Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands

Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5721
Acceso en línea:
http://hdl.handle.net/11407/5721
Palabra clave:
Cardiology
Cell culture
Diffusion
Dispersion (waves)
Electrophysiology
Action potential durations
Electrical components
Fibroblast proliferation
Fractional derivatives
Fractional diffusion
Spatial characteristics
Structural component
Structural remodeling
Fibroblasts
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_86ef96a99e331db806385ad32598b716
oai_identifier_str oai:repository.udem.edu.co:11407/5721
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
title Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
spellingShingle Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
Cardiology
Cell culture
Diffusion
Dispersion (waves)
Electrophysiology
Action potential durations
Electrical components
Fibroblast proliferation
Fractional derivatives
Fractional diffusion
Spatial characteristics
Structural component
Structural remodeling
Fibroblasts
title_short Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
title_full Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
title_fullStr Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
title_full_unstemmed Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
title_sort Fractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial Strands
dc.subject.none.fl_str_mv Cardiology
Cell culture
Diffusion
Dispersion (waves)
Electrophysiology
Action potential durations
Electrical components
Fibroblast proliferation
Fractional derivatives
Fractional diffusion
Spatial characteristics
Structural component
Structural remodeling
Fibroblasts
topic Cardiology
Cell culture
Diffusion
Dispersion (waves)
Electrophysiology
Action potential durations
Electrical components
Fibroblast proliferation
Fractional derivatives
Fractional diffusion
Spatial characteristics
Structural component
Structural remodeling
Fibroblasts
description Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both, structural and electrical influence on the propagation, using a fractional diffusion model. Methods: The Courtemanche model of human atrial cell is implemented under chronic atrial fibrillation (AF) remodeling conditions. The atrial strands are designed as 1D domains, having a fibrotic portion localized in the middle. Fibrosis is modeled taking into account an electrical component, implemented by coupling a number of fibroblasts to a single cardiomyocyte, and a structural component, implemented through a q-order fractional derivative. Results: The variations of q define two dAPD dispersion regimes. For q < 1.4, the fibrosis density and the number of fibroblast per cardiomyocyte do not alter the dAPD. For q ? 1.4, the dAPD depends on the fibrosis spatial characteristics. Conclusion: This study shows that the structural component of fibrosis, modeled using fractional diffusion, modulates the spatial dAPD in a domain including electrical coupling of cardiomyocytes and fibroblasts, under chronic AF conditions. © 2018 Creative Commons Attribution.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2020-04-29T14:53:46Z
dc.date.available.none.fl_str_mv 2020-04-29T14:53:46Z
dc.date.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Conference Paper
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.isbn.none.fl_str_mv 9781728109589
dc.identifier.issn.none.fl_str_mv 23258861
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5721
dc.identifier.doi.none.fl_str_mv 10.22489/CinC.2018.228
identifier_str_mv 9781728109589
23258861
10.22489/CinC.2018.228
url http://hdl.handle.net/11407/5721
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068799331&doi=10.22489%2fCinC.2018.228&partnerID=40&md5=3a041fda06dd3dc6d0749c0118eee9dd
dc.relation.citationvolume.none.fl_str_mv 2018-September
dc.relation.references.none.fl_str_mv Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Van Putte, B., Vardas: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678
Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends in Cardiovascular Medicine, 27 (1), pp. 1-11
An?e, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Ector, H., Heidbüchel, H., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) Journal of Molecular and Cellular Cardiology, 43 (2), pp. 148-158
Trayanova, Na., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Frontiers in Physiology, 5, pp. 1-12. , November
Roney, C.H., Bayer, J.D., Zahid, S., Meo, M., Boyle, P.M.J., Trayanova, N.A., Ha, M., Vigmond, E.J., Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms (2016) Europace, 18, pp. 146-155. , April
Oldham, K., Spanier, J., The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (2006) Dover Books on Mathematics, , Dover Publications
Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization (2014) Journal of the Royal Society Interface, 11. , August
Ugarte, J.P., Tobón, C., Lopes, A.M., Tenreiro, M.J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Frontiers in Physiology, 9, pp. 1-14. , JUL
Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Frontiers in Physiology, 3, pp. 1-16. , JAN(January)
Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cellswith realistic ionic properties (2002) Circulation Research, 90 (9), pp. 73e-87
Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophysical Journal October, 97 (8), pp. 2179-2190
Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numerical Mathematics, 54 (4), pp. 937-954
Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias (2009) Heart Rhythm, 6 (6), pp. 848-856
Rohr, S., Arrhythmogenic implications of fibroblastmyocyte interactions (2012) Circulation Arrhythmia and Electrophysiology, 5 (2), pp. 442-452
Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circulation Research January, 110 (2), pp. 275-284
Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) Journal of the American College of Cardiology February, 51 (8), pp. 802-809
Ridler, M.E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Canadian Journal of Cardiology, 27 (1), pp. 112-119
Aswath Kumar, A.K., Drahi, A., Jacquemet, V., Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling (2017) Computers in Biology and Medicine, 81, pp. 55-63. , December 2016
Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circulation Research, 98 (6), pp. 801-810
Nguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils (2014) Journal of Molecular and Cellular Cardiology, 70, pp. 83-91
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv IEEE Computer Society
dc.publisher.program.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv Computing in Cardiology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159166859640832
spelling 20182020-04-29T14:53:46Z2020-04-29T14:53:46Z978172810958923258861http://hdl.handle.net/11407/572110.22489/CinC.2018.228Background: Fibroblast proliferation, as a component of the fibrotic process, plays a role in structural remodeling, but also can alter the electrophysiology of the cardiomyocytes. Aim: To study the action potential duration dispersion (dAPD) in fibrotic atrial strands, where fibroblasts exerts both, structural and electrical influence on the propagation, using a fractional diffusion model. Methods: The Courtemanche model of human atrial cell is implemented under chronic atrial fibrillation (AF) remodeling conditions. The atrial strands are designed as 1D domains, having a fibrotic portion localized in the middle. Fibrosis is modeled taking into account an electrical component, implemented by coupling a number of fibroblasts to a single cardiomyocyte, and a structural component, implemented through a q-order fractional derivative. Results: The variations of q define two dAPD dispersion regimes. For q < 1.4, the fibrosis density and the number of fibroblast per cardiomyocyte do not alter the dAPD. For q ? 1.4, the dAPD depends on the fibrosis spatial characteristics. Conclusion: This study shows that the structural component of fibrosis, modeled using fractional diffusion, modulates the spatial dAPD in a domain including electrical coupling of cardiomyocytes and fibroblasts, under chronic AF conditions. © 2018 Creative Commons Attribution.engIEEE Computer SocietyFacultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068799331&doi=10.22489%2fCinC.2018.228&partnerID=40&md5=3a041fda06dd3dc6d0749c0118eee9dd2018-SeptemberKirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M., Van Putte, B., Vardas: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) Europace, 18 (11), pp. 1609-1678Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends in Cardiovascular Medicine, 27 (1), pp. 1-11An?e, W., Willems, R., Holemans, P., Beckers, F., Roskams, T., Lenaerts, I., Ector, H., Heidbüchel, H., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model (2007) Journal of Molecular and Cellular Cardiology, 43 (2), pp. 148-158Trayanova, Na., Boyle, P.M., Arevalo, H.J., Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: A simulation approach (2014) Frontiers in Physiology, 5, pp. 1-12. , NovemberRoney, C.H., Bayer, J.D., Zahid, S., Meo, M., Boyle, P.M.J., Trayanova, N.A., Ha, M., Vigmond, E.J., Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms (2016) Europace, 18, pp. 146-155. , AprilOldham, K., Spanier, J., The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (2006) Dover Books on Mathematics, , Dover PublicationsBueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K., Interface, J.R.S., Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization (2014) Journal of the Royal Society Interface, 11. , AugustUgarte, J.P., Tobón, C., Lopes, A.M., Tenreiro, M.J.A., Atrial rotor dynamics under complex fractional order diffusion (2018) Frontiers in Physiology, 9, pp. 1-14. , JULWilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2013) Frontiers in Physiology, 3, pp. 1-16. , JAN(January)Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cellswith realistic ionic properties (2002) Circulation Research, 90 (9), pp. 73e-87Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophysical Journal October, 97 (8), pp. 2179-2190Bueno-Orovio, A., Kay, D., Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations (2014) BIT Numerical Mathematics, 54 (4), pp. 937-954Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias (2009) Heart Rhythm, 6 (6), pp. 848-856Rohr, S., Arrhythmogenic implications of fibroblastmyocyte interactions (2012) Circulation Arrhythmia and Electrophysiology, 5 (2), pp. 442-452Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circulation Research January, 110 (2), pp. 275-284Burstein, B., Nattel, S., Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation (2008) Journal of the American College of Cardiology February, 51 (8), pp. 802-809Ridler, M.E., Lee, M., McQueen, D., Peskin, C., Vigmond, E., Arrhythmogenic consequences of action potential duration gradients in the atria (2011) Canadian Journal of Cardiology, 27 (1), pp. 112-119Aswath Kumar, A.K., Drahi, A., Jacquemet, V., Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling (2017) Computers in Biology and Medicine, 81, pp. 55-63. , December 2016Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic modulation of cardiac impulse conduction by myofibroblasts (2006) Circulation Research, 98 (6), pp. 801-810Nguyen, T.P., Qu, Z., Weiss, J.N., Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils (2014) Journal of Molecular and Cellular Cardiology, 70, pp. 83-91Computing in CardiologyCardiologyCell cultureDiffusionDispersion (waves)ElectrophysiologyAction potential durationsElectrical componentsFibroblast proliferationFractional derivativesFractional diffusionSpatial characteristicsStructural componentStructural remodelingFibroblastsFractional Diffusion Modulates Distribution of Action Potential Duration in Fibrotic Atrial StrandsConference Paperinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ugarte, J.P., GIMSC, Universidad de San Buenaventura, Cra. 56 C #51-110, Medel?in, Colombia; Tobon, C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Palacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia; Andrade-Caicedo, H., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia; Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spainhttp://purl.org/coar/access_right/c_16ecUgarte J.P.Tobon C.Palacio L.C.Andrade-Caicedo H.Saiz J.11407/5721oai:repository.udem.edu.co:11407/57212020-05-27 17:30:45.117Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co