Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5721
- Acceso en línea:
- http://hdl.handle.net/11407/5721
- Palabra clave:
- Cardiology
Cell culture
Diffusion
Dispersion (waves)
Electrophysiology
Action potential durations
Electrical components
Fibroblast proliferation
Fractional derivatives
Fractional diffusion
Spatial characteristics
Structural component
Structural remodeling
Fibroblasts
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_86ef96a99e331db806385ad32598b716 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5721 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
title |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
spellingShingle |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands Cardiology Cell culture Diffusion Dispersion (waves) Electrophysiology Action potential durations Electrical components Fibroblast proliferation Fractional derivatives Fractional diffusion Spatial characteristics Structural component Structural remodeling Fibroblasts |
title_short |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
title_full |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
title_fullStr |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
title_full_unstemmed |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
title_sort |
Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands |
dc.subject.none.fl_str_mv |
Cardiology Cell culture Diffusion Dispersion (waves) Electrophysiology Action potential durations Electrical components Fibroblast proliferation Fractional derivatives Fractional diffusion Spatial characteristics Structural component Structural remodeling Fibroblasts |
topic |
Cardiology Cell culture Diffusion Dispersion (waves) Electrophysiology Action potential durations Electrical components Fibroblast proliferation Fractional derivatives Fractional diffusion Spatial characteristics Structural component Structural remodeling Fibroblasts |
description |
Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both, structural and electrical influence on the propagation, using a fractional diffusion model. Methods: The Courtemanche model of human atrial cell is implemented under chronic atrial fibrillation (AF) remodeling conditions. The atrial strands are designed as 1D domains, having a fibrotic portion localized in the middle. Fibrosis is modeled taking into account an electrical component, implemented by coupling a number of fibroblasts to a single cardiomyocyte, and a structural component, implemented through a q-order fractional derivative. Results: The variations of q define two dAPD dispersion regimes. For q < 1.4, the fibrosis density and the number of fibroblast per cardiomyocyte do not alter the dAPD. For q ? 1.4, the dAPD depends on the fibrosis spatial characteristics. Conclusion: This study shows that the structural component of fibrosis, modeled using fractional diffusion, modulates the spatial dAPD in a domain including electrical coupling of cardiomyocytes and fibroblasts, under chronic AF conditions. © 2018 Creative Commons Attribution. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:53:46Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:53:46Z |
dc.date.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.isbn.none.fl_str_mv |
9781728109589 |
dc.identifier.issn.none.fl_str_mv |
23258861 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5721 |
dc.identifier.doi.none.fl_str_mv |
10.22489/CinC.2018.228 |
identifier_str_mv |
9781728109589 23258861 10.22489/CinC.2018.228 |
url |
http://hdl.handle.net/11407/5721 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068799331&doi=10.22489%2fCinC.2018.228&partnerID=40&md5=3a041fda06dd3dc6d0749c0118eee9dd |
dc.relation.citationvolume.none.fl_str_mv |
2018-September |
dc.relation.references.none.fl_str_mv |
Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Van Putte, B., Vardas: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678 Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends in Cardiovascular Medicine, 27 (1), pp. 1-11 An?e, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Ector, H., Heidbüchel, H., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) Journal of Molecular and Cellular Cardiology, 43 (2), pp. 148-158 Trayanova, Na., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Frontiers in Physiology, 5, pp. 1-12. , November Roney, C.H., Bayer, J.D., Zahid, S., Meo, M., Boyle, P.M.J., Trayanova, N.A., Ha, M., Vigmond, E.J., Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms (2016) Europace, 18, pp. 146-155. , April Oldham, K., Spanier, J., The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (2006) Dover Books on Mathematics, , Dover Publications Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization (2014) Journal of the Royal Society Interface, 11. , August Ugarte, J.P., Tobón, C., Lopes, A.M., Tenreiro, M.J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Frontiers in Physiology, 9, pp. 1-14. , JUL Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Frontiers in Physiology, 3, pp. 1-16. , JAN(January) Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cellswith realistic ionic properties (2002) Circulation Research, 90 (9), pp. 73e-87 Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophysical Journal October, 97 (8), pp. 2179-2190 Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numerical Mathematics, 54 (4), pp. 937-954 Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias (2009) Heart Rhythm, 6 (6), pp. 848-856 Rohr, S., Arrhythmogenic implications of fibroblastmyocyte interactions (2012) Circulation Arrhythmia and Electrophysiology, 5 (2), pp. 442-452 Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circulation Research January, 110 (2), pp. 275-284 Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) Journal of the American College of Cardiology February, 51 (8), pp. 802-809 Ridler, M.E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Canadian Journal of Cardiology, 27 (1), pp. 112-119 Aswath Kumar, A.K., Drahi, A., Jacquemet, V., Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling (2017) Computers in Biology and Medicine, 81, pp. 55-63. , December 2016 Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circulation Research, 98 (6), pp. 801-810 Nguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils (2014) Journal of Molecular and Cellular Cardiology, 70, pp. 83-91 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
