Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia
Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco bio...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5945
- Acceso en línea:
- http://hdl.handle.net/11407/5945
- Palabra clave:
- Biodiversity hotspot
Deforestation
Google earth engine
Landsat
Sentinel
Tropical humid forests
Biodiversity
Crops
Decision making
Decision trees
Deforestation
Satellite imagery
Broadleaf forest
Decision making process
Forest management policies
Land cover mapping
Optical satellite imagery
Random forest classifier
Restoration project
Tropical forest
Conservation
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_870a9e22dce20199b9c388116ea71da3 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5945 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
title |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
spellingShingle |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia Biodiversity hotspot Deforestation Google earth engine Landsat Sentinel Tropical humid forests Biodiversity Crops Decision making Decision trees Deforestation Satellite imagery Broadleaf forest Decision making process Forest management policies Land cover mapping Optical satellite imagery Random forest classifier Restoration project Tropical forest Conservation |
title_short |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
title_full |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
title_fullStr |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
title_full_unstemmed |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
title_sort |
Drivers of forest loss in a megadiverse hotspot on the pacific Coast of Colombia |
dc.subject.spa.fl_str_mv |
Biodiversity hotspot Deforestation Google earth engine Landsat Sentinel Tropical humid forests |
topic |
Biodiversity hotspot Deforestation Google earth engine Landsat Sentinel Tropical humid forests Biodiversity Crops Decision making Decision trees Deforestation Satellite imagery Broadleaf forest Decision making process Forest management policies Land cover mapping Optical satellite imagery Random forest classifier Restoration project Tropical forest Conservation |
dc.subject.keyword.eng.fl_str_mv |
Biodiversity Crops Decision making Decision trees Deforestation Satellite imagery Broadleaf forest Decision making process Forest management policies Land cover mapping Optical satellite imagery Random forest classifier Restoration project Tropical forest Conservation |
description |
Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco biodiversity hotspot, which has not received much scientific attention despite its high levels of plant diversity and endemism. The climate is characterized by persistent cloud cover which is a challenge for land cover mapping from optical satellite imagery. By using Google Earth Engine to select pixels with minimal cloud content and applying a random forest classifier to Landsat and Sentinel data, we produced a wall-to-wall land cover map, enabling a diagnosis of the status and drivers of forest loss in the region. Analyses of these new maps together with information from illicit crops and alluvial mining uncovered the pressure over intact forests. According to Global Forest Change (GFC) data, 2324 km2 were deforested in this area from 2001 to 2018, reaching a maximum in 2016 and 2017. We found that 68% of the area is covered by broadleaf forests (67,473 km2) and 15% by shrublands (14,483 km2), the latter with enormous potential to promote restoration projects. This paper provides a new insight into the conservation of this exceptional forest with a discussion of the drivers of forest loss, where illicit crops and alluvial mining were found to be responsible for 60% of forest loss. © 2020 by the authors. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:12Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:12Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
20724292 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5945 |
dc.identifier.doi.none.fl_str_mv |
10.3390/RS12081235 |
identifier_str_mv |
20724292 10.3390/RS12081235 |
url |
http://hdl.handle.net/11407/5945 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084602080&doi=10.3390%2fRS12081235&partnerID=40&md5=0c57fde5a1d6920efa733b70df642985 |
dc.relation.citationvolume.none.fl_str_mv |
12 |
dc.relation.citationissue.none.fl_str_mv |
8 |
dc.relation.references.none.fl_str_mv |
Dinerstein, E., Olson, D.M., Graham, D.L., Webster, A.L., Primm, S.A., Bookbinder, M.P., Ledec, G., (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean, p. 135. , The World Bank: Washington, DC, USA Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, p. 853 Watson, R.T., Dixon, J.A., Hamburg, S.P., Janetos, A.C., Moss, R.H., Protecting our planet, securing our future (1998) Linkages Among Global Environmental Issues and Human Heeds, p. 95. , UNEP NASA The World Bank: Washington, DC, USA Meyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colombia (2019) Carbon Balance Manag, 14, p. 2 Galeano, G., Suárez, S., Balslev, H., Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia (1998) Biodivers. Conserv, 7, pp. 1563-1575 Etter, A., McAlpine, C., Pullar, D., Possingham, H., Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates (2006) J. Environ. Manag, 79, pp. 74-87 Proença, V., Pereira, H.M., Ecosystem Changes, Biodiversity Loss and Human Well-Being (2015) Reference Module in Earth Systems and Environmental Sciences, , Elsevier: Amsterdam, The Netherlands Sierra, C.A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V.H., Reu, B., Feilhauer, H., Benavides, A.M., Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era (2017) Environ. Sci. Policy, 76, pp. 40-49 Gill, M., Jongman, R.H.G., Luque, S., Mora, B., Paganini, M., Szantoi, Z., (2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing, , Land Cover Project Office: Edmonton, CA, USA Álvarez, M.D., Environmental damage from illicit drug crops in Colombia (2007) Extreme Conflict and Tropical Forests, 5. , Jong, W.D., Donovan, D., Abe, K., Eds. Springer: Dordrecht, The Netherlands Landholm, D.M., Pradhan, P., Kropp, J.P., Diverging forest land use dynamics induced by armed conflict across the tropics (2019) Glob. Environ. Chang, 56, pp. 86-94 Santos, J.M., (2018) Letter to Next Colombian President, , Presidencia de la Republica: Bogota, Colombia Armenteras, D., Schneider, L., Dávalos, L.M., Fires in protected areas reveal unforeseen costs of Colombian peace (2019) Nature Ecol. Evol, 3, pp. 20-23 Rincón-Ruiz, A., Correa, H.L., León, D.O., Williams, S., Coca cultivation and crop eradication in Colombia: The challenges of integrating rural reality into effective anti-drug policy (2016) Int. J. Drug Policy, 33, pp. 56-65 Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J.P., Forero-Medina, G., Ochoa, J., Lora, C., Deforestation in Colombian protected areas increased during post-conflict periods (2020) Sci. Rep, 10, p. 4971 Armenteras, D., Cabrera, E., Rodríguez, N., Retana, J., National and regional determinants of tropical deforestation in Colombia (2013) Reg. Environ. Change, 13, pp. 1181-1193 Furumo, P.R., Lambin, E.F., Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia (2020) Glob. Environ. Change, 62, p. 102055 Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Loveland, T.R., High-Resolution Global Maps of 21st-Century Forest Cover Change (2013) Science, 342, pp. 850-853 Corlett, R., Primark, R., (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, , Blackwell Publishing: Hoboken, NJ, USA Palomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmos. Res, 217, pp. 37-48 Alongi, D.M., Mukhopadhyay, S.K., Contribution of mangroves to coastal carbon cycling in low latitude seas (2015) Agric. For. Meteorol, 213, pp. 266-272 Lema, L.F., Hermelin, D., Fontecha, M.M., Urrego, D., Climate Change Communication in Colombia (2017) Oxf. Res. Encycl. Clim. Sci, pp. 1-41 Rangel, J.O., Lowy, C.P., Aguilar, P.M., Garzón, C.A., (1997) Tipos de Vegetación en Colombia, p. 389. , Instituto de Ciencias Naturales Universidad Nacional de Colombia IDEAM: Bogotá, Colombia Bonilla-Mejía, L., Higuera-Mendieta, I., Protected Areas under Weak Institutions: Evidence from Colombia (2019) World Dev, 122, pp. 585-596 Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Sun, R., Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images (2016) Int. J. Appl. Earth Obs. Geoinf, 50, pp. 117-130 Oliver, C., Quegan, S., (2004) Understanding Synthetic Aperture Radar Images, , SciTech Publishing: Boston, MA, USA Dong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery (2013) Remote Sens. Environ, 134, pp. 392-402 Breiman, L., Random Forests (2001) Mach. Learn, 45, pp. 5-32 Team, R.C., (2013) R: A Language and Environment for Statistical Computing, , Team RC: Vienna, Austria Laurin, G.V., Liesenberg, V., Chen, Q., Guerriero, L., Del Frate, F., Bartolini, A., Coomes, D., Valentini, R., Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa (2012) Int. J. Appl. Earth Obs. Geoinf, 21, pp. 7-16 Anaya, J., Colditz, R., Valencia, G., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sens, 7, pp. 16274-16292 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sens. Environ, 202, pp. 18-27 Achard, F., Hansen, M.C., (2013) Global Forest Monitoring from Earth Observation, p. 316. , CRC Press Taylor & Francis Group: Boca Raton, FL, USA Flood, N., Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) (2013) Remote Sens, 5, pp. 6481-6500 Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform (2018) Remote Sens, 11, p. 43 Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts (2018) Remote Sens, 10, p. 777 Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sens. Environ, 118, pp. 83-94 Chastain, R., Housman, I., Goldstein, J., Finco, M., Tenneson, K., Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States (2019) Remote Sens. Environ, 221, pp. 274-285 Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., The Harmonized Landsat and Sentinel-2 surface reflectance data set (2018) Remote Sens. Environ, 219, pp. 145-161 Zhang, H.K., Roy, D.P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J.-C., Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences (2018) Remote Sens. Environ, 215, pp. 482-494 Pahlevan, N., Balasubramanian, S.V., Sarkar, S., Franz, B.A., Toward Long-Term Aquatic Science Products from Heritage Landsat Missions (2018) Remote Sens, 10, p. 1337 Leyenda Nacional de Coberturas de la Tierra (2010) Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000, p. 72. , Martínez, N.J.A., Ed. Instituto de Hidrología: Bogotá, Columbia González-Martínez, M.D., Huguet, C., Pearse, J., McIntyre, N., Camacho, L.A., Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia (2019) Appl. Geochem, 108, p. 104382 Londoño, C., Cleef, A., Madriñán, S., Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes (2014) Flora Morphol. Distrib. Functi. Ecol. Plants, 209, pp. 81-87 Rivera, D., Rodríguez, C., (2011) Guía Divulgativa de Criterios para la Delimitación de Páramos de Colombia, , Alianza Ediprint Ltd.: Bogotá, Colombia Gutiérrez-Vélez, V.H., DeFries, R., Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon (2013) Remote Sens. Environ, 129, pp. 154-167 Liaw, A., Wiener, M., Breiman and Cutler 's Random Forests for Classification and Regression (2018) R Package Vers 3.6.3, 4, pp. 6-14 Loveland, T.R., Belward, A.S., The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover) (1997) Acta Astronaut, 41, pp. 681-689 Rival, L., The meanings of forest governance in Esmeraldas, Ecuador (2003) Oxf. Dev. Stud, 31, pp. 479-501 Analysis of drug markets Opiates, cocaine, cannabis, synthetic drugs (2018) World Drug Report (WDR), p. 72. , Sales No. E.18. XI.9 UNODC Research: Vienna, Austria Colombia Survey of territories affected by illicit crops-2016 (2017) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 216. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, Columbia Cruz-Garcia, G.S., Vanegas Cubillos, M., Torres-Vitolas, C., Harvey, C.A., Shackleton, C.M., Schreckenberg, K., Willcock, S., Sachet, E., He says, she says: Ecosystem services and gender among indigenous communities in the Colombian Amazon (2019) Ecosyst. Serv, 37, p. 100921 Colombia Monitoreo de territorios afectados por cultivos ilícitos 2018 (2019) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 115. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia Colombia Coca cultivation survey 2013 (2014) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 131. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, Columbia Vallejo Toro, P.P., Vásquez Bedoya, L.F., Correa, I.D., Bernal Franco, G.R., Alcántara-Carrió, J., Palacio Baena, J.A., Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia (2016) Mar. Pollut. Bull, 111, pp. 311-320 Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Masson, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C., Montoya-Jaramillo, L.J., Palomino-Ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194 Müller-Hansen, F., Heitzig, J., Donges, J.F., Cardoso, M.F., Dalla-Nora, E.L., Andrade, P., Kurths, J., Thonicke, K., Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model (2019) Ecol. Econ, 159, pp. 198-211 Colombia Monitoreo de territorios afectados por cultivos ilícitos 2017 (2018) Sistema Integrado de Monitore de Cultivos Ilícitos, p. 168. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., Good practices for estimating area and assessing accuracy of land change (2014) Remote Sens. Environ, 148, pp. 42-57 Rodríguez-Piñeros, S., Martínez-Cortés, O., Villarraga-Flórez, L., Ruíz-Díaz, A., Timber market actors' values on forest legislation: A case study from Colombia (2018) Forest Policy Econ, 88, pp. 1-10 Colombia Monitoreo de territorios afectados por cultivos ilícitos 2015 (2016) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 143. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, Columbia Colombia Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016 (2018) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 144. , Oficina de las Naciones Unidas contra la Droga y el Delito: Bogotá, Columbia (2019) Luchan Contra la Minería Ilegal en Chocó, , https://sostenibilidad.semana.com/medio-ambiente/articulo/luchan-contra-la-mineria-ilegal-en-choco/43440, (accessed on 20 November) Lara-Rodríguez, J.S., All that glitters is not gold or platinum: Institutions and the use of mercury in mining in Chocó, Colombia (2018) Extr. Ind. Soc, 5, pp. 308-318 Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430 Vélez, M.A., Robalino, J., Cárdenas, J.C., Paz, A., Pacay, E., Ojeda, A., Is collective titling enough to protect forest? Evidence from Afro-descendant communities in the Colombian Pacific Region (2019) Centro de Estudios sobre Desarrollo Económico CEDE, , Universidad de los Andes SSRN: Bogota, Columbia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
MDPI AG |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
Remote Sensing |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159174905364480 |
spelling |
20202021-02-05T14:58:12Z2021-02-05T14:58:12Z20724292http://hdl.handle.net/11407/594510.3390/RS12081235Tropical forests are disappearing at unprecedented rates, but the drivers behind this transformation are not always clear. This limits the decision-making processes and the effectiveness of forest management policies. In this paper, we address the extent and drivers of deforestation of the Choco biodiversity hotspot, which has not received much scientific attention despite its high levels of plant diversity and endemism. The climate is characterized by persistent cloud cover which is a challenge for land cover mapping from optical satellite imagery. By using Google Earth Engine to select pixels with minimal cloud content and applying a random forest classifier to Landsat and Sentinel data, we produced a wall-to-wall land cover map, enabling a diagnosis of the status and drivers of forest loss in the region. Analyses of these new maps together with information from illicit crops and alluvial mining uncovered the pressure over intact forests. According to Global Forest Change (GFC) data, 2324 km2 were deforested in this area from 2001 to 2018, reaching a maximum in 2016 and 2017. We found that 68% of the area is covered by broadleaf forests (67,473 km2) and 15% by shrublands (14,483 km2), the latter with enormous potential to promote restoration projects. This paper provides a new insight into the conservation of this exceptional forest with a discussion of the drivers of forest loss, where illicit crops and alluvial mining were found to be responsible for 60% of forest loss. © 2020 by the authors.engMDPI AGIngeniería AmbientalFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084602080&doi=10.3390%2fRS12081235&partnerID=40&md5=0c57fde5a1d6920efa733b70df642985128Dinerstein, E., Olson, D.M., Graham, D.L., Webster, A.L., Primm, S.A., Bookbinder, M.P., Ledec, G., (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean, p. 135. , The World Bank: Washington, DC, USAMyers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, p. 853Watson, R.T., Dixon, J.A., Hamburg, S.P., Janetos, A.C., Moss, R.H., Protecting our planet, securing our future (1998) Linkages Among Global Environmental Issues and Human Heeds, p. 95. , UNEPNASAThe World Bank: Washington, DC, USAMeyer, V., Saatchi, S., Ferraz, A., Xu, L., Duque, A., García, M., Chave, J., Forest degradation and biomass loss along the Chocó region of Colombia (2019) Carbon Balance Manag, 14, p. 2Galeano, G., Suárez, S., Balslev, H., Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia (1998) Biodivers. Conserv, 7, pp. 1563-1575Etter, A., McAlpine, C., Pullar, D., Possingham, H., Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates (2006) J. Environ. Manag, 79, pp. 74-87Proença, V., Pereira, H.M., Ecosystem Changes, Biodiversity Loss and Human Well-Being (2015) Reference Module in Earth Systems and Environmental Sciences, , Elsevier: Amsterdam, The NetherlandsSierra, C.A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V.H., Reu, B., Feilhauer, H., Benavides, A.M., Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era (2017) Environ. Sci. Policy, 76, pp. 40-49Gill, M., Jongman, R.H.G., Luque, S., Mora, B., Paganini, M., Szantoi, Z., (2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing, , Land Cover Project Office: Edmonton, CA, USAÁlvarez, M.D., Environmental damage from illicit drug crops in Colombia (2007) Extreme Conflict and Tropical Forests, 5. , Jong, W.D., Donovan, D., Abe, K., Eds.Springer: Dordrecht, The NetherlandsLandholm, D.M., Pradhan, P., Kropp, J.P., Diverging forest land use dynamics induced by armed conflict across the tropics (2019) Glob. Environ. Chang, 56, pp. 86-94Santos, J.M., (2018) Letter to Next Colombian President, , Presidencia de la Republica: Bogota, ColombiaArmenteras, D., Schneider, L., Dávalos, L.M., Fires in protected areas reveal unforeseen costs of Colombian peace (2019) Nature Ecol. Evol, 3, pp. 20-23Rincón-Ruiz, A., Correa, H.L., León, D.O., Williams, S., Coca cultivation and crop eradication in Colombia: The challenges of integrating rural reality into effective anti-drug policy (2016) Int. J. Drug Policy, 33, pp. 56-65Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J.P., Forero-Medina, G., Ochoa, J., Lora, C., Deforestation in Colombian protected areas increased during post-conflict periods (2020) Sci. Rep, 10, p. 4971Armenteras, D., Cabrera, E., Rodríguez, N., Retana, J., National and regional determinants of tropical deforestation in Colombia (2013) Reg. Environ. Change, 13, pp. 1181-1193Furumo, P.R., Lambin, E.F., Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia (2020) Glob. Environ. Change, 62, p. 102055Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Loveland, T.R., High-Resolution Global Maps of 21st-Century Forest Cover Change (2013) Science, 342, pp. 850-853Corlett, R., Primark, R., (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, , Blackwell Publishing: Hoboken, NJ, USAPalomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmos. Res, 217, pp. 37-48Alongi, D.M., Mukhopadhyay, S.K., Contribution of mangroves to coastal carbon cycling in low latitude seas (2015) Agric. For. Meteorol, 213, pp. 266-272Lema, L.F., Hermelin, D., Fontecha, M.M., Urrego, D., Climate Change Communication in Colombia (2017) Oxf. Res. Encycl. Clim. Sci, pp. 1-41Rangel, J.O., Lowy, C.P., Aguilar, P.M., Garzón, C.A., (1997) Tipos de Vegetación en Colombia, p. 389. , Instituto de Ciencias NaturalesUniversidad Nacional de ColombiaIDEAM: Bogotá, ColombiaBonilla-Mejía, L., Higuera-Mendieta, I., Protected Areas under Weak Institutions: Evidence from Colombia (2019) World Dev, 122, pp. 585-596Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Sun, R., Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images (2016) Int. J. Appl. Earth Obs. Geoinf, 50, pp. 117-130Oliver, C., Quegan, S., (2004) Understanding Synthetic Aperture Radar Images, , SciTech Publishing: Boston, MA, USADong, J., Xiao, X., Chen, B., Torbick, N., Jin, C., Zhang, G., Biradar, C., Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery (2013) Remote Sens. Environ, 134, pp. 392-402Breiman, L., Random Forests (2001) Mach. Learn, 45, pp. 5-32Team, R.C., (2013) R: A Language and Environment for Statistical Computing, , Team RC: Vienna, AustriaLaurin, G.V., Liesenberg, V., Chen, Q., Guerriero, L., Del Frate, F., Bartolini, A., Coomes, D., Valentini, R., Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa (2012) Int. J. Appl. Earth Obs. Geoinf, 21, pp. 7-16Anaya, J., Colditz, R., Valencia, G., Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series (2015) Remote Sens, 7, pp. 16274-16292Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth Engine: Planetary-scale geospatial analysis for everyone (2017) Remote Sens. Environ, 202, pp. 18-27Achard, F., Hansen, M.C., (2013) Global Forest Monitoring from Earth Observation, p. 316. , CRC PressTaylor & Francis Group: Boca Raton, FL, USAFlood, N., Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) (2013) Remote Sens, 5, pp. 6481-6500Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform (2018) Remote Sens, 11, p. 43Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts (2018) Remote Sens, 10, p. 777Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery (2012) Remote Sens. Environ, 118, pp. 83-94Chastain, R., Housman, I., Goldstein, J., Finco, M., Tenneson, K., Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States (2019) Remote Sens. Environ, 221, pp. 274-285Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., The Harmonized Landsat and Sentinel-2 surface reflectance data set (2018) Remote Sens. Environ, 219, pp. 145-161Zhang, H.K., Roy, D.P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., Roger, J.-C., Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences (2018) Remote Sens. Environ, 215, pp. 482-494Pahlevan, N., Balasubramanian, S.V., Sarkar, S., Franz, B.A., Toward Long-Term Aquatic Science Products from Heritage Landsat Missions (2018) Remote Sens, 10, p. 1337Leyenda Nacional de Coberturas de la Tierra (2010) Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000, p. 72. , Martínez, N.J.A., Ed.Instituto de Hidrología: Bogotá, ColumbiaGonzález-Martínez, M.D., Huguet, C., Pearse, J., McIntyre, N., Camacho, L.A., Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia (2019) Appl. Geochem, 108, p. 104382Londoño, C., Cleef, A., Madriñán, S., Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes (2014) Flora Morphol. Distrib. Functi. Ecol. Plants, 209, pp. 81-87Rivera, D., Rodríguez, C., (2011) Guía Divulgativa de Criterios para la Delimitación de Páramos de Colombia, , Alianza Ediprint Ltd.: Bogotá, ColombiaGutiérrez-Vélez, V.H., DeFries, R., Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon (2013) Remote Sens. Environ, 129, pp. 154-167Liaw, A., Wiener, M., Breiman and Cutler 's Random Forests for Classification and Regression (2018) R Package Vers 3.6.3, 4, pp. 6-14Loveland, T.R., Belward, A.S., The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover) (1997) Acta Astronaut, 41, pp. 681-689Rival, L., The meanings of forest governance in Esmeraldas, Ecuador (2003) Oxf. Dev. Stud, 31, pp. 479-501Analysis of drug markets Opiates, cocaine, cannabis, synthetic drugs (2018) World Drug Report (WDR), p. 72. , Sales No. E.18. XI.9 UNODC Research: Vienna, AustriaColombia Survey of territories affected by illicit crops-2016 (2017) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 216. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, ColumbiaCruz-Garcia, G.S., Vanegas Cubillos, M., Torres-Vitolas, C., Harvey, C.A., Shackleton, C.M., Schreckenberg, K., Willcock, S., Sachet, E., He says, she says: Ecosystem services and gender among indigenous communities in the Colombian Amazon (2019) Ecosyst. Serv, 37, p. 100921Colombia Monitoreo de territorios afectados por cultivos ilícitos 2018 (2019) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 115. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaColombia Coca cultivation survey 2013 (2014) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 131. , United Nations Office on Drugs and Crime-Government of Colombia: Bogotá, ColumbiaVallejo Toro, P.P., Vásquez Bedoya, L.F., Correa, I.D., Bernal Franco, G.R., Alcántara-Carrió, J., Palacio Baena, J.A., Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia (2016) Mar. Pollut. Bull, 111, pp. 311-320Anaya-Acevedo, J.A., Escobar-Martínez, J.F., Masson, H., Booman, G., Quiroz-Londoño, O.M., Cañón-Barriga, C., Montoya-Jaramillo, L.J., Palomino-Ángel, S., Identification of wetland areas in the context of agricultural development using Remote Sensing and GIS (2017) DYNA, 84, pp. 186-194Müller-Hansen, F., Heitzig, J., Donges, J.F., Cardoso, M.F., Dalla-Nora, E.L., Andrade, P., Kurths, J., Thonicke, K., Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model (2019) Ecol. Econ, 159, pp. 198-211Colombia Monitoreo de territorios afectados por cultivos ilícitos 2017 (2018) Sistema Integrado de Monitore de Cultivos Ilícitos, p. 168. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaOlofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A., Good practices for estimating area and assessing accuracy of land change (2014) Remote Sens. Environ, 148, pp. 42-57Rodríguez-Piñeros, S., Martínez-Cortés, O., Villarraga-Flórez, L., Ruíz-Díaz, A., Timber market actors' values on forest legislation: A case study from Colombia (2018) Forest Policy Econ, 88, pp. 1-10Colombia Monitoreo de territorios afectados por cultivos ilícitos 2015 (2016) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 143. , Oficina de las Naciones Unidas contra la Droga y el Delito-Gobierno de Colombia: Bogotá, ColumbiaColombia Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016 (2018) Sistema Integrado de Monitoreo de Cultivos Ilícitos, p. 144. , Oficina de las Naciones Unidas contra la Droga y el Delito: Bogotá, Columbia(2019) Luchan Contra la Minería Ilegal en Chocó, , https://sostenibilidad.semana.com/medio-ambiente/articulo/luchan-contra-la-mineria-ilegal-en-choco/43440, (accessed on 20 November)Lara-Rodríguez, J.S., All that glitters is not gold or platinum: Institutions and the use of mercury in mining in Chocó, Colombia (2018) Extr. Ind. Soc, 5, pp. 308-318Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430Vélez, M.A., Robalino, J., Cárdenas, J.C., Paz, A., Pacay, E., Ojeda, A., Is collective titling enough to protect forest? Evidence from Afro-descendant communities in the Colombian Pacific Region (2019) Centro de Estudios sobre Desarrollo Económico CEDE, , Universidad de los AndesSSRN: Bogota, ColumbiaRemote SensingBiodiversity hotspotDeforestationGoogle earth engineLandsatSentinelTropical humid forestsBiodiversityCropsDecision makingDecision treesDeforestationSatellite imageryBroadleaf forestDecision making processForest management policiesLand cover mappingOptical satellite imageryRandom forest classifierRestoration projectTropical forestConservationDrivers of forest loss in a megadiverse hotspot on the pacific Coast of ColombiaArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Anaya, J.A., Facultad de Ingeniería, Universidad de Medellín, Medellín, 050026, ColombiaGutiérrez-Vélez, V.H., Department of Geography and Urban Studies, Temple University, Philadelphia, PA 19122, United StatesPacheco-Pascagaza, A.M., Centre for Landscape and Climate Research (CLCR), School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United KingdomPalomino-Ángel, S., Facultad de Ingeniería, Universidad de Medellín, Medellín, 050026, ColombiaHan, N., Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, CanadaBalzter, H., Centre for Landscape and Climate Research (CLCR), School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom, National Centre for Earth Observation (NCEO), National Centre for Earth Observation (NCEO), University of Leicester, Leicester, LE1 7RH, United Kingdomhttp://purl.org/coar/access_right/c_16ecAnaya J.A.Gutiérrez-Vélez V.H.Pacheco-Pascagaza A.M.Palomino-Ángel S.Han N.Balzter H.11407/5945oai:repository.udem.edu.co:11407/59452021-02-05 09:58:12.372Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |