/articulo/luchan-contra-la-mineria-ilegal-en-choco/43440, (accessed on 20 November)
Lara-Rodríguez, J.S., All that glitters is not gold or platinum: Institutions and the use of mercury in mining in Chocó, Colombia (2018) Extr. Ind. Soc, 5, pp. 308-318
Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430
Vélez, M.A., Robalino, J., Cárdenas, J.C., Paz, A., Pacay, E., Ojeda, A., Is collective titling enough to protect forest? Evidence from Afro-descendant communities in the Colombian Pacific Region (2019) Centro de Estudios sobre Desarrollo Económico CEDE, , Universidad de los Andes
SSRN: Bogota, Columbia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Remote Sensing
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159174905364480
spelling 20202021-02-05T14:58:12Z2021-02-05T14:58:12Z20724292http://hdl.handle.net/11407/594510.3390/RS12081235Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco biodiversity hotspot, which has not received much scientific attention despite its high levels of plant diversity and endemism. The climate is characterized by persistent cloud cover which is a challenge for land cover mapping from optical satellite imagery. By using Google Earth Engine to select pixels with minimal cloud content and applying a random forest classifier to Landsat and Sentinel data, we produced a wall-to-wall land cover map, enabling a diagnosis of the status and drivers of forest loss in the region. Analyses of these new maps together with information from illicit crops and alluvial mining uncovered the pressure over intact forests. According to Global Forest Change (GFC) data, 2324 km2 were deforested in this area from 2001 to 2018, reaching a maximum in 2016 and 2017. We found that 68% of the area is covered by broadleaf forests (67,473 km2) and 15% by shrublands (14,483 km2), the latter with enormous potential to promote restoration projects. This paper provides a new insight into the conservation of this exceptional forest with a discussion of the drivers of forest loss, where illicit crops and alluvial mining were found to be responsible for 60% of forest loss. © 2020 by the authors.engMDPI AGIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084602080&doi=10.3390%2fRS12081235&partnerID=40&md5=0c57fde5a1d6920efa733b70df642985128Dinerstein, E., Olson, D.M., Graham, D.L., Webster, A.L., Primm, S.A., Bookbinder, M.P., Ledec, G., (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean, p. 135. , The World Bank: Washington, DC, USAMyers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, p. 853Watson, R.T., Dixon, J.A., Hamburg, S.P., Janetos, A.C., Moss, R.H., Protecting our planet, securing our future (1998) Linkages Among Global Environmental Issues and Human Heeds, p. 95. , UNEPNASAThe World Bank: Washington, DC, USAMeyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colombia (2019) Carbon Balance Manag, 14, p. 2Galeano, G., Suárez, S., Balslev, H., Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia (1998) Biodivers. Conserv, 7, pp. 1563-1575Etter, A., McAlpine, C., Pullar, D., Possingham, H., Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates (2006) J. Environ. Manag, 79, pp. 74-87Proença, V., Pereira, H.M., Ecosystem Changes, Biodiversity Loss and Human Well-Being (2015) Reference Module in Earth Systems and Environmental Sciences, , Elsevier: Amsterdam, The NetherlandsSierra, C.A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V.H., Reu, B., Feilhauer, H., Benavides, A.M., Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era (2017) Environ. Sci. Policy, 76, pp. 40-49Gill, M., Jongman, R.H.G., Luque, S., Mora, B., Paganini, M., Szantoi, Z., (2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing, , Land Cover Project Office: Edmonton, CA, USAÁlvarez, M.D., Environmental damage from illicit drug crops in Colombia (2007) Extreme Conflict and Tropical Forests, 5. , Jong, W.D., Donovan, D., Abe, K., Eds.Springer: Dordrecht, The NetherlandsLandholm, D.M., Pradhan, P., Kropp, J.P., Diverging forest land use dynamics induced by armed conflict across the tropics (2019) Glob. Environ. Chang, 56, pp. 86-94Santos, J.M., (2018) Letter to Next Colombian President, , Presidencia de la Republica: Bogota, ColombiaArmenteras, D., Schneider, L., Dávalos, L.M., Fires in protected areas reveal unforeseen costs of Colombian peace (2019) Nature Ecol. Evol, 3, pp. 20-23Rincón-Ruiz, A., Correa, H.L., León, D.O., Williams, S., Coca cultivation and crop eradication in Colombia: The challenges of integrating rural reality into effective anti-drug policy (2016) Int. J. Drug Policy, 33, pp. 56-65Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J.P., Forero-Medina, G., Ochoa, J., Lora, C., Deforestation in Colombian protected areas increased during post-conflict periods (2020) Sci. Rep, 10, p. 4971Armenteras, D., Cabrera, E., Rodríguez, N., Retana, J., National and regional determinants of tropical deforestation in Colombia (2013) Reg. Environ. Change, 13, pp. 1181-1193Furumo, P.R., Lambin, E.F., Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia (2020) Glob. Environ. Change, 62, p. 102055Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Loveland, T.R., High-Resolution Global Maps of 21st-Century Forest Cover Change (2013) Science, 342, pp. 850-853Corlett, R., Primark, R., (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, , Blackwell Publishing: Hoboken, NJ, USAPalomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmos. Res, 217, pp. 37-48Alongi, D.M., Mukhopadhyay, S.K., Contribution of mangroves to coastal carbon cycling in low latitude seas (2015) Agric. For. Meteorol, 213, pp. 266-272Lema, L.F., Hermelin, D., Fontecha, M.M., Urrego, D., Climate Change Communication in Colombia (2017) Oxf. Res. Encycl. Clim. Sci, pp. 1-41Rangel, J.O., Lowy, C.P., Aguilar, P.M., Garzón, C.A., (1997) Tipos de Vegetación en Colombia, p. 389. , Instituto de Ciencias NaturalesUniversidad Nacional de ColombiaIDEAM: Bogotá, ColombiaBonilla-Mejía, L., Higuera-Mendieta, I., Protected Areas under Weak Institutions: Evidence from Colombia (2019) World Dev, 122, pp. 585-596Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Sun, R., Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images (2016) Int. J. Appl. Earth Obs. Geoinf, 50, pp. 117-130Oliver, C., Quegan, S., (2004) Understanding Synthetic Aperture Radar Images, , SciTech Publishing: Boston, MA, USADong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery (2013) Remote Sens. Environ, 134, pp. 392-402Breiman, L., Random Forests (2001) Mach. Learn, 45, pp. 5-32Team, R.C., (2013) R: A Language and Environment for Statistical Computing, , Team RC: Vienna, AustriaLaurin, G.V., Liesenberg, V., Chen, Q., Guerriero, L., Del Frate, F., Bartolini, A., Coomes, D., Valentini, R., Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa (2012) Int. J. Appl. Earth Obs. Geoinf, 21, pp. 7-16Anaya, J., Colditz, R., Valencia, G., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sens, 7, pp. 16274-16292Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sens. Environ, 202, pp. 18-27Achard, F., Hansen, M.C., (2013) Global Forest Monitoring from Earth Observation, p. 316. , CRC PressTaylor & Francis Group: Boca Raton, FL, USAFlood, N., Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) (2013) Remote Sens, 5, pp. 6481-6500Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform (2018) Remote Sens, 11, p. 43Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts (2018) Remote Sens, 10, p. 777Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sens. Environ, 118, pp. 83-94Chastain, R., Housman, I., Goldstein, J., Finco, M., Tenneson, K., Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States (2019) Remote Sens. Environ, 221, pp. 274-285Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., The Harmonized Landsat and Sentinel-2 surface reflectance data set (2018) Remote Sens. Environ, 219, pp. 145-161Zhang, H.K., Roy, D.P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J.-C., Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences (2018) Remote Sens. Environ, 215, pp. 482-494Pahlevan, N., Balasubramanian, S.V., Sarkar, S., Franz, B.A., Toward Long-Term Aquatic Science Products from Heritage Landsat Missions (2018) Remote Sens, 10, p. 1337Leyenda Nacional de Coberturas de la Tierra (2010) Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000, p. 72. , Martínez, N.J.A., Ed.Instituto de Hidrología: Bogotá, ColumbiaGonzález-Martínez, M.D., Huguet, C., Pearse, J., McIntyre, N., Camacho, L.A., Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia (2019) Appl. Geochem, 108, p. 104382Londoño, C., Cleef, A., Madriñán, S., Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes (2014) Flora Morphol. Distrib. Functi. Ecol. Plants, 209, pp. 81-87Rivera, D., Rodríguez, C., (2011) Guía Divulgativa de Criterios para la Delimitación de Páramos de Colombia, , Alianza Ediprint Ltd.: Bogotá, ColombiaGutiérrez-Vélez, V.H., DeFries, R., Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon (2013) Remote Sens. Environ, 129, pp. 154-167Liaw, A., Wiener, M., Breiman and Cutler 's Random Forests for Classification and Regression (2018) R Package Vers 3.6.3, 4, pp. 6-14Loveland, T.R., Belward, A.S., The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover) (1997) Acta Astronaut, 41, pp. 681-689Rival, L., The meanings of forest governance in Esmeraldas, Ecuador (2003) Oxf. Dev. Stud, 31, pp. 479-501Analysis of drug markets Opiates, cocaine, cannabis, synthetic drugs (2018) World Drug Report (WDR), p. 72. , Sales No. E.18. XI.9 UNODC Research: Vienna, AustriaColombia Survey of territories affected by illicit crops-2016 (2017) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 216. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, ColumbiaCruz-Garcia, G.S., Vanegas Cubillos, M., Torres-Vitolas, C., Harvey, C.A., Shackleton, C.M., Schreckenberg, K., Willcock, S., Sachet, E., He says, she says: Ecosystem services and gender among indigenous communities in the Colombian Amazon (2019) Ecosyst. Serv, 37, p. 100921Colombia Monitoreo de territorios afectados por cultivos ilícitos 2018 (2019) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 115. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaColombia Coca cultivation survey 2013 (2014) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 131. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, ColumbiaVallejo Toro, P.P., Vásquez Bedoya, L.F., Correa, I.D., Bernal Franco, G.R., Alcántara-Carrió, J., Palacio Baena, J.A., Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia (2016) Mar. Pollut. Bull, 111, pp. 311-320Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Masson, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C., Montoya-Jaramillo, L.J., Palomino-Ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194Müller-Hansen, F., Heitzig, J., Donges, J.F., Cardoso, M.F., Dalla-Nora, E.L., Andrade, P., Kurths, J., Thonicke, K., Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model (2019) Ecol. Econ, 159, pp. 198-211Colombia Monitoreo de territorios afectados por cultivos ilícitos 2017 (2018) Sistema Integrado de Monitore de Cultivos Ilícitos, p. 168. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaOlofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., Good practices for estimating area and assessing accuracy of land change (2014) Remote Sens. Environ, 148, pp. 42-57Rodríguez-Piñeros, S., Martínez-Cortés, O., Villarraga-Flórez, L., Ruíz-Díaz, A., Timber market actors' values on forest legislation: A case study from Colombia (2018) Forest Policy Econ, 88, pp. 1-10Colombia Monitoreo de territorios afectados por cultivos ilícitos 2015 (2016) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 143. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaColombia Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016 (2018) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 144. , Oficina de las Naciones Unidas contra la Droga y el Delito: Bogotá, Columbia(2019) Luchan Contra la Minería Ilegal en Chocó, , https://sostenibilidad.semana.com/medio-ambiente/articulo/luchan-contra-la-mineria-ilegal-en-choco/43440, (accessed on 20 November)Lara-Rodríguez, J.S., All that glitters is not gold or platinum: Institutions and the use of mercury in mining in Chocó, Colombia (2018) Extr. Ind. Soc, 5, pp. 308-318Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430Vélez, M.A., Robalino, J., Cárdenas, J.C., Paz, A., Pacay, E., Ojeda, A., Is collective titling enough to protect forest? Evidence from Afro-descendant communities in the Colombian Pacific Region (2019) Centro de Estudios sobre Desarrollo Económico CEDE, , Universidad de los AndesSSRN: Bogota, ColumbiaRemote SensingBiodiversity hotspotDeforestationGoogle earth engineLandsatSentinelTropical humid forestsBiodiversityCropsDecision makingDecision treesDeforestationSatellite imageryBroadleaf forestDecision making processForest management policiesLand cover mappingOptical satellite imageryRandom forest classifierRestoration projectTropical forestConservationDrivers of forest loss in a megadiverse hotspot on the pacific Coast of ColombiaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Anaya, J.A., Facultad de Ingeniería, Universidad de Medellín, Medellín, 050026, ColombiaGutiérrez-Vélez, V.H., Department of Geography and Urban Studies, Temple University, Philadelphia, PA 19122, United StatesPacheco-Pascagaza, A.M., Centre for Landscape and Climate Research (CLCR), School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United KingdomPalomino-Ángel, S., Facultad de Ingeniería, Universidad de Medellín, Medellín, 050026, ColombiaHan, N., Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, CanadaBalzter, H., Centre for Landscape and Climate Research (CLCR), School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom, National Centre for Earth Observation (NCEO), National Centre for Earth Observation (NCEO), University of Leicester, Leicester, LE1 7RH, United Kingdomhttp://purl.org/coar/access_right/c_16ecAnaya J.A.Gutiérrez-Vélez V.H.Pacheco-Pascagaza A.M.Palomino-Ángel S.Han N.Balzter H.11407/5945oai:repository.udem.edu.co:11407/59452021-02-05 09:58:12.372Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co