Computing in Cardiology |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159166859640832 |
spelling |
20182020-04-29T14:53:46Z2020-04-29T14:53:46Z978172810958923258861http://hdl.handle.net/11407/572110.22489/CinC.2018.228Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both, structural and electrical influence on the propagation, using a fractional diffusion model. Methods: The Courtemanche model of human atrial cell is implemented under chronic atrial fibrillation (AF) remodeling conditions. The atrial strands are designed as 1D domains, having a fibrotic portion localized in the middle. Fibrosis is modeled taking into account an electrical component, implemented by coupling a number of fibroblasts to a single cardiomyocyte, and a structural component, implemented through a q-order fractional derivative. Results: The variations of q define two dAPD dispersion regimes. For q < 1.4, the fibrosis density and the number of fibroblast per cardiomyocyte do not alter the dAPD. For q ? 1.4, the dAPD depends on the fibrosis spatial characteristics. Conclusion: This study shows that the structural component of fibrosis, modeled using fractional diffusion, modulates the spatial dAPD in a domain including electrical coupling of cardiomyocytes and fibroblasts, under chronic AF conditions. © 2018 Creative Commons Attribution.engIEEE Computer SocietyFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068799331&doi=10.22489%2fCinC.2018.228&partnerID=40&md5=3a041fda06dd3dc6d0749c0118eee9dd2018-SeptemberKirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Van Putte, B., Vardas: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends in Cardiovascular Medicine, 27 (1), pp. 1-11An?e, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Ector, H., Heidbüchel, H., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) Journal of Molecular and Cellular Cardiology, 43 (2), pp. 148-158Trayanova, Na., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Frontiers in Physiology, 5, pp. 1-12. , NovemberRoney, C.H., Bayer, J.D., Zahid, S., Meo, M., Boyle, P.M.J., Trayanova, N.A., Ha, M., Vigmond, E.J., Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms (2016) Europace, 18, pp. 146-155. , AprilOldham, K., Spanier, J., The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (2006) Dover Books on Mathematics, , Dover PublicationsBueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization (2014) Journal of the Royal Society Interface, 11. , AugustUgarte, J.P., Tobón, C., Lopes, A.M., Tenreiro, M.J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Frontiers in Physiology, 9, pp. 1-14. , JULWilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Frontiers in Physiology, 3, pp. 1-16. , JAN(January)Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cellswith realistic ionic properties (2002) Circulation Research, 90 (9), pp. 73e-87Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophysical Journal October, 97 (8), pp. 2179-2190Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numerical Mathematics, 54 (4), pp. 937-954Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias (2009) Heart Rhythm, 6 (6), pp. 848-856Rohr, S., Arrhythmogenic implications of fibroblastmyocyte interactions (2012) Circulation Arrhythmia and Electrophysiology, 5 (2), pp. 442-452Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circulation Research January, 110 (2), pp. 275-284Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) Journal of the American College of Cardiology February, 51 (8), pp. 802-809Ridler, M.E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Canadian Journal of Cardiology, 27 (1), pp. 112-119Aswath Kumar, A.K., Drahi, A., Jacquemet, V., Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling (2017) Computers in Biology and Medicine, 81, pp. 55-63. , December 2016Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circulation Research, 98 (6), pp. 801-810Nguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils (2014) Journal of Molecular and Cellular Cardiology, 70, pp. 83-91Computing in CardiologyCardiologyCell cultureDiffusionDispersion (waves)ElectrophysiologyAction potential durationsElectrical componentsFibroblast proliferationFractional derivativesFractional diffusionSpatial characteristicsStructural componentStructural remodelingFibroblastsFractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial StrandsConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ugarte, J.P., GIMSC, Universidad de San Buenaventura, Cra. 56 C #51-110, Medel?in, Colombia; Tobon, C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Palacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Andrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia; Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spainhttp://purl.org/coar/access_right/c_16ecUgarte J.P.Tobon C.Palacio L.C.Andrade-Caicedo H.Saiz J.11407/5721oai:repository.udem.edu.co:11407/57212020-05-27 17:30:45.117Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |